• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    端墻形狀對(duì)蒸汽渦輪效率的影響

    2011-12-02 01:39:20HoznedlMichalTajcLadislavBednarLukasDvorakDalibor
    關(guān)鍵詞:皮爾森米亞波黑

    Hoznedl Michal Tajc Ladislav Bednar Lukas Dvorak Dalibor

    (1.斯柯達(dá)動(dòng)力公司實(shí)驗(yàn)研究部,皮爾森,捷克;2.西波黑米亞大學(xué)動(dòng)力系統(tǒng)工程系,皮爾森,捷克)

    Nomenclature

    b/mm Chord

    c/(m?s-1) Absolutevelocity

    D/mm Diameter

    l/mm Length

    R/mm Radius

    w/(m?s-1) Relative velocity

    z Number of blades

    T,U/(°) Angles

    Δl/mm End-wall enlargement

    ΔL/mm Affected length

    X Admission ratio Sadm/Sfull

    Z Efficiency derived from temperatures

    k/(rad?s-1) Circumferential velocity

    Y Pressure loss coefficient

    Subscripts

    ax Axial

    h Hub

    is Isentropic

    s Static conditions,stator

    u Circumferential

    1 Inlet conditions

    2 Outlet conditions

    INTRODUCTION

    There are a number of theories for limiting end-wall loss in the turbine stage and optimizing flow in blade cascades.Many of these theories include shaping of the hub and tip of the end-wall.In the 1960s,several papers looked into the topic of optimization of the end-wall tip shape[1-2].These studies indicated that an efficiency increase ofΔZ> 1% might be expected in cascades of an aspect ratio of l/b<1.Owing to the more complex technology required for their manufacture,turbine cascades with end-wall shaping cannot enter into practice until several decades later.Progress in profile design optimization shows a reaction to 3-D flow and the limiting effects of end-wall loss results in the contemplation of new experiments with end-wall shaping of the stage tip end-wall.

    The topic of shaping the tip end-wall in both the axial and tangential directions were studied in Refs.[3-6].Theinitial theory concept uses shape modifications to influence the pressure distribution on the end-wall in order to reduce the effect of end-wall loss.Though the effect on the efficiency is insufficient compared with other approaches, no other papers focusing on this methodology are published.

    During the development of the steam turbine with the radial control stage following by axial stages and with the fully scalable partial admission,a discussion was conducted in terms of the reducing end-wall loss by the symmetrical rendition of shape modifications in both end-walls.VZLU (Aeronautical Test and Research Institute,Prague,Czech Republic)carried out measurements of profileloss in thebladecascade with prismatic and shaped blades.Fig.1 indicates the major reduction of profile-based loss after the shape of walls is modified.New profiles were originally designed for the radial stage,and these profiles were analyzed in the arrangement of the axial blade cascadein the VZLU wind tunnel[7].

    Fig.1 Effects of end-wall shaping on profile loss

    Computations were used to estimate the loss for radial design of the blade cascade[8].The result of this approach is shown in Fig.2.Based on the optimistic findings of the blade cascade measurements,an axial turbine blade cascade is designed with bilateral end-wall shaping of the endwalls.The West Bohemia University in Pilsen was commissioned to perform a computational study of 3-D flow in the impulse turbine stage with various arrangements of the end-walls[9-12].Theaim of both thecomputational and the experimental studies is to establish whether the findings of themeasurements in the bladecascade can also be applied in the axial turbine stage.

    Fig.2 Losses in original and new designs of blade cascade

    1 SELECTION OF COMPUTATIONAL MODEL

    Three variants of the blade channel in the stator section of the turbine stage are selected for the computational study.The same stage is used in experiments as a second stage of two-stage drum rotor in Section 3.1. The characteristic properties of these variants are indicated in Fig.3.All of thevariants operate with an identical aspect ratio and the identical setting of boundary conditions.The length of channel inlet and outlet are 40 and 50 mm,respectively.The effect of steam leakage through the seals is neglected.The inlet and outlet parameters are taken from experimental results on a steam turbine as well as geo-

    Fig.3 Characteristic properties of variants

    Fig.4 Evaluation planes

    2 EVALUATION OF COMPUTED AERODYNAMICS PROPERTIES

    Individual variants differ in the arrangement of the boundary sections of the stage.Therefore,assumptions may be drawn that in the mean radius wherea 2-D nature of flow prevails,the loss meets the expectations as to profile loss,and all flow parameters are largely similar in all thevariants.The vectors of absolute velocities at the mean radius of Variant 1 are shown in Fig.5.Maximum velocities are presented behind the leading edge of rotor blade in the profile of the blade suction side.The inlet and outlet velocities of the stage are approximately equal.The outlet angle T2 at a given circumferential velocity of k=377 rad/s is just below 90°.

