• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The influence of nonlinear shear stress on partially averaged Navier-Stokes (PANS) method*

    2017-06-07 08:22:46JintaoLiu劉錦濤PengchengGuo郭鵬程TiejunChen陳鐵軍YulinWu吳玉林
    關(guān)鍵詞:鵬程玉林鐵軍

    Jin-tao Liu (劉錦濤), Peng-cheng Guo (郭鵬程), Tie-jun Chen (陳鐵軍), Yu-lin Wu (吳玉林)

    1. Beijing Institute of Control Engineering, Beijing 100190, China, E-mail: liujintao86@hotmail.com

    2. State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China

    3. Department of Thermal Engineeering, Tsinghua University, Beijing 100084, China

    The influence of nonlinear shear stress on partially averaged Navier-Stokes (PANS) method*

    Jin-tao Liu (劉錦濤)1, Peng-cheng Guo (郭鵬程)2, Tie-jun Chen (陳鐵軍)2, Yu-lin Wu (吳玉林)3

    1. Beijing Institute of Control Engineering, Beijing 100190, China, E-mail: liujintao86@hotmail.com

    2. State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China

    3. Department of Thermal Engineeering, Tsinghua University, Beijing 100084, China

    2017,29(3):479-484

    In most of partially averaged Navier-Stokes (PANS) methods, the Reynolds stress is solved by a linear hypothesis isotropic model. They could not capture all kinds of vortexes in tubomachineries. In this paper, a PANS model is modified from the RNG k-e turbulence model and is used to investigate the influence of the nonlinear shear stress on the simulation of the high pressure gradient flows and the large curvature flows. Comparisons are made between the result obtained by using the PANS model modified from the RNG -ke model and that obtained by using the nonlinear PANS methods. The flow past a curved rectangular duct is calculated by using the PANS methods. The obtained nonlinear shear stress agrees well with the experimental results, especially in the high pressure gradient region. The calculation results show that the nonlinear PANS methods are more reliable than the linear PANS methods for the high pressure gradient flows, the large curvature flows, and they can be used to capture complex vortexes in a turbomachinary.

    Nonlinear PANS method, circular cylinder, velocity distribution, unsolved eddy viscosity

    Introduction

    One way to model the anisotropy is to use the Reynolds stress transport equations. Craft and Launder[1]discussed different Reynolds stress turbulence models and found that higher order pressure strain models with consideration of the stress redistribution near walls can predict the lateral spreading rate well. Lübcke et al.[2]used another way to simulate the anisotropy. They presented an explicit Reynolds-stress closure for a physically sound extension of the most prominent linear Boussinesq viscosity models with a modest computational cost.

    Durbin[3]introduced the elliptic relaxation approach within the framework of the linear eddy-visco-sity formulation: the so-called v2-f model. The nonlinear v2-f turbulence model differs from the family of conventional nonlinear eddy viscosity models. In this approach, the elliptic wall effects are accounted for indirectly through the solution of a modified Helmholtz equation[4,5]. The v2-f turbulence model is a seven equation model, which would take more computational time and resources.

    The large eddy simulation (LES) may not be computationally viable, due to the large computational cost. Instead, some mixed computational methods, combining the desirable aspects of the RANS and the LES, were used in the engineering computations[6]. Girimaji et al.[7]proposed a new turbulence model that combines the advantages of the RANS method with those of the LES. Girimaji[8]developed a bridging method inspired by the modeling paradigm proposed by Speziale. The method is called the partially averaged Navier-Stokes (PANS) model and is purported for any filter width.

    Jeong and Girimaji[9]analyzed the flow past a circular cylinder with a high Reynolds number via thePANS model. Huang and Wang[10]studied the unsteady cavitating flow around the Clark-Y hydrofoil and found that the result agrees well with the experimental result when the unresolved-to-total kinetic energy ( fk) is less than 0.2. Luo et al.[11]and Ji et al.[12,13]analyzed the cavitating flow around a marine propeller and a twisted hydrofoil in a non-uniform wake via the PANS method with the modified -kemodel. Krajnovic et al.[14]studied the flow around a cuboid influenced by the crosswind with a comparison between the PANS model and the LES. Hu et al.[15]proposed a new kind PANS model derived from the k-w turbulence model, which was called the k-wPANS methods. Comparisons between the k-ePANS method and the k-w PANS method were made through simulations of the flow past a circular cylinder by Reyes[16]. A variable-resolved PANS bridging strategy was applied to the four-equation k -e- x- f turbulence model[17]. The k -e -x -f PANS method was more accurate in the simulation of the near-wall turbulence flow. The embedded LES using the PANS model was proposed by Davidson and Peng[18].

