• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    法國(guó)MBDA爆震和連續(xù)爆震波發(fā)動(dòng)機(jī)的研發(fā)

    2011-12-02 01:39:18FalempinFrancoisLeNaourBruno
    關(guān)鍵詞:爆震導(dǎo)彈系統(tǒng)飛行器

    Falempin Francois Le Naour Bruno

    (MBDA導(dǎo)彈系統(tǒng)公司未來(lái)飛行器動(dòng)力部,巴黎 ,法國(guó))

    INTRODUCTION

    During past years,MBDA performed some theoretical and experimental works,mainly in cooperation with Laboratory of Combustion and Detonation at National Superior School of Mechanics& Aerospace in Poitiers,on pulsed detonation engine(PDE).These studies aimed at obtaining a preliminary demonstration of the feasibility of PDE in both rocket and airbreathing modes and at verifying the interest of such PDE for operational application:rocket and airbreathing modeexperimental evaluation,effect of filling coefficient,effect of a nozzle,thermal,mechanical,acoustic and vibrations environment generated,evaluation of different fuels,performance code development.

    Due to its thermodynamic cycle,PDE has theoretically better performance than another classical propulsion concept using the combustion process(20% to 25%in term of thermal efficiency).Nevertheless,it is necessary to verify that this advantage is not fully compensated by the difficulties,which could be encountered for practical use of PDE concept or by the complex technology,which could be needed to implement in an operational flying system.

    Indeed,PDE performance is driven by the following parameters:

    (1)Quality of the pre-mixing;

    (2)Value and nature of the needed energy for igniting the detonation;

    (3)Duration of the high pressure level(depending of the filling coefficient);

    (4)Maximum operating frequency depending of the minimum filling time.

    And it is not so evident to optimise each of these parameters to obtain a real improvement of the global efficiency.

    Moreover,PDE generates a severe vibration environment,which can imply higher more severe requirement for all on-board vehicle equipments or subsystems.

    After some in house studies performed in national and international cooperation[1],MBDA is now cooperating with Defense Singaporean Organization(DSO)to develop a demonstration engine in order to really assess the feasibility and the interest of this propulsion concept.

    Many authors are focusing their work on high performance concepts in order to take advantage of the high theoretical performance of PDE.That generally leads to complex arrangements and needs to optimize each of the main parameters of the engine.Such a propulsion systems correspond with high development and production and maintenance costs.

    Considering that:

    (1)Well known existing propulsion systems(rockets,turbojets,ramjets)have high performanceand are still being improved.

    (2)For each application,related vehicles have been optimized to take the better advantage of these existing engine concepts.

    MBDA and DSO do not aim at obtaining the maximum engine performance but try to take advantage of the specific characteristics of PDE to simplify engine and vehicle conception.

    The considered application is an engine able to power a reusable subsonic UAV with cruising and loitering mission which corresponds with very demanding requirement in term of thrust range[2-3].

    The use of rotating detonation wave can also be considered to reduce the environmental conditions generated by PDEwhile reducing theimportance of initiation issue and simplifying someintegration aspects.

    Compared with PDE,this design allows an easier operation in reduced-pressure environment and an increase in engine mass flow rate and thrust-to-weight ratio.

    Such a concept has been studied for a long time,particularly at Lavrentiev Institute for Hydrodynamics(LIH)in Novosibirsk.As it was done for PDE,specific experimental program has been performed by MBDA and Lavrentiev Institute to understand unsteady,3-D flow behind the detonation wave and to address some key points for the feasibility of an operational rotating wave engine for space launcher:

    (1)Two-phase mixture detonation;

    (2)Operating limits(injection pressure for example);

    (3)Noise generated by the continuous detonation wave engine(CDWE)operating at several k Hz;

    (4)Heat fluxes(intensity,areas)and cooling strategies;

    (5) Composite materials(Carbon/Silicon Carbide)compatibility;

    (6)Engine thrust vectoring capability.

    On the basis of these results,a preliminary design of an operational engine is performed by taking into account all engine/airframe integrationissues in order to optimize the benefit of detonation wave engine.

    In order to better assess the feasibility of such a system, specific experiments are performed to address somekey points like thrust vectoring,heat fluxes and material compatibility,operation in low pressure environment[4-6].In parallel,a dedicated effort is undertaken to develop an adapted numerical simulation tool.

    Beyond these first steps,and with the partial support of French Space Agency CNES,MBDA designed a large scaleground demonstrator allowing to address all already mentioned issues for a continuous detonation rocket engine using LH2/LO x mixture.

    1 CDWE OVERVIEW AND GENERALITIES

    The main feature of CDWE is an annular combustion chamber closed on one side(and where the fuel injection takes place)and opened at the other end.Inside this chamber,one or more detonation waves propagate normally to the direction of injection(Fig.1).

    Fig.1 CDWE principle

    In fact CDWE is very close to a multitube PDE cluster running globally at very high frequency(typically several k Hz)and so the mean pressureinside the chamber is higher for a typical single tube PDE(as is the mean thrust per unit area).If for PDE the injection pressure could be as low as theambient pressure,in thecase of CDWE the injection pressure should be higher and this kind of engine is particularly well suited for rocket operation.