    Fig.5 Vectors of absolute velocities at mean radius of Variant 1

    The distributed mean values of the axial velocity c2ax along the radial are shown in Fig.6.

    The enlargement of the inlet section causes a reduction of inlet velocity and an increase of static pressure due to the end-wall shaping results.Shape modifications of the end-walls lead to velocity increment in the boundary areas of the outlet from the stator blade cascade.The distribution of axial velocity at the inlet into the rotor blade cascade is wavy,which is nearly edged development.The reasons for this remain unclear.A more in-depth analysis of the numerical simulation is required to deliver an explanation.The mean valueof the axial velocity has a slight drop,and a reduction of static pressure is recorded.This is contradicted by the preservation of equality in mass flows.

    Fig.6 Distribution of velocity axial components

    The stage outlet shows the full velocity reduction at the wall area.The rotor cascade exhibits a much higher degree of end-wall loss than the stator section of the stage.The stator influence affects sectionΔL which is in relation to the chord b1,i.e.,ΔL 1/b1= 9%,whereas the rotor delivers as much asΔL2/b2=30%.Based on the preservation of the mass flow,the steam flow inhibition from the boundary sections of stage also indicates the certain improvement of flow conditions in the central section of the stage.Local increments of velocity lead to a local improvement in efficiency.The manner of loss evaluation used in computations does not allow the energy balance along the streamlinewhich is necessary for agood understanding of flow behavior.

    The distributions of static pressure P s1,P s2,P s3,P s4 in the individual stage planes are shown in Fig.7.The change of the pressure distribution character at the transition from Plane 2 to Plane 3 is completely inexplicable.Plane 2 has the pressure rising from the hub towards the tip,which meets the experiment findings in full.Pressure distribution in Plane 3 cannot be applied for computation of the stage response.Pressure changes at the stage outlet areirrelevant.The reason may be that Plane 3 is very close to the mixing plane surface and the flow is affected by averaging its parameters on this surface.The pressure distribution in Plane 4 is undoubtedly affected by the computational boundary condition, where the pressure is entered as a constant value for the whole of the plane.Please note that this assumption is in line with the findings of experiments conducted in various stages of power plants.

    The loss coefficient or the efficiency value is important in determining the stage or the cascade quality,respectively.The loss distribution in the stator cascade for theindividual variants is shown in Fig.8.Thebest results areindicated in Variant 2,i.e.,the stage with shaping of the end-wall tip.While the shaping of the hub and tip wall delivers an improvement in the boundary areas of the cascade,it has a negative influence on the central section of the channel.All the variants have the greatest loss at the end-walls.This is caused by the presence of the boundary layer and by the flow phenomena in thegiven cascade area.Variant 2 indicates zero loss in the center of the channel.This value is fictitious.All locations of the profile have boundary layers and wake.The zero loss can only be explained as an influx of energy from other cascade areas.

    Fig.7 Static pressuredistribution

    Fig.8 Stator loss

    The stage efficiency for particular stages is shown in Fig.9.According to an identical aspect ratio,the efficiency by using end-wall shaping at the tip and hub has an increase of 0.7%in comparison with standard shaped prismatic blades(Variant 1).When the shaping only affects the tip,the efficiency values increase by more than 0.4%. Considering the low chord value,the Reynolds number is also low(Re=2×105).The results are on the basis of numerical computation with the boundary conditions taken from experimental data.

    Fig.9 Stage efficiency

    The turbine stage efficiency of experiment depends on Re in this area.Thecomputation with Re=1×106and a prismatic blade shows an efficiency of Z=90.22% due to a higher Reynolds number.An experiment with an identical blade design and operation parameters indicates a maximum efficiency of Z= 89.52% when optimal u/cis=0.48.The loss values exceeding the calculation are attributed to the steam leakage through the stator seal.

    3 EXPERIMENTAL INVESTIGATION OF TURBINE STAGES

    3.1 Experimental stage f or drum rotor

    A two-stage impulse drum turbine rotor is designed to conducte the experiment.The first turbine stage uses end-wall shaping elements of the hub and tip end-walls.Fig.10 shows a crosssection view of a drum rotor with notable endwall shaping in the first stage.The basic characteristics of the blade cascades in both stages are shown in Table 1.

