• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    使用液態(tài)化學(xué)循環(huán)的高熱效率動(dòng)力研究

    2011-12-02 01:39:16ChildsPeterMcGlashanNiallHeyesAndrew
    關(guān)鍵詞:肯辛頓工程系理工學(xué)院

    Childs Peter R N,McGlashan Niall R,Heyes Andrew L

    (倫敦帝國理工學(xué)院機(jī)械工程系,南肯辛頓,英國)

    Nomenclature

    k Boltzmann′s constant

    P/bar Reactor pressure

    Q/(J? mol-1) Heat flux

    S/(M J? kmol-1? K) Reaction entropy

    T/K Thermodynamic temperature

    W/(MJ? kmol-1) Shaft work

    Δ Change in property due to a chemical reaction-products minus reactants

    ΔG/(MJ? kmol-1) Reaction Gibbs function

    Δ H/(M J? kmol-1) Reaction enthalpy

    Z Efficiency

    i Species index

    M Monovalent oxygen carrier

    Subscripts

    adia Adiabatic

    cond Condenser

    comp Compressor

    eq Equilibrium condition

    (g) Gaseous state

    gen Generation

    irrev Irreversibleprocess

    is Isentropic

    L Liquid stream

    (l) Liquid state

    o Standard state(superscript),or sink condition(subscript)

    ov Overall

    oxi Oxidiser or oxidation

    rej Rejection

    rev Reversible

    (s) Solid state

    INTRODUCTION

    The term chemical looping combustion(CLC)is used to describe a process whereby extraction of energy from fuel occurs in two,or more,steps.The process makes use of an oxygen carrier molecule that circulates around a cycle involving oxidation of the carrier and reduction of the carrier.The process of oxidation is exothermic and that of reduction endothermic.As a result of separation of th e oxidation and reduction processes,chemical looping offers the potential for inherent carbon capture as the reactions typi-cally produce a stream of CO2 which does not require expensive separation processes and can therefore be more readily sequestrated.In addition,and the principal focus of this paper,CLC can result in high thermal efficiencies if attention is paid in the process design to minimising entropy production.

    The world′s population is expected to grow by approximately 1.7 times over the next 80 years.Energy,food,and clean water demands all increase with a growing population,as do environmental pollutants,waste water and domestic waste.In all regions of the world,energy demand has tended to grow in recent years[1].A 65%global increase above the 2004 primary energy demand(464 EJ,11 204 Mtoe)is anticipated by 2030[2].Electricity generation has shown an average annual growth rate of 2.8%since 1995 and is expected to continuegrowing at a rateof 2.5%to 3.1% per year until 2030[2-3].According to the International Energy Agency(IEA)in 2007 the worldwide production of electricity was 19 771 TWh.68%of this came via conventional thermal generation routes with 41.5% from coal or peat,20.9% from gas,13.8% from nuclear,15.6%from hydro and 5.6%from oil.In the sameyear,according to the Digest of UK Energy Statistics,the UK produced 378 TWh of electricity with 34%coming from coal,43%from gas,15%from nuclear and 2.4% from hydro and 1% from oil.According to the US Energy Information Administration,in 2007 the USproduced 4 157 TWh of electricity with 48%from coal,22%from natural gas,19% from nuclear,6% from hydro and 1.2%from petroleum liquids.It is likely that industrialisation and GDP growth will exacerbate this trend and cause an increase in consumption per capita.As a result total energy-related carbon dioxide emissions are likely to rise from 26.1 Gt-CO2(7.2 GtC)in 2004 to around 37 to 40 GtCO2(11.1 GtC)in 2030[2,4],possibly even higher[5],assuming modest energy-efficiency improvements are made to technologies currently in use.The alternative to this situationis the widespread implementation of mitigation strategies,the technology for which is yet to reach sufficient status for its application,let alone the financial implications being acceptable.

    Options to tackle CO2 emissions include the use of renewable energy technologies such as wind,solar and biomass which have close to zero greenhouse gas emissions.The scale of the energy requirements,however,combined with the technical challenges of intermittency and cost make it unlikely that renewable technologies alone will be able to supply the current and expected requirements.Instead many commentators recognise the need for a diverse blend of energy technologies including those based on fossil fuel combustion[6].Use of fossil fuels for energy production generally resultsin CO2as an unwanted by product.A range of carbon capture technologies are emerging:

    (1)Pre-combustion where CO2 is removed prior to combustion of a syngas generated from the raw fuel beforecombustion;

    (2)Post-combustion where CO2 is sequestrated after combustion;

    (3)Oxy-fuel combustion where the fuel is burned in a pure stream of oxygen.Using air as the source of O2,this requires the removal of N2 by cryogenic processes.

    Pre and post and oxy-fuel combustion all require the input of a substantial quantity of energy in the various separation processes required.

    In order to burn a hydrocarbon fuel efficiently using conventional cycles,very high temperatures are required.The maximum work output from a fuel consuming device is limited to the fall in Gibbs function,- ΔGo,of the fuel′s oxidation reaction.This assumes all streams that enter or leave the engine do so at sink conditions,T o and P o,and that there is a separate stream for each species.Additionally,any heat rejection from the engine must take place at T o.These conditions ensure that no available energy flows into or out of the engine with the reactants,products,or with a heat flux,except for the″chemical availability″of the reactants and products[7].Conventional approaches suggest that only fuel cells are able to approach this ideal,whereas rotating machinery using combustion is limited to the practical approximations achieved by the Carnot cycle.Due to material limitations in rotating machinery operating a Carnot cycle approximation,combustion is carried out at temperatures considerably below the reaction′s notional equilibrium temperature.Ref.[8]presents the following relation for approximating a reaction′s equilibrium temperature

    Eq.(1)can be used for most reactions and predicts extremely high values of Teq,as indicated in Table 1,for straight hydrocarbon oxidation as ΔSo≈ 0.Thehigh temperatures indicated in Table 1 for hydrocarbon based fuels are typically above temperature limits for engineering materials.In practical cycles following the Carnot cycle the operating temperatures for combustion are considerably below the equilibrium temperature and the combustion is therefore highly irreversible with considerable entropy generation and limited efficiency.This is the reason why ordinary internal combustion engines have such poor second law performance.Overall efficiency can be boosted using waste heat recovery from the flue gas,nevertheless,even the best current implementations of large scale power generation are limited to a peak efficiency of ca.60%(59.1%verified on an M 701G2 gas turbine at the 1 500 MW Tokyo Electric Kawasaki power station;59%in Irsching 5 in Germany using Siemens SGT5-4000Fgas turbines;61% expected from the MHI J class machines[9]).

