• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXPERIMENTAL STUDY OF FORCED SHOCK TRAIN OSCILLATION IN ISOLATOR UNDER ASYMMETRIC INCOMING FLOW

    2011-10-08 12:10:28CaoXuebinZhangKunyuan

    Cao Xuebin,Zhang Kunyuan

    (College of Energy and Power Engineering,NUAA,29 Yudao Street,Nanjing,210016,P.R.China)

    INTRODUCTION

    To prevent the pressure rise associated with the precombustion shock train from affecting the flow through the scramjet inlet,a constant(or nearly-constant)area duct called an isolator is inserted between the inlet and the combustor of the scramjet engine.In fact,the low-frequency oscillation burning often occurs in the ramjet combustor with the low frequency and the large amplitude pressure fluctuation[1-2].So,the isolator has to withstand the pressure peak from the combustion chamber,and sustain its large amplitude of the pressure fluctuation to ensure that the inlet can work normally and continuously.Therefore,it is very interesting to experimentally investigate the isolator flow phenomenon influenced by the low-frequency pressure fluctuation in the combustion chamber.However,the study of this type of pipe flow is mostly concentrated in transonic channel[3-5]. For supersonic combustion ramjet engines,there are a few researches about the forced shock train oscillation in the isolator.

    When the back pressure fluctuation of the isolator periodically changes,the length of the shock train in the pipe cyclically changes.In the forced shock train oscillation region(Fig.1),the pressure is periodically affected by the shock wave,and then the complex flow phenomena appear.Previous researches about the steady back pressure[6-8]prove that the isolator can isolate the chamber pressure from affecting the inlet.But the ability of isolating the pressure fluctuation from affecting hypersonic inlet has not been known.The back pressure fluctuation propagates upstream in the subsonic boundary layer,and then what is the law of the attenuation of the pr-essure fluctuation? To address the above problems,this paper designs the isolator experiment under the asymmetrical incoming flow[9].Then,the propagation mode and the attenuation of the back pressure fluctuation are analyzed.

    Fig.1 Sketch of forced shock train oscillation in isolator

    1 EXPERIMENTAL APPARATUS

    Experimental equipment composes of the high-pressure gas source,the control valves,the settling chamber,the Laval nozzle,the boundary layer development section, the isolator with spillage window,and the generator of back pressure fluctuation. From left to right in Fig.2,high-pressure air flows through a Laval nozzle to form supersonic flow,and then it flows through a certain length of the boundary layer development section to form thick boundary layer.The boundary layer of the upper wall can be excluded through the spillage window at the entrance of the isolator to form the asymmetry supersonic flow and to simulate the actual thick boundary layer on the forebody of a vehicle.

    Fig.2 Schematic sketch of isolator

    In order to produce the periodic back pressure fluctuation,a tail cone(Fig.3)is controlled by the straight line stepping motor.The curve shapes of the design displacement of the tail cone are the sine wave and the saw tooth wave respectively,and the frequencies are 2 and 4 Hz(Fig.4).

    The test section has a 45 mm by 20 mm cross section,and its lengh th is nominally 300 mm with glass schlieren windows taking photographs.The expansion angles of the lower and the upper walls are about 0.5°.The length of the boundary layer development section is 250 mm.

    Fig.3 Generator of back pressure fluctuation

    Fig.4 Displacement of tail cone

    A total pressure probe is placed at the settling chamber upstream to measure the total pressure of the gas entering the nozzle.In order to measure the parameters of the boundary layer,a probe which can move up and down is located at the entrance.Pressure taps are located along the centerline of the lower and the upper walls of the isolator,with a minimum space of 11 mm.Measurements of the wall static pressure are made with a TSI98RK electronic scanning valve calibrated within±0.05% of their full-scalevalves.Six dynamic pressure sensors are located on the position named by number 1 to 6 in Fig.2.The displacement of the tail cone is measured through the displacement sensor.Dynamic pressure data is recorded by the LMS SCADAS III multi-channel data acquisition system.The sampling frequency is 4 096 Hz.

    The total pressure of the tunnel free-stream entering the test section is 360 000 Pa.The incoming flow is cold,and the total temperature curve is about 300 K.The isolator entrance flow contains one thick boundary layer with a thickness of 26.5% of the duct height.The Mach number on the core flow at the isolator entrance is about 1.98.