    Computations of the flow in a curved rectangular duct were also made to evaluate the numerical as well as physical modeling aspects. In this paper, the nonlinear PANS model is used to simulate the flow in a curved rectangular duct. Results of the internal flow are compared with the experimental data.

    1. Governing equations

    For the incompressible flow, the continuity equation and the Reynolds averaged Navier-Stokes equations are

    whereiV is the instantaneous velocity (with subscripts i and j indicating the components in different directions), t is the time, p is the pressure, denotes a constant-preserving arbitrary (implicit or explicit) filter commuting with the spatial and temporal differentiations, x denotes the coordinates, n is the kinematic viscosity. Here, Viis partitioned into two parts: the partially averaged velocity (Ui) and the unresolved part (ui)

    In the RNG -ke turbulence mode, the equations for the turbulent kinetic energy ()k and the turbulent dissipation ()e can be expressed as follows:

    with Cm=0.0845, ak= ae=1.39, Ce1=1.42, Ce2=1.68, h0=4.377, b =0.012. In Eqs.(5) and (6),r is the density,U is the mean component of the velocity, m is the dynamic viscosity, kP denotes the production terms of the turbulence kinetic energy.

    As shown in Girimaji et al.[7], the extent of the PANS averaging relative to the RANS can be quantified by using the unresolved-to-total ratios of the kinetic energy (fk) and the dissipations ( fe)

    The relationship betweenkP in the RNG -keturbulence mode andkuP in the PANS model can obtained through comparing the source terms such as

    Then we can obtain the PANS model by a modification of the RNG -ke turbulence model with thefollow in g equations:

    Fig.1 (Color online) A curved rectangular duct

    Equations (9) and (10) form the linear PANS model.

    The shear stress is solved by using the nonlinear turbulence model proposed by Liu et al.[19]:

    In Eq.(15), T is the turbulence time scale and u is the turbulence velocity scale.

    The use of the nonlinear shear stress in the linear PANS model makes the nonlinear PANS model.

    2. Test case

    To show that the nonlinear PANS can be used for capturing complex flows, a 3-D curved rectangular duct and the flow past a circular cylinder are simulated and the results of the internal flow are compared with the experimental data. The nonlinear PANS and linear PANS models are implemented with the Fluent software and the user defined function (UDF). The computational results of the nonlinear PANS model are also compared with the results obtained by using the linear PANS model.

    The experimental data of the internal flow in the curved rectangular duct were obtained by Kim and Patel[20]. The structure of the curved rectangular duct is shown in Fig.1. H =0.203m , the radius of theinner circle is 0.608 m, and the Reynolds number is Re=u0H /n =2.24′ 105. The transverse velocity (perpendicular to the measurement line and along the flow direction), the axial velocity (perpendicular to the measurement line and the flow direction) and the longitudinal velocity (along the measurement line) on the measurement curve are calculated. Mesh of the rectangular duct is shown in Fig.2.

    Fig.2 (Color online) Mesh of the rectangular duct

    The velocity inlet and the pressure outlet are used. No slip boundary conditions are used for the near wall region. The coupling method is used to correct the pressure during the calculation. The second order upwind scheme is used to resolve the Navies-Stocks equations. Convergence is determined by the residual error less than 0.0001.

    3. Results and discussions

    3.1 Velocity distribution on the measurement line

    Figure 3 shows the results of the transverse velocity on the measurement line. The results obtained by using the nonlinear PANS model with fk=0.1 are in good agreement with the experimental results. The transverse velocity of the experimental results on the measurement line shows a hump shape distribution, and it can be captured by the nonlinear PANS model when fk=0.1. The results obtained by using the nonlinear PANS model with fk=0.2 and the linear PANS model with fk=0.1do not show the nonlinear phenomena.

    Fig.3 Transverse velocity

    Figure 4 shows the longitudinal velocity on the measurement line. The results obtained by using the nonlinear PANS and the linear PANS model with fk=0.1 are smaller than those obtained by using the nonlinear PANS model with fk=0.2 at the region of the dominant flow. The longitudinal velocity on the measurement line based on the nonlinear PANS model with fk=0.1 agrees well with the experiment result. The results of the longitudinal velocity obtained by using the nonlinear PANS model with fk=0.1 show the nonlinear phenomena when 0<h/H<0.3 .

    Fig.4 Longitudinal velocity

    Figure 5 shows the axial velocity on the measurement line. The maximum point of the axial velocity obtained by using the nonlinear PANS model with fk=0.1 is very close to the result of the experimental data, while the results based on the nonlinear PANS model with fk=0.2and the linear PANS model with fk=0.1 see a large error at this point. The nonlinear characteristics of the axial velocity when 0<h/H<0.3 can also be captured by the nonlinear PANS model.