    Table 1 Equilibrium temperature data for certain reactions

    1 CLC

    CLC was originally proposed by Richter and Knoche[10]in order to achieve high thermal efficiency.In CLCa carrier moleculeis used to transport oxygen between two reactions,one where the carrier moleculeis oxidised and another where the carrier moleculeis reduced by reaction with a fuel.Careful selection of the carrier molecule can result in much lower and therefore achievable equilibrium temperatures giving high thermal efficiencies.CLC uses processes comparable to those in the human body for extraction of energy from food but instead of using haemoglobin,simpler metal oxygen carrier molecules are used.

    For a generic monovalent oxygen carrier,M,the redox reactions in a CLCsystem,ignoring the argon content of air,are defined by

    For most metals,their oxidation reaction is highly exothermic.This can provide a high temperature exhaust gas for power production,through say a turbine.Oxide reduction reactions are endothermic requiring addition of heat to the reactor.In order to generate power from CLC,a heat engine,can be″straddled″between the two chemical reactions,receiving heat from the oxidiser and rejecting heat into the reducer.Part of this heat can be used to produce shaft work for power generation.The remainder of the heat is transferred to the reduction reaction.An idealised CLC system following these principles is illustrated in Fig.1.In addition to the main engine shown in Fig.1,there is a small additional heat engine(or heat pump for some hydrocarbons)that rejects a proportion of heat to the surroundings.This heat rejection is necessary in this reversible device,to ensure that the entropy of the surroundings changes by an amount equal and opposite to the standard state entropy, ΔS°,of CH4oxidation.

    The practical design of a CLCsystem will depend on a series of factors such as the scale of heat and power to be produced,the technologies available for the reducer and oxidiser,decisions regarding oxygen carrier and valve and power generation technologies,output stream separation and plant scale.Criteria regarding choice of oxygen carrier include:

    (1)High reactivity in both redox stages;

    (2)High combustion efficiency;

    (3)Low fragmentation,attrition and resistance to agglomeration;

    (4)Fluidisation and stability under repeated cycles of oxidation and reduction;

    (5)Economic viability and environmental suitability.

    Fig.1 Idealised CLC system for power production usingmethane as fuel

    Fig.2 Typical arrangement for CLC based on fluidised bed

    A typical arrangement for chemical looping based on a pair of fluidised bed reactors is illustrated in Fig.2(Ref.[11]).In the air reactor(oxidiser)the carrier is oxidised,a cyclone is used to separate out the oxidised carrier from the nitrogen,and the solid particles are delivered to the fuel reactor(reducer)where a reduction reaction takes place prior to thecarrier particles being delivered to the air reactor again and the cycle repeats(Refs.[12-13]).

    Carriers can be classified into two principal categories:

    (1)A metal combined with an inert material;

    (2)A pure metal.

    Many forms of metal carrier have been proposed including solid oxygen carriers such as Fe,Ni,Co,active oxides primarily NiO/Ni,CuO/Cu,Mn3 O4/MnO,Fe2O3/Fe3O4 and combined oxides such as CaMnO3.Over 600 types of oxygen carriers have been investigated to identify their suitability for chemical looping[14].Theseare normally combined with inert support materials,such as Al2 O3, TiO2, SiO2, ZrO2,NiAl2 O4,Mg Al2O4,sepiolite,bentonite,Al2 MgO4(Refs.[14-17]).Thecombination of a metal with an inert material can increase ion permeability,enhance fluidisatation,durability and resistance to attrition,provide a larger surface area,maintain pore structureand impede migration of the metal.Advantages for this form of system include continuous operation and useof standard technology.Disadvantages include recirculation of particles with associated compression costs,particle attrition,deactivation of the carrier and equipment erosion and the difficulties associated with gas to solid separation.

    If a solid carrier is used the redox reactions need to take place in fluidised beds with the oxygen carrier shuttling between the two redox reactors in a granular form.However,due to construction constraints and ash fouling problems,fluidised beds are often limited to a relatively low temperature,and can become clogged if solid fuels are used with a low ash fusion temperature.Consequently,much of the research conducted on CLC is targeted at″clean″,ash free fuels such as natural gas.Solid phase CLC systems,designed to burn coal,have been proposed,but these remain problematic and limited to modest reactor temperatures.