    2 EXPERIMENTAL RESULTS

    2.1 Pressure fluctuation

    Figs.5,6 are the lower and the upper wall pressure fluctuations when the shape of the back pressure curve is saw tooth.Figs.7,8 are the lower and the upper wall pressure fluctuations for the sine wave back pressure,and the number of the curve is the sensor number.Figs.5-8 show that the appearing time of the wall pressure fluctuation peaks in(measuring points 2 and 3,5 and 6)both the saw tooth and the sine wave is the same,and no phase difference exists.And at the same position along the flow direction(measuring points 2 and 5,3 and 6),the appearing time of pressure fluctuation peaks is also the same.These phenomena indicate that the wall pressure fluctuation is mainly induced by the forced oscillation of the shock train in the forced shock train oscillation region.

    Fig.5 Lower wall pressure fluctuation for saw tooth wave back pressure

    Fig.6 Upper wall pressure fluctuation for saw tooth wave back pressure

    Fig.7 Lower wall pressure fluctuation for sine wave back pressure

    Fig.8 Upper wall pressure fluctuation for sine wave back pressure

    Under the condition of the saw tooth,the wall pressure fluctuation amplitude at the forepart of the isolator(25 k Pa,measuring point 2)is less than the wall pressure fluctuation amplitude in the rear of the isolator(145 k Pa,measuring point 3).The amplitude of pressure fluctuation(70 k Pa,measuring point 5)on the upper wall in the shock wave oscillation region is also smaller than that of the pressure oscillation amplitude(88 k Pa,measuring point 6).This indicates that the pressure fluctuation amplitude increases along the flow direction in the forced shock train oscillation region.However,the pressure fluctuation amplitude(145 k Pa,measuring point 3)at the end of the shock wave oscillation region is larger than the pressure fluctuation amplitude(56 k Pa,measuring point 4)at the tail of the isolator.This shows that the wall pressure fluctuation amplitude reduces along the flow direction between the end of the forced shock train oscillation region and the end of the isolator.It is noteworthy that the wall pressure oscillation amplitudes of the isolator are large,and the maximum amplitude of the wall pressure fluctuation is 3.16 times than the static pressureat the entrance of the isolator.

    The experimental results under the sine wave condition are similar to the results under the saw tooth wave.The maximum fluctuation amplitude is 3.22 times than the static pressure at the entrance of isolator.

    Fig.9 shows the pressure fluctuation at 191 and 290 mm from the entrance on the lower wall.The pressure fluctuations have the time delay,ΔT=9.4 ms,so the average propagation velocity of the pressure oscillation in the subsonic boundary layer traveling upstream is about 10.5 m/s.Fig.10 is the pressure fluctuation at 125 and 180 mm.It is also known that the upstream pressure fluctuation peak value have the time delay,ΔT=9.7 ms.The mean propagation velocity is found to be about 5.7 m/s for the upstream propagation.Under the sine wave condition,the time delay of the pressure oscillation peak value also exists(Figs.11 and 12),and the average propagation velocity is approximately 4.6 m/s.

    Fig.9 Wall pressure fluctuation at 191 and 290 mm

    Fig.10 Wall pressure fluctuation at 125 and 180 mm

    Fig.11 Wall pressure fluctuation at 213 and 290 mm

    Fig.12 Wall pressure fluctuation at 92 and 158 mm

    From the analysis we can know that the mean propagation velocities are found to be the second characteristic wave velocity c-u,here c is the local sonic speed,and u the local flow speed.Therefore,low frequency back pressure oscillation propagates upstream by the second characteristic wave in the subsonic boundary layer,and affects the upstream wall pressure oscillation.But in the primary region of the shock oscillation,the second characteristic wave is difficult to be observed,because the wall pressure oscillation is influenced by the forced shock train oscillation.

    2.2 Power spectrum

    Fig.13 Power spectra

    Fig.13 is the power spectrum charts of the pressure signal measured by number 1 to 6 sensors on the saw tooth wave and the sine wave operating mode,where the solid line is the saw tooth wave condition,and the dashed line is the sinewave condition in the chart.The power spectral density value uses the total pressure dimensionless.Under the saw tooth wave condition,the power spectral density value of the pressure signal measured by the first sensor has no obvious peak value.This sensor is located on the upstr-eam of the supersonic region,and is not influenced by the forced shock train oscillation.The second sensor is located on the forepart of the shock oscillation region,so the power spectral density value is large.It reaches the peak at the excitation frequency,and the harmonic phenomenon is obvious.The pressure signal power spectrum value measured by the third sensor located on the shock oscillation region terminal is largest.It has the largest value at the excitation frequency,but the harmonic phenomenon is not obvious.The power spectral density value of No.4 sensor located at rear part of the isolator is also large.The value reaches the highest point at the excitation frequency, but the harmonic phenomenon is not obvious.On the upper wall,the spectrum peak value of the measuring point 5 is large,and the harmonic phenomenon is obvious.The pressure signal of the measuring point 6 is similar to that of the measuring point 3,and the harmonic phenomenon is not obvious.