    The flow inside this chamber is very heterogeneous,with a 2-D expansion fan behind the leading shock(Fig.2).The transversedetonation wave(BC and B′C′)propagates in a small layer of fresh mixture(AB′)near the injection wall.An expansion fan is then created and transforms the tangential speed of the hot gas in axial speed 5(Fig.3).The necessary condition for the propagation of a detonation wave is the continuous renewal of the layer of combustible mixture ahead TDW.The height of this layer h must be not less than the critical value h*for detonation.In the case of a LH2/LO2 engine,the dispersion of liquid oxygen droplets and the quick mixing of the components should befast enough to decrease thevalue of h*and to enable the realization of CD in small chambers.

    Fig.2 Flow field in TD wave reference axis

    Fig.3 Flow field in laboratory referenceaxis

    2 SYSTEM STUDY AND ENGINE SIZING

    On the basis of a semi-emperical performance model developed by LIH,thecomparison between an advanced liquid rocket engine(LRE)and CDWE is done previously by taking the same maximum pressureinside the combustion chamber of both engine(and not the same injection pressure).

    It is found that the needed combustion chamber length for stabilizing the detonation process,could be very short,shorter than 200 mm and even close to 100 mm with H2-O2 mixture.Such a short combustion chamber length will be helpful to reduce the wetted area of the engine because a annular chamber exhibits an inherently greater wetted area than a classical combustion chamber of the same length.

    With the capability to use a reduced length combustion chamber(and a smaller wetted area),CDWEwill have a slightly increased design flexibility than a conventional LRE,with the possibil

    Fig.7 Mock-up design principle

    Fig.8 General view of test bench at LIH

    some basic experiments are first performed with LIH,taking advantage of their long experience in such a experiment:

    (1) Experiments in combustion chamber(CC)with inner diameter of 50 mm,100 mm and 280 mm.

    (2)Homogeneous(gas/gas)and heterogeneous(liquid/gas)mixture studied.

    The experimental detonation chamber is fed with fuel and oxydizer supplied by pressurised tanks blow-down.Due to this,the test duration is limited(<1 s)and the test conditions are rapidly changing(Fig.9).In fact,as the process is very rapid,this operating modeis not an issue for the test validity(except maybe the total duration which can limit the heating of the wall preventing,maybe,possible isobare combustion).On the contrary,it provides a large variation of pressures and equivalence ratio,which allow proving the stability of the detonation process over a large range of feeding conditions.

    Fig.9 Typical feeding conditions evolution during test run

    Some main obtained results are:

    (1)Detonation regime obtained in 100 mm diameter CCwith GH2/LO x;

    (2)Detonation regime obtained in 330 mm diameter CC with kerosene/air;

    (3)High thrust density achieved in small CC(275 daN for a 50 mm inner diameter kerosene/GO2 engine).

    From these experiments,some key points can also bederived for the general sizing of a CDWE combustion chamber:

    (1)The height of the fresh mixturelayer h is a function of the detonation cell size.

    (2)The frequency of the engine is given by the ratio D/l,where D is the detonation velocity and l thedistance between two consecutives detonation waves,typically several k Hz,the length of the combustion chamber L should be longer than 80% of l(to ensure transition from subsonic to supersonic inside the CC).If not the detonation could be unstable.

    Thanks to the blow-down operation,it is also easy to get a detailed knowledge of thestability domain of the detonation process.As an example,Fig.10 shows the stability domain obtain for a mixture of gaseous Hydrogen and Oxygen as function of specific mixture mass flow(related to the top injection wall area)and of equivalence ratio.

    Fig.10 Stability domain-gaseous H2/O2 mixture

    In this particular case,it has to be underlined that thedetonation waves speed is 2 770 m/s at equivalence ratio 1 when Chapman-Jouguet speed D cj is 2 840 m/s.But equivalent results can be obtained(depending of theinjection configuration)with other mixtures as shown in Table 2.

    Table 2 Example of detonation wave speed compared with corresponding D cj

    4 SPECIFIC ISSUES

    4.1 Thrust vectoring capability

    One of the peculiarities of CDWEis that the number of detonation waves inside the chamber is not constant and is a function of the combustible mix ture,the combustion chamber geometry and also the mass flow rate.For a given mixturein a given chamber,changing the mass flow rate(and the injection pressure)will change the number of detonation waves inside the chamber.

    This could be explained with the assumption that behind TDW(and between two consecutive TWD),thereis a complex series of shock waves.If the mass flow rateis increased,the height of the fresh mixture behind two consecutive detonations is sufficient to support a new detonation wave(h>h*)and a shock induced combustion(a detonation)could occur and a new TDW appears.If the mass flow rate inside the combustion chamber is decreased,the height of the fresh mixture between two consecutive TDWs decreases and could be in sufficient to support a shock-indued combustion and TWD degenerates into a more simple shock wave.

    This self-adaptation of the detonation to the fresh mixture local mass flow makes it possible to gain thrust vectoring with the local increase of the mass flow.Some experiments are done in a 100 mm internal diameter combustion chamber.The injection wall consists of 190 holes for the injection of fuel and oxidizer.In one series of experiments the equivalence ratio is changed in onehalf of the enginecompared with theother half.In another series,the injectors diameter is increased in order to double the local mass flow rate in one half of the engine.

    Eight pressure probes(P1 to P8)are located along the circumference of the outer wall of the annular chamber.

    In all experiments it is possible to obtain an increase of the thrust on one side of the engine.The most promising experiments show that a 30% increase of the thrust-wall overpressure is possibleif the mass flow rateis doubled.This increaseis lower than expected but the small diameter of the test engine limits the heterogeneity of the flow inside the combustion chamber.With a larger engine,a 100% increase of the thrust on oneside(compared with the other side)should be possible(Fig.11).A small shift of the maximum and minimum pressure values is also observed.Those extreme value seems to be located between P7and P8(maximum)and between P3and P4(minimum)instead of directly near P1 and P5.