    2 FLUID-PHASE CLC

    McGlashan et al.[18-19]have explored the use of a metal circulating in pure and oxidised forms around the CLC cycle.Options considered have included potassium,cadmium,zinc sodium,lead,cobalt,iron,calcium and nickel.Selected properties of these are listed in Table 2[7].Carbon is taken as the fuel,although different hydrocarbons give similar values.Richter and Knoche[10]proposed using cadmium in the gas phase.However,due to the properties of cadmium and its oxide,the carrier would have to be in the vapour or liquid state for at least part of the cycle.Eliminating materials that are highly toxic,rare and expensive or have oxidisation temperatures beyond practical engineering material limits reduces the consideration to potassium,zinc and sodium.McGlashan[7]concluded that using liquid and particularly gas phase carriers maximises the thermodynamic advantage of chemical looping. Mc-Glashan et al.[18-19]proposed using a potassium,sodium or zinc based CLC cycle for high theoretical efficiency,generating hydrogen and power.The advantages of potassium,sodium and zinc are their low toxicity and cost,and that the peak cycle temperatures required in chemical loops using these carriers are within achievable engineering limits.Systems of this type can be described as fluid-phase-chemical-looping-combustion(fluid-phase CLC)systems.By using fluid-phase CLC, separation of the oxygen carrier from thefuel′s ash is facilitated,as the latter can either be floated on a pool of liquid oxide,or,alternatively,separated as a fly ash from a gaseous oxygen carrier using cyclones or filtration.As a result,burning coal(or heavy liquid fuels)is facilitated with theash separated from the carrier species by virtue of a phase difference.An additional advantage of fluid-phase CLCis that a fluidised bed can be avoided and entrained flow reactors used instead.This,in turn enables an increase in peak cycle temperatures with a consequent risein overall plant efficiency.

    A possible configuration for fluid phase CLC is illustrated in Fig.3[18].A key aspect of the system is the exploitation of phase difference to achieve separation of species through the cycle.The oxidiser and reducer reactors are arranged so that condensed phases travel downwards with gases upwards.As a result counter-current heat transfer takes place,preheating the reactants and cooling the products.This enables the generation of two hot pressurised working fluids in the oxidiser.One fluid consists of N2saturated with metal vapour,zinc in the scheme illustrated,and the other is a stream of liquid.In the reducer the reactor produces a stream of liquid metal and a stream of almost pure,hot and pressurised CO.The carbon monoxide stream can be converted to CO2 by means of the water gas shift reaction.

    Fig.3 Proposed generic fluid phase CLCpower generation plant

    The oxidiser consists of a tubular pressure vessel with a reaction zone located near the reactor′s axis.A stoichiometric excess of liquid metal enters at the top of the reactor.Pressurised air from a compressor enters at the bottom of the reactor.The stream of liquid metal forms droplets that fall through the reactor,under gravity,passing rising hot product gases coming from the reaction zone.Counter-current heat transfer between the streams will occur,preheating the liquid metal while cooling the gas stream.In the reaction zone,only a portion of the liquid metal is oxidised.This oxide agglomerates in the reaction zone,forming a hail of oxide particles or droplets depending on the oxide′s melting point.The oxide particulates fall to the bottom of the reactor through the current of compressed air rising from beneath.Once again,direct contact heat exchange takes place,cooling the oxide,while also preheating the air prior to its entry into the reaction zone.Liquid metal that is not oxidised in the reaction zone,after falling through the upper recuperation region,is collected in an annular trough located adjacent to the reaction zone.Due to the recuperation of heat from the products in the top part of the reactor and also heat received from theoxidation reaction by radiation,the temperature of this pool of liquid metal should approach that of the oxidation reaction.The hot liquid then passes out of the oxidiser,under pressure,and its heat content used to″drive″the endothermic reduction reaction.

    A stream of nitrogen saturated with metal vapour at oxidiser pressure leaves the top of the oxidiser,which is then expanded through a turbine.Due to the fall in temperature through the turbine,a portion of the metal vapour in this stream will condense forming liquid metal″moisture″.This liquid metal is collected in a separator at the exit of the turbine and returned to the chemical loop as a stream of liquid.The gases from this turbine, still carrying some metal vapour,are passed to a combined heat recovery steam generator and metal condenser(HRSG),where they are cooled in two stages.In the first stage,the metal vapour is condensed in a coolercondenser,which forms the superheater for abottoming steam cycle.The cooling surface in this part of the HRSGis maintained at a temperature above the melting point of theliquid metal(692 K for Zinc)to avoid blockageof the exchanger.The second part of the HRSGcools thealmost pure nitrogen leaving the first half of the exchanger.The nitrogen from the HRSGis at a temperature approaching ambient as no feed heating is applied to the water substance entering the exchanger.

    Here it is assumed that the system fuel is coke,ashless with zero sulphur content,which can essentially be taken as graphite.This simplifies the analysis to illustrate the system function,although other hydrocarbons and carbon based fuels are also suitable,albeit with additional processes and more complex reactions.Taking the fuel as graphite,the system reaction is given by Eq.(4).

    The standard state reaction Gibbs function and reaction enthalpy are given by

    If reaction Eq.(4)is performed in a reversible,steady flow power system,with the species entering or leaving the system separately,and at T o and P o,the maximum″overall efficiency″of the system is given by Refs.[20-21]

    For the oxygen sub-system using zinc as the carrier,CLC sub-system performs two reactions,Eqs.(6,7).

    Each of the components of the system illustrated in Fig.3 is analysed assuming a gas compressor polytropic efficiency of 90% and all other efficiencies taken as 85%[18].The corresponding variation of the″overall″e(cuò)fficiency Z ov with P oxi is shown in Fig.4.An oxidation reactor pressure of 35 bar gives an overall efficiency of about 75%.The corresponding maximum turbine inlet temperature at this efficiency point is 1 423 K,which is considerably below the peak operating temperatures already achieved in gas turbine engineering practice indicating the potential for the development of technology operating at these conditions.

    Taking the efficiency of the system as 75%from Fig.4,then the actual work output will be given by

    Thermodynamics deals with molecular-level systems that are capable of exchanging thermal energy with their surroundings.Entropy is an extensive property that is proportional to the quantity of matter in a system.Entropy can be physically interpreted as a measure of the degree of spreading and sharing of thermal energy within a system.This may involve dispersing thermal energy into a larger volumeof space or sharing energy with previously inaccessible microstates within the system.If a substance becomes more dispersed in space,the thermal energy associated with it will also become spread over a larger volume of space leading to an increasein its entropy.Thermodynamically,for a process that reversibly exchanges a quantity of heat q rev with its surroundings,the entropy change can be defined byΔS=q rev/T,where T is the absolute temperature.In a system characterised by a number of accessible microstates,entropy can be defined by S=k lnΨ,where k is Boltzmann′s constant and K is the number of microstates that corresponds to a macrostate of the system.The thermal energy within a system will attain the most probable macrostate for a given set of conditions.