    When the pressure oscillation propagates upstream,the harmonic phenomenon becomes obvious.This indicates that the pressure profile is greatly disturbed and the harmonic component increases a lot because of the shock train/boundary layer interaction,when the pressure fluctuation propagates upstream in the subsonic boundary layer.

    On the sine wave operating mode,the harmonic phenomena of the pressure signal of the measuring points 2 and 5 are not obvious,which is different from the saw tooth wave.These phenomenaindicate that the back pressure profilehas the tremendous effect on the energy distribution of wall pressure oscillation.Because the back pressure fluctuation amplitude of the sine wave is larger than that of the saw tooth wave,the spectrum value of the pressure signal is larger than that of the saw tooth at the same measuring point.

    2.3 Pressure fluctuation variance

    Fig.14 Variance of wall pressure fluctuation in sine wave

    Fig.14 is the charts of the pressure oscillation variance on the lower and the upper walls when theback pressure oscillation is the2 Hzsine wave,where X is the distance from the entrance,and H the height of the isolator.From the exit to the shock oscillation terminal on the lower wall,the varianceof the pressure oscillation quickly rises.It indicates that the pressureoscillation amplitude increases.But in the shock oscillation region,the variance of the pressure oscillation rapidly drops,i.e.,the amplitude of the pressure oscillation rapidly reduces,and the variance is equal to zero in the upstream of the shock oscillation.This indicates that the pressure oscillation does not propagate to the upstream of the shock oscillation region.But the variance rule of the upper wall pressure oscillation has very large difference with the lower wall.In the shock oscillation region,the variance of the pressure oscillation presents the fluctuation shape.When the pressure taps reach the front of the shock oscillation region,the variance also approaches zero.About this phenomenon,we extrapolates that the enormous difference about the boundary layer thick-ness of the lower and the upper walls creates this phenomenon.

    Fig.15 is the variance charps of the upper and the lower wall pressure fluctuation on the 2 Hz saw tooth wave operating mode.As can be observed that the variance of the lower wall pressure fluctuation rapidly drops in the forced shock train oscillation region,but the variance of the upper wall pressure oscillation fluctuates.

    Fig.15 Variance of wall pressure fluctuation in saw thooth wave

    The following four curves in Fig.16 are obtained by fitting the lower wall pressure fluctuation variance in the forced shock train oscillation region.Attenuation of wall pressure fluctuations accords with the exponential law on the lower wall with thick boundary layer.

    Summarizing the above analysis,we can see that the isolator effectively isolates the periodic back pressure fluctuation from affecting the upstream undisturbed flow.Attenuation of wall pressure fluctuations in the forced shock oscillation region accords with the exponential law on

    Fig.16 Fitted curve of wall pressure fluctuation variance

    the lower wall.But it fluctuates on the upper wall.

    3 CONCLUSIONS

    (1)The isolator effectively prevents the periodic back pressure fluctuation from affecting the upstream undisturbed flow.In the primary region of the forced shock train oscillation,the wall pressure oscillation is induced by the forced shock train oscillation,thus the second characteristic wave is difficult to be observed.But in the rear part of the isolator as well as the forepart of the forced shock train oscillation region,the second characteristic wave obviously influences the upstream pressure oscillation.

    (2)Attenuation of the pressure fluctuation variance of the lower wall with thick boundary layer accords with the exponential law in the forced shock train oscillation region.But it fluctuates on the upper wall with thin boundary layer.

    (3)The harmonic phenomenon is obvious when the pressure fluctuation propagates upstream in the subsonic boundary layer.And the back pressure profile has obvious effect on the harmonic phenomenon.

    [1] Ma Fuqua,Li Jian,Yang V,et al.The rmoacoustic flow instability in a scramjet combustor[R].AIAA 2005-3824,2005.

    [2] Zhang Xiaomei,Xia Yunqing,Shan Hongbin,et al.Summarization of low-frequency oscillatory combustion study[J].Journal of Propulsion Technology,1996,17(1):47-53.(in Chinese)

    [3] Sajben M,Bogar T J.Forced oscillation experiments in supercritical diffuser flows with application to ramjet instabilities[R].AIAA-81-1487,1981.