    Fig.5 Axial velocity

    3.2 Pressure and velocity distributions on the convex surface

    The pressure distributions on the convex surface of the curved rectangular duct are shown in Fig.6. The results based on the nonlinear PANS model see a large region of negative pressure, while the results obtainedby using the linear PANS model with fk=0.1 can only capture a small region of negative pressure. Results of the nonlinear PANS model are much different from those of the linear PANS model. The nonlinear PANS model can capture the high pressure gradient on the convex surface.

    Fig.6 (Color online) Pressure distribution on the convex surface

    3.3 Limit streamline near the convex surface

    Figure 7 shows the results of the limit streamline near the convex surface. Results of the RNG -kemodel and the SST -kw model see flow separation phenomena, as shown in Fig.8(b). The flow also has a symmetric distribution without vortex near the convex surface, as obtained by using the RNG -ke model and the SST -kw model. The results of the limit streamline near the convex surface based on the nonlinear PANS model see a great difference from those obtained by using the other two models. Both the flow separation and the reverse flow can be captured by the nonlinear PANS model. The flow separation at the front of the curved rectangular duct is the same as that obtained by using the other turbulence model, but the results of the RNG -ke model and the SST -kwmodel do not see the reverse flow at the curved region.

    Fig.7 Velocity distribution on the convex surface

    4. Conclusions

    This paper investigates a nonlinear PANS turbulence model and a linear PANS turbulence model, including a sensitivity analysis of the high pressure gradient flow and the large curvature flow. The differencebetween the nonlinear PANS model and linear PANS model is in the use of the nonlinear shear stress.

    Results for the curved rectangular duct indicate that the nonlinear shear stress shows a nontrivial improvement compared with the linear PANS model. Results of the velocity on the measurement line based on the nonlinear PANS model with fk=0.1 are in good agreement with the experimental results. The model using the nonlinear shear stress can capture the flow separation and the reverse flow.

    Acknowledgment

    This work was supported by the Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering, Tsinghua University (Grant No. sklhse-2014-E-02).

    [1] Craft T. J., Launder B. E. On the spreading mechanism of the three-dimensional turbulent wall jet [J]. Journal of Fluid Mechanics, 2001, 435: 305-326.

    [2] Lübcke H. M., Rung T., Thiele F. Prediction of the spreading mechanism of 3D turbulent wall jets with explicit Reynolds-stress closure [J]. International Journal of Heat and Fluid Flow, 2003, 24(4): 434-443.

    [3] Durbin P. Separated flow computations with the k -e-v2model [J]. AIAA Journal, 1995, 33(4): 659-664.

    [4] Laurence D. R., Uribe J. C., Utyuzhnikov S. V. A robust formulation of the v2-f model [J]. Flow Turbulence and Combustion, 2005, 73(3): 169-185.

    [5] Popovac M., Hanjalic K. Compound wall treatment for RANS computation of complex turbulent flows and heat transfer [J]. Flow Turbulence and Combustion, 2007, 78(2): 177-202.

    [6] Tucker P. G. Trends in turbomachinery turbulence treatments [J]. Progress in Aerospace Sciences, 2013, 63(6): 1-32.

    [7] Girimaji S. S., Jeong E., Srinivasan R. Partially averaged Navier-Stokes method for turbulence: Fixed point analysis and comparison with unsteady partially averaged Navier-Stokes [J]. Journal of Applied Mechanics, 2006, 73(3): 422-429.

    [8] Girimaji S. S. Partially-averaged Navier-Stokes model for turbulence: A Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method [J]. Journal of Applied Mechanics, 2006, 73(3): 413-421.

    [9] Jeong E., Girimaji S. S. Partially averaged Navier-Stokes (PANS) method for turbulence simulations-Flow past a square cylinder [J]. Journal of Fluids Engineering, 2010, 132(12): 121203.

    [10] Huang B., Wang G. Y. Partially averaged Navier-Stokes method for time-dependent turbulent cavitating flows [J]. Journal of Hydrodynamics, 2011, 23(1): 26-33.

    [11] Luo X. W., Ji B., Tsujimoto Y. A review of cavitation in hydraulic machinery [J]. Journal of Hydrodynamics, 2016, 28(3): 335-358.

    [12] Ji B., Luo X. W., Wu Y . L. et al. Partially-averaged Navier-Stokes method with modified -kemodel for cavitating flow around a marine propeller in a non-uniform wake [J]. International Journal of Heat and Mass Transfer, 2012, 55(23-24): 6582-6588.

    [13] Ji B., Luo X., Wu Y. et al. Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil [J]. International Journal of Multiphase Flow, 2013, 51(5): 33-43.

    [14] Krajnovic S., Ringqvist P., Basara B. Comparison of partially averaged Navier-Stokes and large-eddy simulations of the flow around a cuboid influenced by crosswind [J]. Journal of Fluids Engineering, 2012, 134(10): 101202.