    A key facet of chemical looping is that the two redox reactions operate close to their respective equilibrium conditions.The maximum theoretical work output from a fuel consuming device is limited to the fall in Gibbs function of the fuel′s oxidation reaction[20,22].The ratio between the standard state enthalpy of oxidation(ΔH°)of the oxygen carrier to that of the fuel,is greater than unity for most combinations of oxygen carrier and hydrocarbon.This enables the temperature ratio at which a chemical looping cycle operates to be reduced without sacrificing efficiency.

    Fig.5 Sankey diagram of entropy fluxes in reversible CLC system

    Fig.5 shows the fluxes of entropy,which,importantly,circulate in a reversible CLC system.The entropy change for methane oxidation(and for hydrocarbon combustion in general),is negligible.However,in looping systems,because the oxygen carrier acts as a catalyst,it can be selected so that both redox reactions involve a significant change in entropy,i.e.,|ΔS°|is large.The recirculation of both energy and entropy means that the oxidation and reduction reactions can both exhibit a significant entropy change,ΔS.This means that the entropy ″available″for heat exchange between oxidiser and reducer,through the heat engine,is much larger than in systems without a chemical loop.This is despite the entropy ″flowing through″the system,i.e.,ΔS°for the CH4 oxidation reaction,being small.This is why the two reactions can take place reversibly at relatively low temperatures,while exchanging heat with a practical heat engine.The net heat rejection,Q rej,is close to zero,and as a result the overall efficiency is close to unity as it must be for a reversible hydrocarbon burning system.Such a high efficiency would be impossible using single stage oxidation at the temperatures occurring in this cycle(the two redox reaction take place at 1 839 K and 1 039 K respectively).CLCand the re-circulation of entropy madepossible by its adoption,enables the irreversibility of power systems to be reduced systematically,while maintaining peak cycle temperature at reasonable levels for practical engineering implementation.

    Fluid-phase CLC therefore offers the potential to achieve two seemingly conflicting goals:

    (1)The effective generation of a separated stream of CO2 and hence the facilitation of its capture;

    (2)Combined with an increasein overall system efficiency.

    Critically,these two goals are realised using the same capital equipment,a capital investment required whatever method is chosen to capture CO2.

    In addition high thermal efficiency and inherent carbon capture,the merits of fluid-phase chemical looping include the lack of requirement for steam condensers and cooling towers.Such equipment is physically large and requires significant capital investment.In addition cooling systems generally require access to a sink temperature for example provided by a river or ocean but this is not a requirementin chemical looping.Fluid-phase CLCis however complex and technically challenging.A heat engineis required to generate work from the redox reactions.If a turbine is used to generate shaft work,a means of generating a hot,pressurised working fluid in the oxidiser is needed,whilst avoiding indirect heat exchange.If as suggested here a stream of zinc oxide vapour or sodium oxide vapour is used then a turbine that is able to sustain the harsh environment of metal oxide vapour/multi-component flow is required.Also heat is required for the reducer to drive the endothermic reaction,again preferably without using indirect heat exchange.It is necessary to separate the oxygen carrier and nitrogen streams in the oxidizer.Each of theseissues represents significant technical challenges which are being addressed in on-going work on practical plant design as indicated in this paper.

    3 CONCLUSION

    For combustion of hydrocarbons to be performed reversibly in a single reaction,impractically high working temperatures are required.As a result,alternative schemes are necessary in order to achieve high cycle efficiencies for power production.Fluid phase CLC using potassium,zinc or sodium as thecarrier,offers an alternative to traditional power generation systems and is capable of achieving thermal efficiencies of circa 75%.A key facet of chemical looping is that the two redox reactions operate close to their respective equilibrium conditions.The ratio between the standard state enthalpy of oxidation of the oxygen carrier to that of the fuel,is greater than unity for most combinations of oxygen carrier and hydrocarbon.This enables the temperature ratio at which a chemical looping cycle operates to be reduced without sacrificing efficiency.By using fluid-phase CLC,separation of the oxygen carrier from the fuel′s ash is aided.As a result,burning coal or heavy liquid fuels,is facilitated with the ash being separated from the carrier species by virtue of phase difference.

    [1] Sims R E H,Schock R N,Adegbululgbe A,et al.Energy supply climate change 2007:Mitigation.Contribution of Working Group III to the Fourth Assessment[C]//Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2007.

    [2] International energy agency.World energy outlook 2006[M].Paris:OECD Publication Service,2006.

    [3] Enerdata company.A global energy data base including OECD data[M].Grenoble,France:Enerdata,2004.

    [4] Price L,de la Ruedu Can S.Sectoral trends in global energy use and greenhouse gas emissions[R].LBNL-56144,2006.

    [5] Fisher B.Industry related technology research[C]//Proceedings of the Expert Review Meeting,Intergovernmetnal Panel on Climate Change(IPCC)WG III.Capetown:[s.n.],2006.

    [6] Mac Kay D J C.Sustainable energy without the hot air[M].Cambridge:UIT,2009.

    [7] McGlashan N R.Chemical looping combustion— a thermodynamic study[J].J Mech Eng Sci,2008,222:1005-1019.

    [8] Appleby A J,Foulkes F R.Fuel cell handbook[M].New York:Van Nostrand Reinhold,1989.

    [9] Power engineering international.Gas turbines breaking the 60% efficiency barrier[EB/OL].www.powergenworldwide. com/index/display/articledisplay/2278068132/articles/cogeneration-and-on-sitepower-production/volume-11/issue-3/featuatures/gas-turbines-breaking.html,2010-05-01/2010-10-01.

    [10]Richter H J,Knoche K F.Reversibility of combustion processes,in efficiency and costing—Second law analysis of processes[J].ACS Symposium Series,1983(235):71-85.