    [4] Ott P,Bolcs A.Experimental and numerical study of the time-dependent pressure response of a shock wave oscillation in a nozzle[J].ASME J Turbo Machinery,1995(117):106-114.

    [5] Bur R,Benay R.Experimental and numerical study of forced shock-wave oscillations in a transonic channel[J]. Aerospace Science and Technology,2006(10):265-278.

    [6] Waltrup P J,Billig F S.Structure of shock waves in cylindrical ducts[J].AIAA J,1973,11(10):1404-1408.

    [7] Sullins G,Mc Lafferty G H.Experimental results of shock train in rectangular ducts[R].AIAA 1992-5103,1992.

    [8] Emami S,Trexler C A,Auslender A H,et al.Experimental investigation of inlet-combustion isolators for adual-mode scramjet at a mach number of 4[R].NASA,TP3502,1995.

    [9] Zhang Kunyuan,Wang Chengpeng,Yang Jianjun,et al.Investigation of flow in isolator of hypersonic inlet[J].Journal of Propulsion Technology,2002,23(4):311-314.(in Chinese)

    亚洲性夜色夜夜综合| 日本与韩国留学比较| 久久久久久久久大av| 在线观看美女被高潮喷水网站| 久久九九热精品免费| 高清在线国产一区| 变态另类成人亚洲欧美熟女| 免费电影在线观看免费观看| 免费观看的影片在线观看| 欧美国产日韩亚洲一区| 亚洲最大成人中文| 国产精品福利在线免费观看| 美女xxoo啪啪120秒动态图| 可以在线观看的亚洲视频| 内地一区二区视频在线| 一个人看的www免费观看视频| 国产 一区精品| 黄色视频,在线免费观看| 18禁黄网站禁片午夜丰满| 亚洲天堂国产精品一区在线| 亚洲电影在线观看av| 黄色女人牲交| 露出奶头的视频| 久久天躁狠狠躁夜夜2o2o| a级毛片a级免费在线| 国产一区二区三区视频了| 久久久久免费精品人妻一区二区| 亚洲三级黄色毛片| 99热这里只有精品一区| 性欧美人与动物交配| 免费看日本二区| 国产日本99.免费观看| 很黄的视频免费| 久久久久性生活片| 给我免费播放毛片高清在线观看| 色播亚洲综合网| 免费人成视频x8x8入口观看| 99九九线精品视频在线观看视频| 啪啪无遮挡十八禁网站| 桃色一区二区三区在线观看| 小蜜桃在线观看免费完整版高清| 午夜福利18| 欧美一区二区亚洲| 一卡2卡三卡四卡精品乱码亚洲| 一个人看视频在线观看www免费| 人人妻人人澡欧美一区二区| 国产高清有码在线观看视频| 亚洲图色成人| 成人特级黄色片久久久久久久| 一进一出好大好爽视频| 亚洲欧美日韩高清专用| 人人妻人人看人人澡| 村上凉子中文字幕在线| 国产精品爽爽va在线观看网站| av女优亚洲男人天堂| 国产综合懂色| 亚洲第一区二区三区不卡| 久久久久久久久久黄片| 午夜精品在线福利| 色尼玛亚洲综合影院| 欧美最新免费一区二区三区| 精品午夜福利在线看| 国内精品宾馆在线| 少妇的逼水好多| 欧美一区二区精品小视频在线| 长腿黑丝高跟| 国产精品久久久久久av不卡| 免费在线观看成人毛片| 