    Fig.11 Pressure evolution along chamber circumference

    Compared with LRE (with a gimbaled nozzle),this thrust vectoring capability is interesting because thereis no changein the thrust direction and the response time is limited only by the response time of theinjectors,which could be very fast,enabling the positive control of thevehicle attitude at high frequency without using much power.The complete pressure field and flow velocity should still be investigated to check the effect of the flow deflection and flow expansion in the nozzle.

    4.2 Heat f luxes and cooling system

    Due to the thin layer of detonation,the highest heat load inside CCoccurs near the thrust wall and decreases rapidly along the axial axis.

    Wall temperatures in heat-sink combustion chambers are recorded with Hydrogen/Oxygen and kerosene/Oxygen mixtures(Fig.12).In Fig.12,point 1 is the detonation wave and points 2,3,4 are distributed along an axial line up to exit section.

    The cooling system design could be critical because for metallic structures the mean heat fluxes near the thrust wall are measured between 12 and 17 MW?m-2with local values even higher(with Hydrogen/Oxygen mixture).

    This heat flux repartition is also very different from the oneobtained in LRE where the maximum heat fluxes occurs near the combustion chamber geometric throat.This point could be beneficial for the engine design because the vaporization of the injected oxygen will be faster and the mixing between hydrogen and oxygen will be better.

    Fig.12 Evolution of temperature along axial line during test run

    The high heat fluxes anticipated in a CDWRE lead to the issue of active cooling,a very difficult task with metallic structures with a wall temperature limited to the vicinity of 1 000 K.Composite materials could achieve higher wall temperature(up to 1 800 K)even in oxidizing conditions. After a careful review of existing products,some C/SiCcomposite materials are selected.Then,two composite parts,constituting the inner wall of the annular detonation chamber,have been designed and manufactured to be tested in the LIH 100 mm CDWE combustion chamber.Each of these two parts successfully sustained a dozen of short duration(0.5 s)experiments with-out apparent damage to the material surface(Figs.13,14).A new experiment series is performed with moresevereconditions(feeding pressure up to 2.5 MPa)during which the two samples aredamaged proving that this point is surely one key technology issue to becarefully addressed in the future.

    Fig.13 Two composite parts

    Fig.14 Part installed on chamber central body

    4.3 Operation in space environment

    Ignition of an enginein very low pressure environment could be a real problem,even for a conventional rocket engine.For CDWE operation,the lack of geometric throat adds to the potential difficulty of a sufficient filling of thechamber with no counter pressure.

    This issue is investigated using LIH 100 mm ID detonation chamber connected to a 0.5 m3vacuum tank with an initial pressure of 6 k Pa.

    The first step is to investigate the effect of the injection conditions(specific mass flow and equivalence ratio),and after that to decrease the ignition energy until it is impossible to achieve an initiation of the detonation.

    Blasting copper wires are used for initiating the detonation inside the combustion chamber and ignition energy could be changed with the change of theapplied voltage and the wire diameter.

    Gaseous hydrogen and oxygen at ambient pressure are selected for those experiments and injection pressure between 0.16 and 2.50 MPa(for hydrogen),and 0.5 and 1.1 MPa(for oxygen)allowed the investigation of ignition within a wide range of low specific mass flow(between 21 and 57 kg? s-1? m-2).This mass flow rateis ten times lower than mass flow used in previous experiments but is mandatory given the relatively small volume of thevacuum tank.

    From the pressure signal and the direct visualization of the flow with high-speed camera(Fig.15),it is possible to determine the minimum injection conditions for the positive ignition of the TDW system inside the combustion chamber as a function of the mixture equivalence ratio.

    In the case of a positive TDW initiation,the static pressureinside thecombustor increases to a much higher level(between 0.810 5 and 1.251 05 Pa)than when no detonation occurs(due to the lack of a geometric throat at the exit of the combustion chamber).

    It is found that increasing the specific mass flow rateincreases both lean and rich ignition limits of the engine and that it is possible to start a TDW at very low combustion chamber pressurein a wide range of equivalence ratio(0.5—1.7),with a very low amount of energy(less than 1 J)(Fig.16).

    Fig.15 Visualiation of low ambiant pressureignition phase

    Fig.16 Two cases of ignition(1)and non-ignition(2)

    5 NUMERICAL SIMULATION

    With MBDA support,ICARE Lab is developing different levels of numerical simulation to provide,in middle term,needed tools to develop and optimize actual engines.The first approach consisted in performing Euler computation using periodical boundaries conditions[10].Even if these computation have still to be refined,they already report the right overall operation and constitute a very good support to better understand the detonation wave self-ignition process(Fig.17).

    Such computation allow also at determining the stream lines into the chamber(in engine axis).Fig.18 shows that these stream lines are not too much inclined and should not lead to strong skin friction losses.

    Fig.17 Exampleof computation results obtained by ICARE

    6 DEMONSTRATION ENGINE

    Fig.18 Trajectory of 20 particles released from top injection wall

    Based on previous studies and the growing potential of such concept,a demonstration engine is designed.This large scaleengine(Fig.19)is to be manufactured and tested in existing test facility.Thecombustion chamber is 350 mm(external inner diameter)and 280 mm(internal inner diameter)and will beable to operate with GH2/GO2 or GH2/LO2 or liquid hydrocarbon/air with the change of supply lines and injection wall. This engine mock-up is modular and actively cooled.