    [15] Hu C. L., Wang G. Y., Wang Z. Y. Partially averaged Navier-Stokes method based on -kw model for simulating unsteady cavitating flows [J]. Materials Science and Engineering, 2015, 72(2): 022007.

    [16] Reyes D. A. Partially averaged Navier-Stokes turbulence modeling: Investigation of computational and physical closure issues in flow past a circular cylinder [D]. Master Thesis, College Station, USA: Texas A&M University, 2006.

    [17] Basara B., Krajnovi? S., Girimaji S. et al. Near-wall formulation of the partially averaged Navier-Stokes turbulence model [J]. AIAA Journal, 2011, 49(12): 2627-2636.

    [18] Davidson L., Peng S. H. Embedded large-eddy simulation using the partially averaged Navier-Stokes model [J]. AIAA Journal, 2013, 51(5): 1066-1079.

    [19] Liu J., Zuo Z., Wu Y. et al. A nonlinear partially-averaged Navier-Stokes model for turbulence [J]. Computers and Fluids, 2014,102(10): 32-40.

    [20] Kim W. J., Patel V. C. An experimental study of boundary layer flow in a curved rectangular duct [C]. Proceedings of the ASME Fluids Engineering Conference. Washington DC, USA, 1993.

    10.1016/S1001-6058(16)60759-X

    May 16, 2015, Revised November 22, 2015)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51406010, 51479166).