久久久久久久亚洲中文字幕| 欧美不卡视频在线免费观看| 久久久久久久久久黄片| 可以在线观看的亚洲视频| a级一级毛片免费在线观看| 日韩一本色道免费dvd| a级毛片免费高清观看在线播放| 国产美女午夜福利| 搞女人的毛片| 香蕉av资源在线| 亚洲精品久久国产高清桃花| 免费人成在线观看视频色| 久久热精品热| 91在线精品国自产拍蜜月| 婷婷丁香在线五月| 免费观看在线日韩| 色哟哟·www| 国产真实乱freesex| 久久久久久久久久久丰满 | 成人毛片a级毛片在线播放| 久久精品人妻少妇| 国产精品,欧美在线| av视频在线观看入口| 久久精品国产亚洲网站| 午夜久久久久精精品| 国产精品不卡视频一区二区| 国产精品亚洲一级av第二区| 国内少妇人妻偷人精品xxx网站| 99久久中文字幕三级久久日本| 99国产精品一区二区蜜桃av| 成年女人毛片免费观看观看9| 中文字幕高清在线视频| 婷婷精品国产亚洲av| 国产免费一级a男人的天堂| 3wmmmm亚洲av在线观看| 国产成人福利小说| or卡值多少钱| 日韩av在线大香蕉| 观看免费一级毛片| 97碰自拍视频| 嫩草影院新地址| 久99久视频精品免费| 精品午夜福利视频在线观看一区| 中文字幕免费在线视频6| 黄色欧美视频在线观看| 91狼人影院| 欧美又色又爽又黄视频| 丝袜美腿在线中文| 一本精品99久久精品77| 日韩欧美国产一区二区入口| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 麻豆久久精品国产亚洲av| 久久久久久久午夜电影| 人妻久久中文字幕网| 婷婷精品国产亚洲av| 国产精品国产三级国产av玫瑰| 精品欧美国产一区二区三| 国产伦精品一区二区三区四那| 午夜福利在线在线| 99riav亚洲国产免费| 欧美一级a爱片免费观看看| 在线观看av片永久免费下载| 午夜亚洲福利在线播放| 国产av一区在线观看免费| 夜夜看夜夜爽夜夜摸| 亚洲精品粉嫩美女一区| 成年免费大片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 美女高潮喷水抽搐中文字幕| 国内精品久久久久久久电影| 婷婷精品国产亚洲av| 国产精品人妻久久久影院| 国产精品一区www在线观看 | 亚洲av熟女| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人久久性| 国产精品自产拍在线观看55亚洲| 尤物成人国产欧美一区二区三区| 97碰自拍视频| 国模一区二区三区四区视频| 亚洲国产日韩欧美精品在线观看| 亚洲美女黄片视频| 在现免费观看毛片| 欧美激情久久久久久爽电影| 亚洲熟妇熟女久久| 人妻久久中文字幕网| av.在线天堂| 成年女人永久免费观看视频| 欧美高清性xxxxhd video| 夜夜看夜夜爽夜夜摸| 丰满乱子伦码专区| 亚洲av电影不卡..在线观看| 国产精品乱码一区二三区的特点| 国产黄色小视频在线观看| 91麻豆精品激情在线观看国产| 舔av片在线| 毛片女人毛片| 亚洲av电影不卡..在线观看| 日日摸夜夜添夜夜添av毛片 | 国产人妻一区二区三区在| 在线观看舔阴道视频| avwww免费| 久久九九热精品免费| 中文字幕av在线有码专区| 欧美日韩精品成人综合77777| 最后的刺客免费高清国语| 欧美潮喷喷水| 日韩精品有码人妻一区| 成人性生交大片免费视频hd| 亚洲经典国产精华液单| 日韩强制内射视频| 日本三级黄在线观看| 99久久久亚洲精品蜜臀av| 校园人妻丝袜中文字幕| 免费人成在线观看视频色| 日本色播在线视频| 一本一本综合久久| 国产精品国产高清国产av| 久久久久久伊人网av| 国产麻豆成人av免费视频| 国产毛片a区久久久久| 免费不卡的大黄色大毛片视频在线观看 | 国产精品一区www在线观看 | 国产精品嫩草影院av在线观看 | 国产在线男女| 国产极品精品免费视频能看的| 深夜精品福利| 99在线视频只有这里精品首页| 天堂网av新在线| 欧美日韩综合久久久久久 | 国产高清有码在线观看视频| 