    Fig.19 CDWE demonstration engine

    With H2/O2,the injection pressure will be limited(between 1.0 and 1.5 MPa)and resulting mean pressure inside the combustion chamber with the envisioned mass flow rate(between 12 and 15 kg/s,depending on the equivalence ratio)is expected near 0.5 M Pa,a value sufficient to deliver several thousands daN of thrust.Moreover,the engine will be equipped with a complete weighing system providing thrust vector compo-nents and corresponding moments

    Thanks to its modularity,the engine will be used,in a first step,as a non-flying workhorse allowing to address all the key points such as:

    (1)Effect of injection configuration and conditions(2-phases mixing);

    (2)Stable operation domain and key influencing parameters;

    (3)Thermal and mechanical strength of the combustion wall(fuel-cooled structure,high frequency mechanical shocks);

    (4)Effect of disymmetric injection on thrust vectoring when including a full nozzle;

    (5)Generated environment(vibration and acoustics).

    In the second step,the modularity will allow to progressively replaceall the engine components by flight-worthy ones in order to finally obtain a flight-worthy demonstrator which will be tested to really assess the achievable performance when taking into account all the technology issues.

    As a first step in the development of this demonstrator,and with the support of EADS Group,MBDA designs and manufactures a preliminary small scale demo based on works done with Lavrentiev Institute(Fig.20).This 100 mm diameter mock-up is under testing within MBDA Bourges Subdray test facility.In the first step,the small scale demo is tested with pure hydrogen.Then,a mixture of methane and hydrogen will be used.Test duration is about 3 to 4 s.

    Fig.20 Small scale preliminary demo under testing

    7 CONCLUSION

    MBDA has been leading R&T works in cooperation with the Lavrentyev Institute of Hydrodynamics on the Continuous Detonation Wave Engine.

    The mixtures used in the different experiments are mainly GH2&LO2 or LHC&GO2.The goals of those experiments are to address some key technology points in order to beable to evaluate theglobal interest of an engineusing TDW for the combustion process.It is found that such engine could deliver impressive thrust in a very small package(275 daN for internal diameter of 50 mm and length of 100 mm,kerosene-oxygen engine)and that could be increased with the use of a diverging nozzle.

    Due to thegeometry of thecombustion chamber,a plug or aerospike nozzle seems to be the best design,thethrust vectoring capability of this engine(with the local change of the mass flow rate)being a way to solve theproblem of attitude control.

    The heat fluxes are very high but located mostly near the injection wall.This point will help the gasification of the liquid component injected inside the combustion chamber.The transverse flow velocity could also help the mixing of the fresh products,but also the mixing of the fresh mixture with thedetonation products.

    Some preliminary tests are performed to evaluate the capability of C/SiC composite materials to sustain thevery severemechanical environment generated by the rotating detonation waves.Beyond these first steps,a full scale demonstrator is designed and should be developed in 2010 allowing a large set of test from basic experiment to improve knowledge and understanding of the TDW process to technology demonstration test including fuel-cooled structure validation. By waiting,a small scale preliminary demo is designed and manufactured and will be tested in Spring 2010.

    Authors particularly thank Dr.Sergey Zhdan and Dr.Feodor Byokovskiy for their key contribution in all experi-mental works performed on CDWE as well as Dr Dmitry-Davidenko for his outstanding contribution to numerical simulation activities.

    [1] Daniau E,Zitoun R,Desbordes D,et al.Effetcs of nozzles of different length and shape on the propulsion performance of pulsed detonation engines[C]//High-Speed Deflagration and Detonation.Moscow:Elex-KM Publishers,2000:251-262.

    [2] Daniau E,Falempin F,Zhang G,et al.Preliminary work for a pulsed detonation engine demonstrator[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference.Canberra:[s.n.],2006:AIAA-2006-7957.

    [3] Zhang G,Jiang Y T,Foo H S,et al.First steps for thedevelopment and testing of a pulsedetonation engine for UAV application[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference.Dayton:[s.n.],2008:AIAA-2008-2681.

    [4] Daniau E,Falempin F,Zhdan S,et al.Detonation wave propulsion systems:First step toward operational Engines[R].ISABE-2005-1302,2005.

    [5] Daniau E,Falempin F,Bykovskiy F A,et al.Pulsed and rotating detonation propulsion system:first step toward operational engines[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies.Capua:[s.n.],2005:AIAA-2005-3233.

    [6] Falempin F,Daniau E,Getin N,et al.Toward a continuous detonation wave rocket engine demonstrator[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference.Canberra:[s.n.],2006:AIAA-2006-7956.

    [7] Falempin F,Bouchez M.Fully axisymmetric airbreather concept for space launcher—First application to a micro space launcher[C]//International Aerospace Congress.Glasgow: IAF,2008:IAC-08-C4.5.6.

    [8] Davidenko D M,Gokalp I,Kudryavtsev A N.Numerical study of the continuous detonation wave rocket engine[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton: [s.n.],2008: AIAA-2008-2680.

    [9] Davidenko D M.Numerical study on the annular nozzle optimization for rocket application[C]//16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference.Bremen,Germany:[s.n.],2009:AIAA-2009-7390.

    [10]Davidenko D M,Eude Y,G?kalp I.Ideal performance of acontinuous detonation wave rocket engine fed with hydrogen-oxygen mixture[C]//ICPCD 2010.Saint-Petersburg:[s.n.],2010.