    Biography:Jin-tao Liu (1986-), Male, Ph. D., Senior Engineer

    Peng-cheng Guo,

    E-mail: guoyicheng@xaut.edu.cn

    猜你喜歡
    鵬程玉林鐵軍
    王玉林作品
    新昌縣征訂《鐵軍》連續(xù)五年超千份
    鐵軍(2022年12期)2022-12-07 11:51:46
    GLEASON’S PROBLEM ON THE SPACE Fp,q,s(B) IN Cn*
    鐵軍頌
    心聲歌刊(2022年6期)2022-02-14 13:20:22
    A PRIORI BOUNDS AND THE EXISTENCE OF POSITIVE SOLUTIONS FOR WEIGHTED FRACTIONAL SYSTEMS?
    鑄成消防鐵軍
    在傳統(tǒng)與創(chuàng)新中尋求制衡點(diǎn)
    THE CAUCHY PROBLEM FOR THE TWO LAYER VISOUS SHALLOW WATER EQUATIONS*
    邱玉林藝術(shù)作品欣賞
    Unit 6 Travelling around Asia Listening and speaking
    久久国产乱子伦精品免费另类| 成人手机av| 最新在线观看一区二区三区| 久久久久久久久中文| 精品一区二区三区视频在线观看免费| 在线永久观看黄色视频| 欧美成人一区二区免费高清观看 | 亚洲三区欧美一区| 日韩 欧美 亚洲 中文字幕| 叶爱在线成人免费视频播放| www国产在线视频色| 免费一级毛片在线播放高清视频 | 日本一区二区免费在线视频| 真人做人爱边吃奶动态| 精品电影一区二区在线| 视频区欧美日本亚洲| 欧美成狂野欧美在线观看| 国产高清videossex| 欧美性长视频在线观看| 午夜福利欧美成人| 18美女黄网站色大片免费观看| 校园春色视频在线观看| www.精华液| 男男h啪啪无遮挡| 亚洲成人久久性| 人人妻人人爽人人添夜夜欢视频| 99在线视频只有这里精品首页| 黄片播放在线免费| 亚洲国产欧美日韩在线播放| 色综合站精品国产| 亚洲免费av在线视频| 黑人操中国人逼视频| 成人国产一区最新在线观看| av在线天堂中文字幕| 热99re8久久精品国产| 久久 成人 亚洲| 国产高清视频在线播放一区| or卡值多少钱| 国产单亲对白刺激| 欧美日韩瑟瑟在线播放| 国产精品久久久久久精品电影 | 日韩欧美在线二视频| 亚洲国产精品合色在线| 国产免费av片在线观看野外av| 久久久久久久精品吃奶| 天堂影院成人在线观看| 激情视频va一区二区三区| 久久中文看片网| 在线观看午夜福利视频| 啦啦啦韩国在线观看视频| 丝袜在线中文字幕| 久久久国产成人精品二区| 国产亚洲精品综合一区在线观看 | 亚洲 欧美 日韩 在线 免费| 久久久水蜜桃国产精品网| 如日韩欧美国产精品一区二区三区| 九色国产91popny在线| 亚洲成人免费电影在线观看| 日韩三级视频一区二区三区| 夜夜夜夜夜久久久久| 久久精品国产综合久久久| 日本五十路高清| 大陆偷拍与自拍| 国产精品秋霞免费鲁丝片| 久久国产亚洲av麻豆专区| www.自偷自拍.com| 亚洲av熟女| 亚洲精品国产一区二区精华液| 欧美激情久久久久久爽电影 | 精品一区二区三区av网在线观看| 不卡一级毛片| 亚洲性夜色夜夜综合| 日本撒尿小便嘘嘘汇集6| 99久久99久久久精品蜜桃| 人人妻,人人澡人人爽秒播| 亚洲狠狠婷婷综合久久图片| 成人亚洲精品av一区二区| 亚洲一区中文字幕在线| 国产又爽黄色视频| 欧美在线一区亚洲| 91大片在线观看| 激情视频va一区二区三区| 亚洲熟妇中文字幕五十中出| 日本vs欧美在线观看视频| 黑人操中国人逼视频| 精品久久久久久,| 日本a在线网址| 国产激情久久老熟女| 国产精品免费视频内射| 女生性感内裤真人,穿戴方法视频| 可以在线观看的亚洲视频| 热re99久久国产66热| 波多野结衣高清无吗| 亚洲九九香蕉| 欧美国产日韩亚洲一区| 女人被躁到高潮嗷嗷叫费观| 国产三级黄色录像| 成人三级做爰电影| 在线观看www视频免费| 久久精品影院6| 在线观看日韩欧美| 女性被躁到高潮视频| 国产高清激情床上av| 日韩高清综合在线| 精品卡一卡二卡四卡免费| 涩涩av久久男人的天堂| 18美女黄网站色大片免费观看| 黑人欧美特级aaaaaa片| 日本五十路高清| 18禁美女被吸乳视频| 亚洲国产中文字幕在线视频| 一边摸一边做爽爽视频免费| 免费在线观看完整版高清| 国产欧美日韩一区二区精品| 男男h啪啪无遮挡| 久久国产乱子伦精品免费另类| 久久久久久久精品吃奶| 脱女人内裤的视频| 