狂野欧美白嫩少妇大欣赏| 中文字幕人妻熟人妻熟丝袜美| 国产伦一二天堂av在线观看| 国产高清视频在线播放一区| 久久精品国产清高在天天线| 亚洲七黄色美女视频| 亚洲人成伊人成综合网2020| 在线观看舔阴道视频| 国产真实伦视频高清在线观看 | 精品福利观看| 免费av毛片视频| 中亚洲国语对白在线视频| 黄色丝袜av网址大全| 国产精品乱码一区二三区的特点| 国产午夜精品久久久久久一区二区三区 | 亚洲精华国产精华精| 亚洲男人的天堂狠狠| 欧美潮喷喷水| 免费av不卡在线播放| 2021天堂中文幕一二区在线观| 国产高清激情床上av| 我要搜黄色片| 日韩亚洲欧美综合| 级片在线观看| 人人妻人人看人人澡| 国产精品国产高清国产av| 国产爱豆传媒在线观看| 深夜精品福利| 亚洲va在线va天堂va国产| 99久久成人亚洲精品观看| 亚洲精品一卡2卡三卡4卡5卡| 99久久中文字幕三级久久日本| 久久午夜亚洲精品久久| 亚洲色图av天堂| 国产精品爽爽va在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 免费看a级黄色片| 国内精品宾馆在线| 国产老妇女一区| 亚洲性夜色夜夜综合| 国产在线精品亚洲第一网站| 国产精品av视频在线免费观看| 亚洲成人久久爱视频| 在线观看66精品国产| 亚洲性夜色夜夜综合| 精品久久久久久久久久免费视频| 国产伦精品一区二区三区视频9| 久久精品国产亚洲网站| 国产爱豆传媒在线观看| 在现免费观看毛片| h日本视频在线播放| 丰满乱子伦码专区| 中文字幕久久专区| 亚洲av免费在线观看| 国内精品久久久久久久电影| 国产精品乱码一区二三区的特点| 男女下面进入的视频免费午夜| 色播亚洲综合网| 亚洲久久久久久中文字幕| 成人高潮视频无遮挡免费网站| 国产精品一及| 亚洲国产色片| 美女被艹到高潮喷水动态| 亚洲专区中文字幕在线| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩一区二区精品| 国产伦精品一区二区三区四那| 成人特级黄色片久久久久久久| 香蕉av资源在线| 亚洲最大成人手机在线| 日韩欧美在线二视频| 亚洲最大成人中文| 免费av毛片视频| 啪啪无遮挡十八禁网站| 乱码一卡2卡4卡精品| 国产熟女欧美一区二区| 丰满的人妻完整版| 亚洲欧美清纯卡通| 国产综合懂色| 国内少妇人妻偷人精品xxx网站| 亚洲五月天丁香| 成人永久免费在线观看视频| 狂野欧美激情性xxxx在线观看| 国产精品一区二区免费欧美| 香蕉av资源在线| 女的被弄到高潮叫床怎么办 | 女的被弄到高潮叫床怎么办 | 久久精品国产鲁丝片午夜精品 | 日本一本二区三区精品| 国产私拍福利视频在线观看| 尤物成人国产欧美一区二区三区| 久久精品国产亚洲av香蕉五月| 男人狂女人下面高潮的视频| av在线观看视频网站免费| 国产淫片久久久久久久久| 日本成人三级电影网站| 久久午夜福利片| 欧美人与善性xxx| 国产一区二区亚洲精品在线观看| 乱码一卡2卡4卡精品| 中文字幕av成人在线电影| 老司机深夜福利视频在线观看| 1000部很黄的大片| 男女边吃奶边做爰视频| 色视频www国产| 看十八女毛片水多多多| 99热只有精品国产| 狂野欧美激情性xxxx在线观看| 亚洲av免费高清在线观看| 麻豆一二三区av精品| 亚洲精品在线观看二区| 九九热线精品视视频播放| 国产成人aa在线观看| 亚洲欧美日韩高清在线视频| 欧美又色又爽又黄视频| 亚洲av.av天堂| 国产精品久久视频播放| 成人亚洲精品av一区二区| 在线a可以看的网站| 99热网站在线观看| 日本一二三区视频观看| 男女那种视频在线观看| 国产精品久久久久久亚洲av鲁大| 听说在线观看完整版免费高清| 一卡2卡三卡四卡精品乱码亚洲| 亚洲第一区二区三区不卡| 色哟哟·www| 高清在线国产一区| 日日撸夜夜添| 尤物成人国产欧美一区二区三区| 香蕉av资源在线| 欧美国产日韩亚洲一区| 他把我摸到了高潮在线观看| 又爽又黄a免费视频| 搡女人真爽免费视频火全软件 | 