    猜你喜歡
    爆震導(dǎo)彈系統(tǒng)飛行器
    俄羅斯山毛櫸M3防空導(dǎo)彈系統(tǒng)
    軍事文摘(2022年19期)2022-10-18 09:55:30
    雷克薩斯車系爆震控制基理介紹
    S-300地對(duì)空導(dǎo)彈系統(tǒng)
    軍事文摘(2022年9期)2022-05-30 04:48:00
    高超聲速飛行器
    “低空獵手”HQ-17AE防空導(dǎo)彈系統(tǒng)倍受關(guān)注
    肺爆震傷治療的研究進(jìn)展
    復(fù)雜飛行器的容錯(cuò)控制
    電子制作(2018年2期)2018-04-18 07:13:25
    長(zhǎng)距離爆震式點(diǎn)火槍設(shè)計(jì)
    焊接(2015年9期)2015-07-18 11:03:52
    神秘的飛行器
    3.0T磁敏感加權(quán)成像在兔顱腦爆震傷早期出血灶檢測(cè)及預(yù)后評(píng)估中的應(yīng)用
    女性被躁到高潮视频| 夜夜躁狠狠躁天天躁| 99香蕉大伊视频| 亚洲人成77777在线视频| 亚洲少妇的诱惑av| 日韩免费高清中文字幕av| svipshipincom国产片| 国产成人影院久久av| 国产伦人伦偷精品视频| 国产无遮挡羞羞视频在线观看| 午夜免费鲁丝| 亚洲人成电影免费在线| 麻豆av在线久日| 欧美激情高清一区二区三区| 精品国产美女av久久久久小说| 免费看a级黄色片| 免费在线观看影片大全网站| 亚洲欧美激情在线| 色综合婷婷激情| 国产蜜桃级精品一区二区三区| 成年女人毛片免费观看观看9| 成人黄色视频免费在线看| 久久久久久久午夜电影 | 十八禁人妻一区二区| 80岁老熟妇乱子伦牲交| 动漫黄色视频在线观看| 欧美人与性动交α欧美软件| 嫩草影院精品99| 老汉色∧v一级毛片| 欧美日韩精品网址| 久久热在线av| 精品一区二区三区四区五区乱码| www.999成人在线观看| 精品电影一区二区在线| 侵犯人妻中文字幕一二三四区| 久久久久久久久免费视频了| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品美女特级片免费视频播放器 | 亚洲av成人一区二区三| 欧美色视频一区免费| 最近最新中文字幕大全免费视频| 国产精品一区二区三区四区久久 | 国产av精品麻豆| 国产成人系列免费观看| 色哟哟哟哟哟哟| 亚洲va日本ⅴa欧美va伊人久久| 性欧美人与动物交配| 午夜免费激情av| 欧美日韩中文字幕国产精品一区二区三区 | 国产欧美日韩一区二区精品| 国产免费现黄频在线看| 亚洲久久久国产精品| 亚洲第一青青草原| 国产精品永久免费网站| 国产蜜桃级精品一区二区三区| 999精品在线视频| 9热在线视频观看99| 99国产精品一区二区三区| 欧美日韩国产mv在线观看视频| 人妻久久中文字幕网| 欧美一级毛片孕妇| 日韩有码中文字幕| 一级,二级,三级黄色视频| 大型av网站在线播放| 亚洲黑人精品在线| 99在线人妻在线中文字幕| 亚洲人成网站在线播放欧美日韩| 亚洲欧美一区二区三区久久| 在线国产一区二区在线| 国产精品一区二区免费欧美| 国产97色在线日韩免费| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美一区二区综合| 午夜亚洲福利在线播放| av有码第一页| 欧美黑人欧美精品刺激| 女人被躁到高潮嗷嗷叫费观| 国产视频一区二区在线看| 9色porny在线观看| 狂野欧美激情性xxxx| 日韩有码中文字幕| 在线观看午夜福利视频| 俄罗斯特黄特色一大片| 日韩三级视频一区二区三区| 国产精品久久久人人做人人爽| 久久人人精品亚洲av| 丝袜在线中文字幕| 精品少妇一区二区三区视频日本电影| 欧美乱码精品一区二区三区| 人人妻人人添人人爽欧美一区卜| 亚洲第一欧美日韩一区二区三区| 久99久视频精品免费| 色精品久久人妻99蜜桃| 国产有黄有色有爽视频| 亚洲中文av在线| 国产一区在线观看成人免费| 神马国产精品三级电影在线观看 | 美女福利国产在线| 久久久久国产一级毛片高清牌| tocl精华| 国产av又大| 99久久国产精品久久久| 性色av乱码一区二区三区2| 久久精品人人爽人人爽视色| 国产伦人伦偷精品视频| 大型av网站在线播放| 成人免费观看视频高清| 国产欧美日韩一区二区三区在线| 老司机亚洲免费影院| 欧美乱色亚洲激情| 又黄又爽又免费观看的视频| 久久久久国产精品人妻aⅴ院| 亚洲情色 制服丝袜| 久久热在线av| 日本三级黄在线观看| 视频区图区小说| 一边摸一边抽搐一进一小说| 精品福利永久在线观看| 国产精华一区二区三区| 制服诱惑二区| 国产精品成人在线| 99国产精品免费福利视频| 最好的美女福利视频网| 