国产又爽黄色视频| 麻豆国产av国片精品| 色播在线永久视频| 国产av一区二区精品久久| 一本久久中文字幕| 精品国内亚洲2022精品成人| 黄色 视频免费看| 亚洲片人在线观看| 男人操女人黄网站| 久久热在线av| 午夜视频精品福利| 亚洲av熟女| 久久影院123| 国产视频一区二区在线看| 亚洲成人精品中文字幕电影| 国产精品一区二区三区四区久久 | 色综合亚洲欧美另类图片| 国产精品九九99| 视频在线观看一区二区三区| 欧美中文日本在线观看视频| 麻豆一二三区av精品| 亚洲熟女毛片儿| 久久婷婷人人爽人人干人人爱 | 亚洲专区字幕在线| 午夜精品国产一区二区电影| 91麻豆精品激情在线观看国产| cao死你这个sao货| 性欧美人与动物交配| 一区二区三区国产精品乱码| 免费在线观看影片大全网站| 欧美老熟妇乱子伦牲交| 69av精品久久久久久| 欧美中文日本在线观看视频| 国产成人精品久久二区二区免费| 免费在线观看影片大全网站| 欧美黑人精品巨大| 国产伦人伦偷精品视频| 人妻丰满熟妇av一区二区三区| 亚洲av成人不卡在线观看播放网| 亚洲黑人精品在线| 一级毛片女人18水好多| 久久亚洲精品不卡| 非洲黑人性xxxx精品又粗又长| 超碰成人久久| 欧美日本中文国产一区发布| 亚洲精品国产一区二区精华液| 999久久久精品免费观看国产| 亚洲精品国产精品久久久不卡| 免费不卡黄色视频| 激情视频va一区二区三区| 久久久精品欧美日韩精品| 美女扒开内裤让男人捅视频| 久久婷婷成人综合色麻豆| 99国产综合亚洲精品| 法律面前人人平等表现在哪些方面| 在线观看www视频免费| 亚洲av日韩精品久久久久久密| 精品欧美一区二区三区在线| 精品国产超薄肉色丝袜足j| 成在线人永久免费视频| 久久伊人香网站| 国产精品综合久久久久久久免费 | 99久久综合精品五月天人人| 久99久视频精品免费| 淫秽高清视频在线观看| 高清黄色对白视频在线免费看| 成人手机av| 桃色一区二区三区在线观看| 国产片内射在线| 不卡av一区二区三区| 黄色 视频免费看| 99re在线观看精品视频| 香蕉丝袜av| 美女 人体艺术 gogo| 中文字幕最新亚洲高清| 亚洲自偷自拍图片 自拍| 色哟哟哟哟哟哟| 一a级毛片在线观看| 国产亚洲欧美在线一区二区| 18美女黄网站色大片免费观看| 波多野结衣一区麻豆| 在线av久久热| 日本三级黄在线观看| 熟妇人妻久久中文字幕3abv| 亚洲av成人不卡在线观看播放网| 日韩 欧美 亚洲 中文字幕| 黄片小视频在线播放| 亚洲av成人av| 成人亚洲精品一区在线观看| 母亲3免费完整高清在线观看| 国产欧美日韩一区二区精品| x7x7x7水蜜桃| 色综合欧美亚洲国产小说| 精品国产乱子伦一区二区三区| 香蕉久久夜色| 男男h啪啪无遮挡| 欧美激情久久久久久爽电影 | 他把我摸到了高潮在线观看| videosex国产| 日日干狠狠操夜夜爽| 18禁黄网站禁片午夜丰满| 午夜免费鲁丝| 999久久久精品免费观看国产| 精品国产一区二区三区四区第35| 日本免费a在线| 波多野结衣一区麻豆| 欧美国产日韩亚洲一区| 一边摸一边抽搐一进一出视频| 日本五十路高清| 一二三四社区在线视频社区8| 免费观看人在逋| 香蕉国产在线看| 日本在线视频免费播放| 妹子高潮喷水视频| 国产成人精品无人区| 一级毛片精品| 美女高潮喷水抽搐中文字幕| 多毛熟女@视频| 国产av在哪里看| 大香蕉久久成人网| 欧美精品亚洲一区二区| 午夜亚洲福利在线播放| 亚洲av片天天在线观看| 欧美激情 高清一区二区三区| 国产成人欧美在线观看| 成人av一区二区三区在线看| 大香蕉久久成人网| 国产精品免费视频内射| 欧美在线一区亚洲| 国产精品乱码一区二三区的特点 | 免费一级毛片在线播放高清视频 | 久久久久久久久中文| 国产91精品成人一区二区三区| 久久精品国产99精品国产亚洲性色 | 精品人妻1区二区| 大香蕉久久成人网| 女同久久另类99精品国产91| 国产成人精品无人区| 国产成人精品久久二区二区免费| 欧美激情极品国产一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 亚洲中文字幕一区二区三区有码在线看 | 男女下面插进去视频免费观看| 国产亚洲av嫩草精品影院| 最近最新中文字幕大全电影3 | 亚洲成国产人片在线观看| 变态另类成人亚洲欧美熟女 | 久久精品91蜜桃| 满18在线观看网站| 无限看片的www在线观看| 久久久水蜜桃国产精品网| 亚洲精品国产色婷婷电影| 国产成人系列免费观看| av片东京热男人的天堂| 日韩精品青青久久久久久| 大香蕉久久成人网| 亚洲欧美激情在线| 99精品久久久久人妻精品| 亚洲精品国产一区二区精华液| 一个人观看的视频www高清免费观看 | 韩国精品一区二区三区| 