国产69精品久久久久777片| 男人舔奶头视频| 能在线免费观看的黄片| 成人国产一区最新在线观看| 国内精品久久久久久久电影| 免费看a级黄色片| 免费在线观看成人毛片| 亚洲乱码一区二区免费版| 中文字幕精品亚洲无线码一区| 一进一出抽搐gif免费好疼| 真人一进一出gif抽搐免费| 亚洲成人免费电影在线观看| 嫁个100分男人电影在线观看| 麻豆成人av在线观看| 亚洲精品影视一区二区三区av| 久久久久国产精品人妻aⅴ院| 精品免费久久久久久久清纯| 欧美日本视频| 亚洲av一区综合| 日日摸夜夜添夜夜添av毛片 | av天堂中文字幕网| 日韩欧美精品免费久久| 动漫黄色视频在线观看| 午夜福利在线观看吧| 国产精品人妻久久久久久| 久久久久久久久久成人| 99热精品在线国产| 亚洲国产精品合色在线| 免费看美女性在线毛片视频| 国产亚洲欧美98| 国产高清不卡午夜福利| 亚洲精品粉嫩美女一区| 人妻少妇偷人精品九色| 亚洲无线观看免费| 午夜福利18| 免费观看的影片在线观看| 免费一级毛片在线播放高清视频| 日韩精品有码人妻一区| 男人和女人高潮做爰伦理| 熟妇人妻久久中文字幕3abv| 香蕉av资源在线| 欧美3d第一页| 国产午夜福利久久久久久| 偷拍熟女少妇极品色| 欧美一级a爱片免费观看看| www日本黄色视频网| 国产成人aa在线观看| 三级男女做爰猛烈吃奶摸视频| 舔av片在线| 国产成人a区在线观看| www日本黄色视频网| 国产成人aa在线观看| 女同久久另类99精品国产91| 在线观看美女被高潮喷水网站| 又爽又黄a免费视频| 国产精品无大码| 日韩亚洲欧美综合| 久久人妻av系列| 嫩草影视91久久| 中亚洲国语对白在线视频| 小蜜桃在线观看免费完整版高清| 色综合亚洲欧美另类图片| 国产69精品久久久久777片| 1000部很黄的大片| 亚洲五月天丁香| 91狼人影院| 少妇的逼好多水| 天堂影院成人在线观看| 少妇人妻一区二区三区视频| 麻豆国产av国片精品| 国产白丝娇喘喷水9色精品| 极品教师在线免费播放| 黄色欧美视频在线观看| 午夜a级毛片| 在线看三级毛片| 日本黄大片高清| 欧美成人a在线观看| 国产成人一区二区在线| 最近视频中文字幕2019在线8| 国产伦在线观看视频一区| 午夜亚洲福利在线播放| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费激情av| 色哟哟哟哟哟哟| 一进一出抽搐动态| 亚洲国产精品sss在线观看| 亚洲人成网站在线播| 国产精品久久久久久精品电影| 国产精品一区二区免费欧美| 琪琪午夜伦伦电影理论片6080| 中国美白少妇内射xxxbb| 精品免费久久久久久久清纯| 国产高清不卡午夜福利| 国产淫片久久久久久久久| 国产三级中文精品| 国产精品久久久久久久久免| 久久久成人免费电影| 精品久久久久久久久久免费视频| 丰满乱子伦码专区| 看免费成人av毛片| 俺也久久电影网| 12—13女人毛片做爰片一| 欧美xxxx性猛交bbbb| 亚洲美女黄片视频| 久久久久久久久久久丰满 | 熟女人妻精品中文字幕| 国产一区二区三区av在线 | 又爽又黄无遮挡网站| 日韩中字成人| 国产在视频线在精品| 免费高清视频大片| 国产午夜精品论理片| 日日干狠狠操夜夜爽| 在线观看66精品国产| 精品欧美国产一区二区三| 日韩精品青青久久久久久| 男人狂女人下面高潮的视频| 欧美绝顶高潮抽搐喷水| 久久久久久久精品吃奶| 日本-黄色视频高清免费观看| 别揉我奶头~嗯~啊~动态视频| 欧美又色又爽又黄视频| 亚洲人成网站在线播| 免费不卡的大黄色大毛片视频在线观看 | 91在线观看av| 欧美成人a在线观看| 欧美日韩黄片免| 一进一出抽搐动态| 精品久久久久久久久亚洲 | 91久久精品国产一区二区三区| 国产午夜精品论理片| 免费搜索国产男女视频| 动漫黄色视频在线观看| 欧美色欧美亚洲另类二区| 久久精品国产自在天天线| 久久国产精品人妻蜜桃| 我要看日韩黄色一级片| h日本视频在线播放| 国产精品嫩草影院av在线观看 | av女优亚洲男人天堂| 99国产极品粉嫩在线观看| 