巨乳人妻的诱惑在线观看| 亚洲第一青青草原| 男女做爰动态图高潮gif福利片 | 淫妇啪啪啪对白视频| xxx96com| 色尼玛亚洲综合影院| 欧美中文综合在线视频| 国产成人欧美在线观看| 性欧美人与动物交配| 久久午夜综合久久蜜桃| 久久久精品国产亚洲av高清涩受| 母亲3免费完整高清在线观看| 亚洲国产精品一区二区三区在线| 亚洲性夜色夜夜综合| 一个人免费在线观看的高清视频| 亚洲精品美女久久久久99蜜臀| 亚洲第一青青草原| 在线免费观看的www视频| 国产精品免费一区二区三区在线| 欧美黑人精品巨大| 久久国产精品男人的天堂亚洲| 丁香欧美五月| 丁香欧美五月| 国产又爽黄色视频| 国产一区在线观看成人免费| 国产精品香港三级国产av潘金莲| 999久久久国产精品视频| 99久久久亚洲精品蜜臀av| 日韩成人在线观看一区二区三区| 一边摸一边做爽爽视频免费| 色婷婷久久久亚洲欧美| av国产精品久久久久影院| 窝窝影院91人妻| 午夜91福利影院| 国产99久久九九免费精品| 正在播放国产对白刺激| 黑人猛操日本美女一级片| 人人澡人人妻人| 美女福利国产在线| 久久久久精品国产欧美久久久| 视频在线观看一区二区三区| 啦啦啦 在线观看视频| 99在线人妻在线中文字幕| 99国产综合亚洲精品| а√天堂www在线а√下载| 他把我摸到了高潮在线观看| 亚洲国产看品久久| 天天躁狠狠躁夜夜躁狠狠躁| 色在线成人网| 男女做爰动态图高潮gif福利片 | 黄片大片在线免费观看| 丰满的人妻完整版| 国产男靠女视频免费网站| 久久人人精品亚洲av| 天天躁夜夜躁狠狠躁躁| 少妇粗大呻吟视频| 亚洲国产欧美日韩在线播放| 日本黄色视频三级网站网址| 黄色 视频免费看| 99久久人妻综合| 日本免费一区二区三区高清不卡 | 欧美不卡视频在线免费观看 | 窝窝影院91人妻| 丝袜美足系列| 欧美性长视频在线观看| 男男h啪啪无遮挡| 成人精品一区二区免费| 99国产精品一区二区三区| 动漫黄色视频在线观看| 一区二区三区激情视频| 精品国产超薄肉色丝袜足j| 精品国产超薄肉色丝袜足j| 大型黄色视频在线免费观看| 午夜a级毛片| 午夜福利在线免费观看网站| 久久人妻熟女aⅴ| 高清毛片免费观看视频网站 | 免费观看精品视频网站| 美女国产高潮福利片在线看| 午夜精品国产一区二区电影| 每晚都被弄得嗷嗷叫到高潮| 老司机在亚洲福利影院| 亚洲人成网站在线播放欧美日韩| 12—13女人毛片做爰片一| 亚洲伊人色综图| 日本欧美视频一区| 琪琪午夜伦伦电影理论片6080| 国产精品久久视频播放| 精品熟女少妇八av免费久了| 精品久久久久久电影网| 色综合欧美亚洲国产小说| av国产精品久久久久影院| 日本一区二区免费在线视频| 中亚洲国语对白在线视频| 亚洲人成电影免费在线| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲精品综合一区在线观看 | 免费不卡黄色视频| 亚洲国产中文字幕在线视频| 韩国av一区二区三区四区| 欧美 亚洲 国产 日韩一| 九色亚洲精品在线播放| ponron亚洲| 久久亚洲精品不卡| 国产一区二区激情短视频| cao死你这个sao货| 日本一区二区免费在线视频| 亚洲国产中文字幕在线视频| 麻豆一二三区av精品| 亚洲国产精品合色在线| 亚洲精品国产区一区二| 欧美日韩黄片免| 欧美人与性动交α欧美软件| 亚洲三区欧美一区| 久久欧美精品欧美久久欧美| 国产又爽黄色视频| 国产精品二区激情视频| 欧美日韩亚洲综合一区二区三区_| a级毛片在线看网站| 在线观看免费午夜福利视频| 久久久国产一区二区| 黄色怎么调成土黄色| 欧美人与性动交α欧美软件| 亚洲 欧美 日韩 在线 免费| 亚洲少妇的诱惑av| 1024香蕉在线观看| 国产av精品麻豆| 十八禁人妻一区二区| 极品人妻少妇av视频| 黑人猛操日本美女一级片| 国产1区2区3区精品| 精品福利观看| 成人国产一区最新在线观看| 精品一品国产午夜福利视频| 欧美日本中文国产一区发布| 电影成人av| 18美女黄网站色大片免费观看| 国产精品偷伦视频观看了| 成人三级做爰电影| av电影中文网址| 激情视频va一区二区三区| 久久久久亚洲av毛片大全| 日本 av在线| 一二三四社区在线视频社区8| 在线观看午夜福利视频| 黄色丝袜av网址大全| 老司机在亚洲福利影院| 99久久人妻综合| 欧美黑人欧美精品刺激| 久久精品成人免费网站| 免费久久久久久久精品成人欧美视频| 欧美日韩国产mv在线观看视频| 欧美一区二区精品小视频在线| 亚洲国产毛片av蜜桃av| 在线观看一区二区三区激情| 天天影视国产精品| 亚洲视频免费观看视频| 日韩高清综合在线| 色综合欧美亚洲国产小说| 欧美性长视频在线观看| 精品少妇一区二区三区视频日本电影| 好男人电影高清在线观看| 深夜精品福利| 99riav亚洲国产免费| 