    [11]Lyngfelt A,Leckner B,Mattisson T.A fluidised bed combustion process with inherent CO2 separation;application of chemical looping combustion[J].Chemical Engineering Science,2001,56:3103-3113.

    [12]Brandvoll O/,Bolland O.Inherent CO2capture using chemical looping combustion in a natural gas fired cycle[J].Trans ASME,2004,126:316-321.

    [13]Mattisson T,Garcī-Labiano F,Kronberger B,et al.Chemical-looping combustion using syngas as fuel[J].Int J Greenhouse Gas Control,2007,1:158-169.

    [14]Lyngfelt A,Johansson M,Mattisson T.Chemical looping combustion—Status of developmet[C]//9th International Conference on Circulating Fluidised Beds.Hamburg:[s.n.],2008.

    [15]Fang H,Haiban L,Zengli Z.Advancements in development of chemical looping combustion:A review[J].International Journal of Chemical Engineering,2009,16:1-16.

    [16]Hossain M M,de Lasa H I.Chemical looping combustion(CLC)for inherent CO2 separations—A review[J].Chemical Engineering Science,2008,63:4433-4451.

    [17]Dennis JS,Scott SA.In situ gasification of a lignite coal and CO2 separation using chemical looping with a Cu-based oxygen carrier[J].Fuel,2009,89:1623-1640.

    [18]McGlashan N R,Childs P R N,Heyes A L,et al.Producing hydrogen and power using chemical looping combustion and water-gas shift[J].Journal of Engineering for Gas Turbines and Power,2010,132:031401-1-10.

    [19]McGlashan N R,Childs P R N,Heyes A L.Chemical looping combustion using the direct combustion of liquid metal in a gas turbine based cycle[R].ASME GT2010-23393,2010.

    [20]Haywood R W.A critical review of the theorems of thermodynamic availability,with concise formulations,Part 1:Availability[J].J Mech Eng Sci,1974,16:160-173.

    [21]Haywood R W.Analysis of engineering cycles—Power,refrigeration and gas liquefaction plant[M].Oxford:Pergamon Press,1991.

    [22]Winterbone D E.Advanced thermodynamics for engineers[M]. Oxford:Butterworth-Heinemann,1997.