久久久国产成人精品二区| 亚洲欧美日韩无卡精品| 美女cb高潮喷水在线观看| 国产中年淑女户外野战色| 日韩欧美 国产精品| 色综合亚洲欧美另类图片| 午夜福利成人在线免费观看| 国产精品福利在线免费观看| 欧美色视频一区免费| 99视频精品全部免费 在线| 一级毛片久久久久久久久女| 窝窝影院91人妻| 亚洲18禁久久av| 中文在线观看免费www的网站| 亚洲精品粉嫩美女一区| 欧美日韩瑟瑟在线播放| 午夜精品在线福利| 深夜a级毛片| 国产 一区 欧美 日韩| 国产精品爽爽va在线观看网站| 色综合色国产| 简卡轻食公司| 美女免费视频网站| 国产色爽女视频免费观看| 亚洲最大成人av| 国产白丝娇喘喷水9色精品| 久9热在线精品视频| 精品人妻视频免费看| 国产又黄又爽又无遮挡在线| 乱人视频在线观看| 国产视频一区二区在线看| 亚洲成人久久爱视频| 国产不卡一卡二| 精品一区二区三区av网在线观看| 在线观看美女被高潮喷水网站| 欧美区成人在线视频| 国产中年淑女户外野战色| 国产主播在线观看一区二区| 窝窝影院91人妻| 国产高清有码在线观看视频| 身体一侧抽搐| 欧美成人免费av一区二区三区| 国产精品人妻久久久影院| 国产午夜精品论理片| 亚洲va在线va天堂va国产| 婷婷精品国产亚洲av在线| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区国产精品久久精品| 国产精品一区二区三区四区免费观看 | 69av精品久久久久久| 国产免费一级a男人的天堂| 亚洲精品456在线播放app | 日韩在线高清观看一区二区三区 | 欧美日韩瑟瑟在线播放| 午夜精品久久久久久毛片777| 精品久久久久久久久亚洲 | 亚洲七黄色美女视频| 精品一区二区三区人妻视频| 国产精品伦人一区二区| 免费高清视频大片| 99久久九九国产精品国产免费| 成人av在线播放网站| 在线观看一区二区三区| 国产在线男女| 在线观看午夜福利视频| 最好的美女福利视频网| 国产 一区 欧美 日韩| 国产精品女同一区二区软件 | 色视频www国产| 在线免费观看的www视频| 伦精品一区二区三区| 午夜福利视频1000在线观看| 国产一区二区三区av在线 | 精品人妻一区二区三区麻豆 | 18禁裸乳无遮挡免费网站照片| 免费看a级黄色片| 又黄又爽又刺激的免费视频.| 免费观看人在逋| 日本黄大片高清| 人妻久久中文字幕网| 色哟哟·www| 亚洲精品一卡2卡三卡4卡5卡| 国内精品久久久久久久电影| 国产精品,欧美在线| 熟妇人妻久久中文字幕3abv| 国产淫片久久久久久久久| 日韩精品有码人妻一区| 人人妻人人看人人澡| 国产成人影院久久av| 亚洲欧美日韩无卡精品| 啦啦啦韩国在线观看视频| 男女视频在线观看网站免费| 日日啪夜夜撸| 亚洲人成网站高清观看| 久久6这里有精品| 成人国产一区最新在线观看| 日韩欧美国产在线观看| 国产黄色小视频在线观看| 日韩欧美 国产精品| 日本三级黄在线观看| 国产精品精品国产色婷婷| 国产精品久久久久久久电影| 蜜桃亚洲精品一区二区三区| 国产成人福利小说| 三级男女做爰猛烈吃奶摸视频| 日本黄色片子视频| 十八禁网站免费在线| 99久久九九国产精品国产免费| 中文字幕精品亚洲无线码一区| 美女黄网站色视频| 久久久久国产精品人妻aⅴ院| 无人区码免费观看不卡| 精品乱码久久久久久99久播| 搞女人的毛片| 乱系列少妇在线播放| 久久久久久久久大av| 搞女人的毛片| 日韩 亚洲 欧美在线| 国产免费av片在线观看野外av| 伦精品一区二区三区| 午夜爱爱视频在线播放| 久久久久久久久大av| 不卡视频在线观看欧美| 午夜爱爱视频在线播放| 香蕉av资源在线| 亚洲最大成人中文| 99热6这里只有精品| 国产精品人妻久久久影院| 精品福利观看| 成人鲁丝片一二三区免费| 国产黄a三级三级三级人| 欧美日韩综合久久久久久 | 日日啪夜夜撸| 午夜精品一区二区三区免费看| 久久亚洲真实| 精品久久久久久,| 天堂av国产一区二区熟女人妻| 亚洲va在线va天堂va国产| 欧美bdsm另类|