在线av久久热| 亚洲色图综合在线观看| 超碰97精品在线观看| 欧美老熟妇乱子伦牲交| 久久精品91无色码中文字幕| 国产极品粉嫩免费观看在线| 视频区图区小说| 首页视频小说图片口味搜索| 正在播放国产对白刺激| 亚洲av五月六月丁香网| 久久国产精品男人的天堂亚洲| 1024香蕉在线观看| 国产精品av久久久久免费| 日韩有码中文字幕| 黄色怎么调成土黄色| 中文亚洲av片在线观看爽| 一区二区日韩欧美中文字幕| 日韩欧美免费精品| 日韩高清综合在线| 性欧美人与动物交配| 又黄又粗又硬又大视频| 不卡一级毛片| 国产蜜桃级精品一区二区三区| 久久人妻福利社区极品人妻图片| 久久香蕉激情| 久久热在线av| 亚洲精品一卡2卡三卡4卡5卡| 欧美日本亚洲视频在线播放| 19禁男女啪啪无遮挡网站| 日韩高清综合在线| 校园春色视频在线观看| 欧美国产精品va在线观看不卡| 亚洲成人久久性| 欧美在线黄色| 黄色视频,在线免费观看| 久99久视频精品免费| 久久热在线av| 久久国产精品影院| 午夜a级毛片| 亚洲七黄色美女视频| 亚洲免费av在线视频| 午夜福利影视在线免费观看| 久久人人爽av亚洲精品天堂| 免费在线观看视频国产中文字幕亚洲| 人人妻,人人澡人人爽秒播| 亚洲av电影在线进入| 亚洲成a人片在线一区二区| 好看av亚洲va欧美ⅴa在| 超碰97精品在线观看| av在线播放免费不卡| 久久99一区二区三区| 国产亚洲欧美98| 久久久久国产精品人妻aⅴ院| 国产蜜桃级精品一区二区三区| 高清毛片免费观看视频网站 | 看黄色毛片网站| 欧美日韩亚洲高清精品| 女性生殖器流出的白浆| 操美女的视频在线观看| 免费日韩欧美在线观看| 国产深夜福利视频在线观看| 精品乱码久久久久久99久播| 久久99一区二区三区| 欧美中文日本在线观看视频| 久久 成人 亚洲| 亚洲全国av大片| 日本免费a在线| 午夜久久久在线观看| 黄色成人免费大全| 亚洲精品一二三| 久久天躁狠狠躁夜夜2o2o| www.熟女人妻精品国产| 变态另类成人亚洲欧美熟女 | 18禁观看日本| 嫩草影院精品99| 精品午夜福利视频在线观看一区| 欧美精品啪啪一区二区三区| 欧美日本亚洲视频在线播放| 在线免费观看的www视频| www.www免费av| 国产在线精品亚洲第一网站| 欧美日韩黄片免| 美女高潮到喷水免费观看| 69精品国产乱码久久久| svipshipincom国产片| 在线观看66精品国产| 免费在线观看完整版高清| 欧美成狂野欧美在线观看| 可以在线观看毛片的网站| 12—13女人毛片做爰片一| 国产亚洲欧美在线一区二区| 亚洲色图 男人天堂 中文字幕| 黄色丝袜av网址大全| 夜夜看夜夜爽夜夜摸 | 黄频高清免费视频| 日本vs欧美在线观看视频| 精品高清国产在线一区| 久久久久亚洲av毛片大全| 国产欧美日韩精品亚洲av| 国产av又大| 丁香六月欧美| 久久久久亚洲av毛片大全| 精品久久久久久久毛片微露脸| 免费在线观看黄色视频的| 热re99久久国产66热| 老熟妇仑乱视频hdxx| 亚洲精品国产精品久久久不卡| 视频区图区小说| 韩国av一区二区三区四区| 国产精品影院久久| 国产亚洲精品久久久久5区| 99久久综合精品五月天人人| 一本大道久久a久久精品| 国产亚洲精品第一综合不卡| 亚洲av第一区精品v没综合| 亚洲国产中文字幕在线视频| 丝袜在线中文字幕| 极品教师在线免费播放| 国内久久婷婷六月综合欲色啪| 老熟妇乱子伦视频在线观看| 国产又色又爽无遮挡免费看| a级毛片在线看网站| 久久热在线av| 亚洲伊人色综图| 日韩高清综合在线| 国产精品野战在线观看 | 亚洲欧美激情综合另类| 欧美激情久久久久久爽电影 | 亚洲欧美日韩无卡精品| 午夜免费激情av| netflix在线观看网站| 80岁老熟妇乱子伦牲交| 69精品国产乱码久久久| 久久精品亚洲精品国产色婷小说| 亚洲成人免费av在线播放| 日日干狠狠操夜夜爽| 国产精品久久电影中文字幕| 午夜激情av网站| 天堂√8在线中文| 女人被狂操c到高潮| 亚洲 欧美 日韩 在线 免费| 极品教师在线免费播放| 色尼玛亚洲综合影院| 少妇粗大呻吟视频| 大型av网站在线播放| 50天的宝宝边吃奶边哭怎么回事| 成人国产一区最新在线观看| 亚洲一码二码三码区别大吗| 日韩大尺度精品在线看网址 | 亚洲午夜精品一区,二区,三区| 国产一区二区三区综合在线观看| 大码成人一级视频| 男人舔女人的私密视频| 午夜影院日韩av| av超薄肉色丝袜交足视频| 怎么达到女性高潮| 在线观看一区二区三区激情| 欧美日韩视频精品一区| 精品卡一卡二卡四卡免费| 男女做爰动态图高潮gif福利片 | 乱人伦中国视频| 国产有黄有色有爽视频| svipshipincom国产片| 99久久久亚洲精品蜜臀av| 少妇裸体淫交视频免费看高清 | 免费搜索国产男女视频| xxxhd国产人妻xxx| 