视频区欧美日本亚洲| 中出人妻视频一区二区| av免费在线观看网站| 日韩三级视频一区二区三区| 国产97色在线日韩免费| 侵犯人妻中文字幕一二三四区| 无遮挡黄片免费观看| www.www免费av| 看黄色毛片网站| 日韩欧美一区二区三区在线观看| 国产精品久久视频播放| 精品久久久久久久久久免费视频| 午夜福利高清视频| 国产精品av久久久久免费| 日本一区二区免费在线视频| 亚洲欧美日韩另类电影网站| 欧美成人一区二区免费高清观看 | 日韩av在线大香蕉| 亚洲最大成人中文| 国产亚洲精品久久久久5区| 一区二区三区国产精品乱码| 成人免费观看视频高清| 看片在线看免费视频| 日本精品一区二区三区蜜桃| 91大片在线观看| 久热这里只有精品99| 91麻豆av在线| 国产成人系列免费观看| 久久草成人影院| av天堂在线播放| 女警被强在线播放| 18禁观看日本| 女警被强在线播放| 男人舔女人的私密视频| 18禁黄网站禁片午夜丰满| 麻豆久久精品国产亚洲av| 嫁个100分男人电影在线观看| 亚洲色图av天堂| 黄频高清免费视频| 亚洲自偷自拍图片 自拍| 成在线人永久免费视频| 美国免费a级毛片| 亚洲av电影在线进入| 亚洲 欧美一区二区三区| 99热只有精品国产| 午夜免费鲁丝| 啦啦啦 在线观看视频| 我的亚洲天堂| 亚洲精品美女久久久久99蜜臀| 九色国产91popny在线| 免费av毛片视频| 日韩欧美在线二视频| 一a级毛片在线观看| 精品久久蜜臀av无| 免费少妇av软件| av片东京热男人的天堂| 亚洲欧美日韩无卡精品| 精品午夜福利视频在线观看一区| 巨乳人妻的诱惑在线观看| 欧美黄色淫秽网站| 日本欧美视频一区| 亚洲男人的天堂狠狠| 欧美在线黄色| 多毛熟女@视频| 亚洲片人在线观看| 伦理电影免费视频| 日韩欧美三级三区| 免费观看精品视频网站| 久久久久久国产a免费观看| 99精品在免费线老司机午夜| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久免费高清国产稀缺| 久久久久国内视频| 亚洲电影在线观看av| 国产精华一区二区三区| 悠悠久久av| 精品欧美国产一区二区三| 成人特级黄色片久久久久久久| 十八禁人妻一区二区| 精品不卡国产一区二区三区| 午夜免费激情av| 午夜两性在线视频| 好男人在线观看高清免费视频 | 久久香蕉国产精品| 真人做人爱边吃奶动态| 国产av精品麻豆| 亚洲av成人一区二区三| 大陆偷拍与自拍| 精品久久久精品久久久| 狠狠狠狠99中文字幕| 亚洲最大成人中文| 中亚洲国语对白在线视频| 97人妻天天添夜夜摸| 亚洲精华国产精华精| 国产精品1区2区在线观看.| 日本 欧美在线| 亚洲欧美精品综合一区二区三区| a在线观看视频网站| 成人特级黄色片久久久久久久| 午夜免费激情av| 妹子高潮喷水视频| 18禁黄网站禁片午夜丰满| 嫩草影视91久久| aaaaa片日本免费| 亚洲伊人色综图| 国产区一区二久久| av在线播放免费不卡| 欧洲精品卡2卡3卡4卡5卡区| 精品乱码久久久久久99久播| 可以在线观看毛片的网站| 国产三级黄色录像| 午夜福利影视在线免费观看| 两个人视频免费观看高清| 色老头精品视频在线观看| 男女下面插进去视频免费观看| 老熟妇乱子伦视频在线观看| 午夜免费激情av| 欧美日韩黄片免| 在线观看日韩欧美| 最好的美女福利视频网| 91麻豆av在线| 亚洲激情在线av| 精品一区二区三区av网在线观看| 琪琪午夜伦伦电影理论片6080| 一级毛片高清免费大全| 极品教师在线免费播放| 老熟妇乱子伦视频在线观看| 桃红色精品国产亚洲av| 久久久久久人人人人人| 十分钟在线观看高清视频www| 免费少妇av软件| 国产成人啪精品午夜网站| 久久天堂一区二区三区四区| 99精品在免费线老司机午夜| 叶爱在线成人免费视频播放| 亚洲色图av天堂| a在线观看视频网站| 亚洲一区二区三区色噜噜| 国产极品粉嫩免费观看在线| 无遮挡黄片免费观看| 成熟少妇高潮喷水视频| 亚洲,欧美精品.| 久久青草综合色| 一个人免费在线观看的高清视频| 少妇熟女aⅴ在线视频| 色播亚洲综合网| 久久香蕉精品热| 欧美人与性动交α欧美精品济南到| 欧美+亚洲+日韩+国产| 在线av久久热| 国产精品久久久久久精品电影 | 午夜视频精品福利| 亚洲一区高清亚洲精品| 婷婷六月久久综合丁香| 免费观看精品视频网站| 免费看美女性在线毛片视频| 97人妻天天添夜夜摸| 国产精华一区二区三区| 乱人伦中国视频| 欧美一级毛片孕妇| 国产精品,欧美在线| 国产精品电影一区二区三区| 免费观看人在逋| 9热在线视频观看99| 男人的好看免费观看在线视频 | 激情视频va一区二区三区| 操出白浆在线播放| 亚洲第一av免费看| 级片在线观看| av有码第一页| 亚洲情色 制服丝袜| 