    猜你喜歡
    肯辛頓工程系理工學(xué)院
    江蘇理工學(xué)院
    常熟理工學(xué)院
    入時(shí)邂逅
    理工學(xué)院簡介
    電子信息工程系
    機(jī)電工程系簡介
    任意門
    穿行:服裝工程系畢業(yè)設(shè)計(jì)作品
    西安航空學(xué)院學(xué)報(bào)(2014年4期)2014-07-13 07:42:10
    只要1英鎊!英國利物浦超低價(jià)甩賣“白菜房”
    奇聞怪事(2014年1期)2014-03-22 10:00:45
    久久精品夜夜夜夜夜久久蜜豆| 国产精品不卡视频一区二区| 国产久久久一区二区三区| 成年av动漫网址| 少妇人妻精品综合一区二区| 麻豆乱淫一区二区| 国产精品伦人一区二区| 建设人人有责人人尽责人人享有的 | 中文字幕av成人在线电影| 一本一本综合久久| 国产精品女同一区二区软件| 青春草亚洲视频在线观看| 国产高清国产精品国产三级 | av在线亚洲专区| 色5月婷婷丁香| 熟妇人妻久久中文字幕3abv| 免费无遮挡裸体视频| 人人妻人人澡人人爽人人夜夜 | 美女国产视频在线观看| 亚洲内射少妇av| 99久久精品国产国产毛片| 国产乱人偷精品视频| 大香蕉久久网| 亚洲av男天堂| 午夜福利视频1000在线观看| 国产 一区 欧美 日韩| 日韩电影二区| 3wmmmm亚洲av在线观看| 高清视频免费观看一区二区 | 国产精品国产三级专区第一集| 久久鲁丝午夜福利片| 伊人久久精品亚洲午夜| kizo精华| 亚洲经典国产精华液单| 国产伦一二天堂av在线观看| 亚洲人成网站高清观看| 国产亚洲av片在线观看秒播厂 | av.在线天堂| 三级国产精品欧美在线观看| 五月伊人婷婷丁香| 欧美激情在线99| 亚洲成人一二三区av| 免费av观看视频| 91午夜精品亚洲一区二区三区| 2018国产大陆天天弄谢| 欧美zozozo另类| 久久午夜福利片| 日本爱情动作片www.在线观看| or卡值多少钱| 好男人视频免费观看在线| 亚洲精品第二区| 久久精品国产鲁丝片午夜精品| 国产淫语在线视频| 久久久久国产网址| 熟女电影av网| 91aial.com中文字幕在线观看| 日日撸夜夜添| 国产亚洲午夜精品一区二区久久 | 亚洲第一区二区三区不卡| 九草在线视频观看| 精品少妇黑人巨大在线播放| 人妻一区二区av| 国产av码专区亚洲av| 亚洲真实伦在线观看| 久久久久久久午夜电影| 亚洲熟妇中文字幕五十中出| 欧美zozozo另类| 国产精品国产三级国产专区5o| av黄色大香蕉| 久久久久免费精品人妻一区二区| 国产黄片美女视频| 22中文网久久字幕| 91狼人影院| 搞女人的毛片| 免费大片黄手机在线观看| 国产av码专区亚洲av| 国内少妇人妻偷人精品xxx网站| 亚洲成人av在线免费| 国产男女超爽视频在线观看| 亚洲人与动物交配视频| 国产精品一二三区在线看| 久久精品熟女亚洲av麻豆精品 | ponron亚洲| 亚洲美女视频黄频| 深爱激情五月婷婷| 亚洲四区av| 亚洲精品456在线播放app| 久久久久久久亚洲中文字幕| 99re6热这里在线精品视频| 天堂中文最新版在线下载 | 嫩草影院精品99| 久久精品久久久久久久性| 欧美人与善性xxx| 亚洲熟女精品中文字幕| 丰满少妇做爰视频| 十八禁国产超污无遮挡网站| 午夜日本视频在线| 毛片一级片免费看久久久久| 夜夜爽夜夜爽视频| 国产三级在线视频| 国产av国产精品国产| 狠狠精品人妻久久久久久综合| 欧美不卡视频在线免费观看| 亚洲熟妇中文字幕五十中出| 97精品久久久久久久久久精品| 免费av观看视频| 欧美日韩在线观看h| 国产国拍精品亚洲av在线观看| 国产一区二区亚洲精品在线观看| 久久亚洲国产成人精品v| 99久久人妻综合| 日韩在线高清观看一区二区三区| 免费观看在线日韩| 五月伊人婷婷丁香| 欧美性猛交╳xxx乱大交人| 成年人午夜在线观看视频 | 蜜臀久久99精品久久宅男| 观看美女的网站| 中文字幕免费在线视频6| 99视频精品全部免费 在线| 亚洲自偷自拍三级| 女人被狂操c到高潮| 黄色配什么色好看| 免费电影在线观看免费观看| 久久久久性生活片| av天堂中文字幕网| 男女国产视频网站| 久久久久久久国产电影| 国产精品综合久久久久久久免费| 青青草视频在线视频观看| 国产精品一二三区在线看| 国产 一区 欧美 日韩| 日韩欧美三级三区| 精品人妻视频免费看| 亚洲成人中文字幕在线播放| 免费电影在线观看免费观看| 国产成人福利小说| 久久久久久国产a免费观看| 男女视频在线观看网站免费| 人妻系列 视频| 成人鲁丝片一二三区免费| 高清在线视频一区二区三区| 日韩成人伦理影院| 精品人妻偷拍中文字幕| 亚州av有码| 91久久精品国产一区二区成人| 国产黄色小视频在线观看| 成人欧美大片| 日本黄大片高清| 精华霜和精华液先用哪个| a级一级毛片免费在线观看| 内射极品少妇av片p| 在线a可以看的网站| 精品人妻视频免费看| 淫秽高清视频在线观看| 国产老妇伦熟女老妇高清| 中文字幕免费在线视频6| 国产精品久久久久久久电影| 激情 狠狠 欧美| 午夜福利成人在线免费观看| av在线蜜桃| 久久久精品欧美日韩精品| 如何舔出高潮| av网站免费在线观看视频 | 狂野欧美白嫩少妇大欣赏| 国产成人午夜福利电影在线观看| 91av网一区二区| videossex国产| 日韩电影二区| 亚洲国产av新网站| 少妇熟女欧美另类| 国产熟女欧美一区二区| 在线观看美女被高潮喷水网站| 丝瓜视频免费看黄片| 精品一区二区三区人妻视频| 亚洲欧美日韩卡通动漫| 亚洲av中文字字幕乱码综合| 国产成人免费观看mmmm| 五月天丁香电影| 久热久热在线精品观看| 日韩在线高清观看一区二区三区| 国产爱豆传媒在线观看| 又粗又硬又长又爽又黄的视频| 国产亚洲av嫩草精品影院| 欧美一级a爱片免费观看看| 亚洲精品aⅴ在线观看| 色哟哟·www| 99热6这里只有精品| 91精品一卡2卡3卡4卡| 亚洲精品,欧美精品| 国产综合精华液| 