无遮挡黄片免费观看| 日韩大码丰满熟妇| 午夜日韩欧美国产| av欧美777| 一区在线观看完整版| 亚洲自偷自拍图片 自拍| 在线永久观看黄色视频| 99热国产这里只有精品6| 色婷婷久久久亚洲欧美| 91精品三级在线观看| 可以免费在线观看a视频的电影网站| 国产精品亚洲一级av第二区| 露出奶头的视频| 黄色丝袜av网址大全| 嫩草影视91久久| 中亚洲国语对白在线视频| 看片在线看免费视频| 在线观看免费视频网站a站| 别揉我奶头~嗯~啊~动态视频| 不卡av一区二区三区| www.999成人在线观看| 精品久久蜜臀av无| 麻豆久久精品国产亚洲av | 色综合婷婷激情| 免费av毛片视频| 女人被狂操c到高潮| 侵犯人妻中文字幕一二三四区| 五月开心婷婷网| 中文字幕最新亚洲高清| 最好的美女福利视频网| 国产熟女午夜一区二区三区| 国产精品99久久99久久久不卡| 久久中文字幕一级| 人人澡人人妻人| 一级a爱片免费观看的视频| 欧美人与性动交α欧美精品济南到| 色老头精品视频在线观看| 久久久久久久午夜电影 | 波多野结衣av一区二区av| 久久香蕉激情| 亚洲成人免费电影在线观看| 国产有黄有色有爽视频| 亚洲欧洲精品一区二区精品久久久| 日本五十路高清| 久久九九热精品免费| 国产精品一区二区精品视频观看| 黑丝袜美女国产一区| av国产精品久久久久影院| 国产精品久久久人人做人人爽| 美女 人体艺术 gogo| 久久香蕉精品热| 香蕉丝袜av| 人妻丰满熟妇av一区二区三区| 成人三级黄色视频| 久久性视频一级片| 欧美日韩av久久| 国产亚洲精品久久久久5区| 成人精品一区二区免费| 亚洲av成人av| 亚洲情色 制服丝袜| 美女午夜性视频免费| 三级毛片av免费| 亚洲精品在线美女| 久久天躁狠狠躁夜夜2o2o| 精品卡一卡二卡四卡免费| 欧美黑人欧美精品刺激| 狂野欧美激情性xxxx| 国产欧美日韩一区二区三区在线| 青草久久国产| 国产亚洲精品久久久久久毛片| 国产精品 国内视频| 亚洲午夜精品一区,二区,三区| 国产有黄有色有爽视频| 美女福利国产在线| 99国产精品免费福利视频| 91麻豆av在线| 午夜精品国产一区二区电影| 亚洲人成电影观看| 水蜜桃什么品种好| 日本a在线网址| 亚洲专区字幕在线| 99精国产麻豆久久婷婷| 午夜日韩欧美国产| 久久精品国产清高在天天线| 精品欧美一区二区三区在线| 成人国产一区最新在线观看| 欧美人与性动交α欧美精品济南到| 亚洲成人免费电影在线观看| 中国美女看黄片| 九色亚洲精品在线播放| 国产成人精品久久二区二区91| 91九色精品人成在线观看| videosex国产| 中文字幕最新亚洲高清| 日韩 欧美 亚洲 中文字幕| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三区在线| 欧美乱妇无乱码| 一二三四在线观看免费中文在| 香蕉丝袜av| 看黄色毛片网站| 亚洲熟妇熟女久久| 久久久久久久久免费视频了| 在线永久观看黄色视频| 午夜久久久在线观看| 搡老岳熟女国产| 欧美黄色淫秽网站| 女人高潮潮喷娇喘18禁视频| 无人区码免费观看不卡| ponron亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩中文字幕欧美一区二区| 一级片免费观看大全| 亚洲午夜精品一区,二区,三区| 免费女性裸体啪啪无遮挡网站| 9191精品国产免费久久| videosex国产| 看片在线看免费视频| 亚洲精品国产精品久久久不卡| 精品国产乱子伦一区二区三区| 免费在线观看完整版高清| 搡老乐熟女国产| 欧美午夜高清在线| 国产av一区在线观看免费| 黄色女人牲交| 色尼玛亚洲综合影院| 日韩欧美一区视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美日韩无卡精品| 女人被狂操c到高潮| 精品久久久久久,| 很黄的视频免费| 99国产极品粉嫩在线观看| 日韩一卡2卡3卡4卡2021年| 久久欧美精品欧美久久欧美| 国产成人一区二区三区免费视频网站| 自线自在国产av| 精品无人区乱码1区二区| 国产深夜福利视频在线观看| 久久这里只有精品19| 91成人精品电影| 欧美成人免费av一区二区三区| 日本 av在线| 国产高清国产精品国产三级| 88av欧美| 真人做人爱边吃奶动态| 视频区欧美日本亚洲| 亚洲午夜理论影院| 成在线人永久免费视频| 国产伦一二天堂av在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产乱人伦免费视频| 久久精品91无色码中文字幕| 久久香蕉精品热| 久久久国产成人免费| 波多野结衣高清无吗| 亚洲成国产人片在线观看| 精品国产一区二区三区四区第35| 亚洲男人的天堂狠狠| 在线永久观看黄色视频| 丰满迷人的少妇在线观看|