精品人妻在线不人妻| 日韩成人在线观看一区二区三区| 中国美女看黄片| 成年版毛片免费区| 久久久久久久午夜电影| 亚洲精品国产色婷婷电影| 久久狼人影院| 久久精品国产99精品国产亚洲性色 | 三级毛片av免费| 免费在线观看影片大全网站| 欧美黄色淫秽网站| 他把我摸到了高潮在线观看| 日韩大尺度精品在线看网址 | 国产精品一区二区精品视频观看| 大香蕉久久成人网| 日韩免费av在线播放| av片东京热男人的天堂| 少妇被粗大的猛进出69影院| 日日爽夜夜爽网站| 搡老妇女老女人老熟妇| 日韩中文字幕欧美一区二区| 精品无人区乱码1区二区| 精品国产一区二区三区四区第35| 人人澡人人妻人| 91成年电影在线观看| 成人国产综合亚洲| 麻豆国产av国片精品| 女人被躁到高潮嗷嗷叫费观| 99香蕉大伊视频| 纯流量卡能插随身wifi吗| 久99久视频精品免费| 999久久久国产精品视频| 男人操女人黄网站| 伊人久久大香线蕉亚洲五| 老司机午夜福利在线观看视频| 一进一出好大好爽视频| 色综合婷婷激情| 亚洲aⅴ乱码一区二区在线播放 | 国产视频一区二区在线看| bbb黄色大片| 啦啦啦免费观看视频1| 久久人人爽av亚洲精品天堂| 极品教师在线免费播放| 国产亚洲av高清不卡| 国产成人一区二区三区免费视频网站| av欧美777| 欧美最黄视频在线播放免费| 亚洲七黄色美女视频| 亚洲电影在线观看av| 免费不卡黄色视频| 91麻豆精品激情在线观看国产| 日日摸夜夜添夜夜添小说| 满18在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 色综合欧美亚洲国产小说| 99国产精品免费福利视频| 香蕉久久夜色| 国产精华一区二区三区| 村上凉子中文字幕在线| 天堂影院成人在线观看| 日韩视频一区二区在线观看| 国产精品亚洲一级av第二区| 非洲黑人性xxxx精品又粗又长| 国产主播在线观看一区二区| 日日摸夜夜添夜夜添小说| 大型av网站在线播放| 12—13女人毛片做爰片一| 婷婷丁香在线五月| 日韩三级视频一区二区三区| 美女国产高潮福利片在线看| 中文字幕人妻熟女乱码| 午夜a级毛片| 中文字幕av电影在线播放| 欧美在线一区亚洲| 日韩免费av在线播放| 欧美日韩亚洲国产一区二区在线观看| 啦啦啦 在线观看视频| 美女国产高潮福利片在线看| 可以在线观看的亚洲视频| 亚洲精品久久成人aⅴ小说| 久久 成人 亚洲| 老鸭窝网址在线观看| ponron亚洲| 国产成人啪精品午夜网站| 女性生殖器流出的白浆| 在线观看66精品国产| 亚洲人成伊人成综合网2020| 国产一卡二卡三卡精品| 国产精品亚洲美女久久久| 国产色视频综合| 国产成人系列免费观看| 看免费av毛片| 啪啪无遮挡十八禁网站| 此物有八面人人有两片| 欧美大码av| 欧美激情高清一区二区三区| 国产99白浆流出| 亚洲欧美精品综合久久99| 日韩三级视频一区二区三区| 欧美精品亚洲一区二区| 极品人妻少妇av视频| 亚洲成人国产一区在线观看| 熟妇人妻久久中文字幕3abv| 久9热在线精品视频| 啦啦啦免费观看视频1| 亚洲精品av麻豆狂野| 国产精品 国内视频| 亚洲伊人色综图| 九色国产91popny在线| 免费女性裸体啪啪无遮挡网站| 久久婷婷成人综合色麻豆| 校园春色视频在线观看| 国产精品九九99| 少妇 在线观看| 夜夜夜夜夜久久久久| 国产精品一区二区三区四区久久 | 女人被躁到高潮嗷嗷叫费观| 午夜成年电影在线免费观看| 国产精品自产拍在线观看55亚洲| 精品国产超薄肉色丝袜足j| 欧美成人免费av一区二区三区| 亚洲中文av在线| 亚洲五月色婷婷综合| 69精品国产乱码久久久| 国产av在哪里看| 欧美另类亚洲清纯唯美| 男女下面进入的视频免费午夜 | 国产成人一区二区三区免费视频网站| 12—13女人毛片做爰片一| e午夜精品久久久久久久| 啦啦啦免费观看视频1| 久久草成人影院| 美女大奶头视频| 伦理电影免费视频| 久久久水蜜桃国产精品网| 国产精品亚洲美女久久久| 久9热在线精品视频| 男女做爰动态图高潮gif福利片 | 美女高潮到喷水免费观看| 亚洲五月色婷婷综合| 中文字幕色久视频| 女性生殖器流出的白浆| 亚洲成人免费电影在线观看| 欧美成人免费av一区二区三区| 亚洲无线在线观看| 日本黄色视频三级网站网址| 亚洲av电影不卡..在线观看| 久久久国产精品麻豆| 黄网站色视频无遮挡免费观看| 成人三级做爰电影| 视频区欧美日本亚洲| 精品国产亚洲在线| 午夜久久久在线观看| 天天添夜夜摸| 不卡一级毛片| 欧美国产日韩亚洲一区| 日本免费a在线| 一区二区三区高清视频在线| 天堂影院成人在线观看| 最近最新中文字幕大全免费视频| 乱人伦中国视频| 一级毛片女人18水好多| 久久精品成人免费网站| 国产xxxxx性猛交| 亚洲午夜理论影院|