久热久热在线精品观看| 黄色日韩在线| 美女黄网站色视频| 在现免费观看毛片| 99久久精品一区二区三区| 91午夜精品亚洲一区二区三区| 亚洲欧美日韩卡通动漫| 亚洲欧美成人综合另类久久久| 七月丁香在线播放| 女人被狂操c到高潮| 日本免费在线观看一区| 欧美zozozo另类| 日韩电影二区| 免费电影在线观看免费观看| 亚洲精品国产av蜜桃| 国产女主播在线喷水免费视频网站 | 干丝袜人妻中文字幕| 老司机影院毛片| 内地一区二区视频在线| 精品人妻偷拍中文字幕| 欧美xxxx黑人xx丫x性爽| 日韩欧美一区视频在线观看 | 亚洲国产精品国产精品| 日本与韩国留学比较| 春色校园在线视频观看| 久久久久久久久久成人| 国产精品三级大全| 亚洲图色成人| 日韩欧美精品v在线| 亚洲欧美清纯卡通| 伊人久久精品亚洲午夜| 激情 狠狠 欧美| 国产大屁股一区二区在线视频| 只有这里有精品99| 成年人午夜在线观看视频 | 最近视频中文字幕2019在线8| 色尼玛亚洲综合影院| 日韩一本色道免费dvd| 日韩成人av中文字幕在线观看| xxx大片免费视频| 免费看光身美女| 欧美xxⅹ黑人| 2018国产大陆天天弄谢| 午夜爱爱视频在线播放| 国产激情偷乱视频一区二区| 2022亚洲国产成人精品| 日本欧美国产在线视频| 人人妻人人澡人人爽人人夜夜 | 欧美成人一区二区免费高清观看| 日韩欧美 国产精品| 久久久久久九九精品二区国产| 777米奇影视久久| 欧美zozozo另类| 人妻系列 视频| 可以在线观看毛片的网站| 国产免费一级a男人的天堂| 欧美精品国产亚洲| 亚洲欧美中文字幕日韩二区| 国产淫语在线视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久午夜乱码| 在线播放无遮挡| 亚洲一级一片aⅴ在线观看| 成人鲁丝片一二三区免费| 人妻夜夜爽99麻豆av| 69av精品久久久久久| 人人妻人人看人人澡| 亚洲av免费在线观看| 午夜福利成人在线免费观看| 91aial.com中文字幕在线观看| 中文乱码字字幕精品一区二区三区 | 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久av不卡| videos熟女内射| 日韩在线高清观看一区二区三区| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久久久免| freevideosex欧美| 成人av在线播放网站| 免费av不卡在线播放| 国产综合精华液| 久久久精品免费免费高清| 国产成人免费观看mmmm| 久久精品国产鲁丝片午夜精品| 2021天堂中文幕一二区在线观| 亚洲最大成人手机在线| 一级毛片久久久久久久久女| 99热这里只有是精品50| 日日撸夜夜添| 又爽又黄a免费视频| 美女主播在线视频| 嫩草影院精品99| 一本久久精品| 麻豆成人av视频| 少妇人妻一区二区三区视频| 亚洲自偷自拍三级| 久久韩国三级中文字幕| 好男人在线观看高清免费视频| 亚洲精品456在线播放app| 国产综合懂色| 亚洲av在线观看美女高潮| 好男人在线观看高清免费视频| 色哟哟·www| 久久国内精品自在自线图片| 成人综合一区亚洲| 我的老师免费观看完整版| 一级毛片电影观看| 狂野欧美白嫩少妇大欣赏| 亚洲在久久综合| 精品一区二区免费观看| 午夜精品在线福利| 国产伦理片在线播放av一区| 大话2 男鬼变身卡| 免费看美女性在线毛片视频| 十八禁国产超污无遮挡网站| 婷婷色麻豆天堂久久| videossex国产| 国产精品人妻久久久久久| 成人国产麻豆网| 水蜜桃什么品种好| 一个人看视频在线观看www免费| av免费在线看不卡| 非洲黑人性xxxx精品又粗又长| 九草在线视频观看| 有码 亚洲区| 高清毛片免费看| 久久精品人妻少妇| 久久韩国三级中文字幕| 久久这里有精品视频免费| av免费观看日本| 日本欧美国产在线视频| 亚洲,欧美,日韩| 亚洲一级一片aⅴ在线观看| a级毛色黄片| 在线天堂最新版资源| 欧美性感艳星| 高清在线视频一区二区三区| 中文欧美无线码| 久久97久久精品| 免费人成在线观看视频色| 精品人妻视频免费看| 久久人人爽人人片av| 成人毛片60女人毛片免费| 禁无遮挡网站| 三级国产精品欧美在线观看| 麻豆成人午夜福利视频| 国内少妇人妻偷人精品xxx网站| 日本欧美国产在线视频| 纵有疾风起免费观看全集完整版 | 久久久久久久久久久丰满| 人人妻人人澡欧美一区二区| 97热精品久久久久久| 亚州av有码| 一级毛片我不卡| 免费观看精品视频网站| 久久精品国产自在天天线| 亚洲欧美一区二区三区国产| 成人亚洲欧美一区二区av| 777米奇影视久久| 99热6这里只有精品| 女人久久www免费人成看片| 国产精品国产三级国产av玫瑰| 欧美zozozo另类| 伊人久久国产一区二区| 久久久久久九九精品二区国产| 91在线精品国自产拍蜜月| 日韩电影二区| 亚州av有码| 人妻少妇偷人精品九色| 亚洲精品一二三| 中文字幕免费在线视频6| 夜夜爽夜夜爽视频| 国产午夜福利久久久久久| 伦理电影大哥的女人| 精品国产三级普通话版| 国产在视频线精品| 久久亚洲国产成人精品v| 久久久久久久久久黄片| 免费黄色在线免费观看| 成人亚洲欧美一区二区av| 免费av毛片视频| 成人特级av手机在线观看| 日日撸夜夜添| 青春草国产在线视频| 你懂的网址亚洲精品在线观看| 国产亚洲91精品色在线| 亚洲精品乱码久久久v下载方式| ponron亚洲| 六月丁香七月| 一区二区三区高清视频在线| 又大又黄又爽视频免费| 国产精品久久久久久av不卡| 联通29元200g的流量卡| 亚洲精品日韩av片在线观看| 成人无遮挡网站| 亚洲欧美成人精品一区二区| 国产一区亚洲一区在线观看| 又爽又黄无遮挡网站| 大话2 男鬼变身卡| 国产免费视频播放在线视频 | 汤姆久久久久久久影院中文字幕 | 天堂中文最新版在线下载 | 成年免费大片在线观看| 免费观看a级毛片全部| 中文字幕亚洲精品专区| 草草在线视频免费看| 日日啪夜夜爽| 中文精品一卡2卡3卡4更新| 成人一区二区视频在线观看| 亚洲最大成人av| av在线亚洲专区| 男人和女人高潮做爰伦理| 人人妻人人看人人澡| 乱人视频在线观看| 成人高潮视频无遮挡免费网站| 日本av手机在线免费观看| 亚洲在久久综合| 亚洲aⅴ乱码一区二区在线播放| 伦理电影大哥的女人| 美女内射精品一级片tv| 免费观看av网站的网址| 成人av在线播放网站| 亚洲精品亚洲一区二区| 免费看日本二区| 免费播放大片免费观看视频在线观看| 九九爱精品视频在线观看| 久久久久久久久大av| 老女人水多毛片| 国产av不卡久久| 午夜免费观看性视频| 中国国产av一级| 亚洲欧美日韩东京热| 91精品伊人久久大香线蕉| 最近中文字幕2019免费版| 男插女下体视频免费在线播放| 国产一级毛片七仙女欲春2| 熟女人妻精品中文字幕| 自拍偷自拍亚洲精品老妇| 欧美 日韩 精品 国产| 久久99热这里只有精品18| 99久国产av精品| 久久热精品热| 99热6这里只有精品| 日韩欧美精品v在线| 在线免费观看不下载黄p国产| 一级毛片黄色毛片免费观看视频| 精品欧美国产一区二区三| 日韩精品青青久久久久久| 婷婷色av中文字幕| 日本wwww免费看| 天堂网av新在线| 精品一区在线观看国产| 日本熟妇午夜| 婷婷色综合www| 日韩欧美 国产精品| 麻豆精品久久久久久蜜桃| 亚洲精品成人久久久久久| 蜜桃亚洲精品一区二区三区| 国产一级毛片在线| 亚洲美女视频黄频| 日韩视频在线欧美| 在线观看人妻少妇| av又黄又爽大尺度在线免费看| 啦啦啦韩国在线观看视频| 日韩一区二区三区影片| 国产高清不卡午夜福利| 中国国产av一级| 波多野结衣巨乳人妻| 777米奇影视久久| 国产亚洲av片在线观看秒播厂 | 亚洲国产欧美在线一区| 内地一区二区视频在线| 日本色播在线视频| 麻豆精品久久久久久蜜桃| 男人舔奶头视频| 亚洲精品日本国产第一区| 国产免费福利视频在线观看| 三级国产精品片| 免费播放大片免费观看视频在线观看| 免费黄频网站在线观看国产| 男女边吃奶边做爰视频| 99re6热这里在线精品视频| 精品久久久久久久末码| 免费观看av网站的网址| 午夜激情欧美在线| 久久久久精品久久久久真实原创| 天堂网av新在线| 舔av片在线| 网址你懂的国产日韩在线| 国产亚洲av嫩草精品影院| 午夜日本视频在线| 亚洲美女搞黄在线观看| 天堂√8在线中文| 亚洲性久久影院| 午夜福利在线观看吧| 国产女主播在线喷水免费视频网站 | 啦啦啦韩国在线观看视频| 舔av片在线| 成人亚洲精品一区在线观看 | 亚洲18禁久久av| 国产精品不卡视频一区二区| 美女内射精品一级片tv| 国产永久视频网站| 中文字幕亚洲精品专区| 国产亚洲91精品色在线| 国产成人freesex在线| 婷婷色综合www| 亚洲精品久久久久久婷婷小说| 免费看日本二区| 丰满人妻一区二区三区视频av| 国产午夜精品一二区理论片| 卡戴珊不雅视频在线播放| 在线天堂最新版资源| av卡一久久| 欧美激情在线99| 三级经典国产精品| 亚洲成人久久爱视频| av国产免费在线观看| 国产成人a区在线观看| 18禁在线播放成人免费| 国产熟女欧美一区二区| 青春草国产在线视频| 亚洲国产精品专区欧美| 国产精品人妻久久久久久| 国产精品久久久久久av不卡| 久久久亚洲精品成人影院| 狠狠精品人妻久久久久久综合| 亚洲av福利一区| 国产激情偷乱视频一区二区| 色综合站精品国产| 国产 一区 欧美 日韩| 欧美高清成人免费视频www| 日韩av免费高清视频| 观看免费一级毛片| 又大又黄又爽视频免费| 中文字幕亚洲精品专区| 热99在线观看视频| 熟妇人妻不卡中文字幕| 久久这里只有精品中国| 高清在线视频一区二区三区| 在线免费观看的www视频| 国产色爽女视频免费观看| 亚洲精品国产av蜜桃| 纵有疾风起免费观看全集完整版 | 日韩一区二区视频免费看| 久久精品综合一区二区三区| 99热这里只有是精品50| 国产精品人妻久久久久久| 97在线视频观看| av又黄又爽大尺度在线免费看| 人妻系列 视频| 日日啪夜夜撸| 韩国av在线不卡| 天天一区二区日本电影三级| 国产成人一区二区在线| 国产成人福利小说| 青春草视频在线免费观看| 国产 亚洲一区二区三区 | 欧美激情在线99| 少妇高潮的动态图| 卡戴珊不雅视频在线播放| 国产白丝娇喘喷水9色精品| 在线观看免费高清a一片| 国产成人freesex在线| 久久韩国三级中文字幕| 欧美区成人在线视频| 五月天丁香电影| 亚洲av中文av极速乱| 久久综合国产亚洲精品| 黄色一级大片看看| 在线免费十八禁| 久久精品国产自在天天线| 天堂av国产一区二区熟女人妻| 少妇猛男粗大的猛烈进出视频 | 草草在线视频免费看| 亚洲人成网站在线观看播放| 最后的刺客免费高清国语| 亚洲欧美精品专区久久| 日韩视频在线欧美| 久久韩国三级中文字幕| 汤姆久久久久久久影院中文字幕 | 最新中文字幕久久久久| 天堂av国产一区二区熟女人妻| 亚洲婷婷狠狠爱综合网| 久久99蜜桃精品久久| 国产免费又黄又爽又色| 色播亚洲综合网| 亚洲av中文av极速乱| 国产 一区 欧美 日韩| 免费观看性生交大片5| 国产永久视频网站| 日韩欧美国产在线观看| 一夜夜www| 日韩人妻高清精品专区| 国产大屁股一区二区在线视频| 视频中文字幕在线观看| 一区二区三区高清视频在线| 精品亚洲乱码少妇综合久久| 成人漫画全彩无遮挡| av在线蜜桃| 亚洲图色成人| 免费看美女性在线毛片视频| 国产女主播在线喷水免费视频网站 | 国产午夜福利久久久久久| 中文字幕亚洲精品专区| 国产视频首页在线观看| 亚洲内射少妇av| 亚洲天堂国产精品一区在线| 99九九线精品视频在线观看视频| 午夜福利在线观看免费完整高清在| 91精品国产九色| 成人特级av手机在线观看| 欧美三级亚洲精品| 精品99又大又爽又粗少妇毛片| 一级毛片电影观看| 日本免费在线观看一区| 中文字幕免费在线视频6| 国产精品精品国产色婷婷| 永久网站在线| 久久精品国产亚洲av天美| 国产综合精华液| 久久久亚洲精品成人影院| 又黄又爽又刺激的免费视频.| 久久97久久精品|