    Fig.10 Two-stage drum type turbine

    Table 1 Stage parameters

    These are impulse stages for subsonic flow.Instead of equalizing holes used in wheel discs,this design uses slots below the rotor blades.The inlet pressure is P1≈0.8 bar and the inlet temperature t1≈ 150°C.The typical pressure drop in the stages is P2/P1≈0.7.The search is for the optimum velocity ratio,u/cis,where the turbine is operated with the maximum efficiency.

    The measurement is taken at an experimental steam turbine designed for operation with the admission pressure under the barometric pressure.The energy is marred with a water brake.Due to the reason of measuring in lower pressure,Re is lower than that in real-life installations.During the low values of Re and the identical stage geometry,the efficiency is lower than that in real-life installations.

    3.2 Experimental results of drum rotor

    The results are focused on the first stage of experimental steam turbine with the end-wall shaping.Fig.11illustrates the dependence of efficiency with the velocity ratio.The efficiency value of the first stage amounts to 0.746 when u/cis=0.47.Re is 2.9×105at the maximum u/cisratio.Re at the numerical simulation described in the preceding section only reaches 2×105,so the efficiency is even slightly lower.However,the difference between this experiment and the numerical simulation(Fig.9,Variant 3)is caused by the fact that the numerical simulations do not include any modeling of the seals at all.Steam leakages play a crucial role,especially in short blade designs.Numerical simulations on higher levels of Re aremade.Experiments show a higher influence of Re compared with computations.

    The notable effect of Re on efficiency is proven by Fig.12.Operational reasons prevent the experiment from conducting major changes of Re.However,the evidence indicates that even a small scale of Re lead to an efficiency increase of more than 5%.Theinfluence of a low Re on endwall shaping cannot be proven by the measured results.

    Fig.12 Relationship between efficiency and Reynolds number

    The same chart also shows changes of u/c is,which is kept as much constant during the whole experiment if the experimental device allows.Minor differences are caused by experimental possibilities and they do not have a significant influence on the results.The Mach number is constant during both the measurements. Therefore,its impact on efficiency may be excluded as well.The influence of Re on efficiency is significant.The effect of the end-wall shaping is impossible to segregate from other effects in this measurement.

    3.3 Experimental stage f or disc rotor

    The structure of the experimental stage is shown in Fig.13.The basic technical specifications of the blade section are provided in Table 2.The geometry of the stage is the same as that in the numerical computations,Variant 2,therefore,without shroud seals.

    Fig.13 Geometry of disc rotor stage

    Table 2 Stage geometry

    3.4 Experimental results of disc rotor

    Compared with the reference blades without end-wall shaping,no further reduction of loss in end-wall shaped stage is confirmed.The observation of Fig.14 suggests that there even is a minor aggravation.The value of X=1 indicates the full admission of the stage.The value of Z Nmax means the maximal efficiency level reached by using the standard blades experiment.The modifications of the original old profiles focus on reducing theprofile and end-wall loss.The one end-wall shaping does not guarantee the stage efficiency improvement coming from the new profiles.However,the result includes the improvement of the stage reaction and the flow coefficient. The higher mass flow of steam through the stage allows increasing the output.The application of end-wall shaping in stages with the partial admission of steam is highly promising.A comparison of the efficiency to the typical stage design is shown in Fig.15.In total admission,the efficiency hardly has any improvement.However,in the case of partial admission,the efficiency increases by as much as 10%.

    Fig.14 Effects of end-wall shaping on steam turbine efficiency

    Fig.15 Comparison of stage efficiencies

    4 CONCLUSIONS

    (1)The numerical simulation of the impulse stage is performed with the same geometry as the experimental stage.

    (2)Three alternatives of end-wall shaping are tested by using CFD methods.

    (3)The computational study confirms the reduction of boundary loss in the turbinestageafter the application of end-wall shaping in the endwalls.Shaping the end-wall tip delivers better results than shaping both sides.

    (4)The difference between the efficiency determined by the experimental measurement and the numerical computations is caused by the significant influence of the shroud seals used in the experiments only.Numerical simulations do not exactly describe the influence of the Reynolds number.The experiments show a higher effect of Reynolds number than computations.

    (5)The rotor cascade exhibits a much higher degree of end-wall loss than the stator section of the stage.

    (6)The low value of the Reynolds number has a negative influence on efficiency.The effect of the Reynolds number on the end-wall shaping cannot be proven.

    (7)End-wall shaping play a rolein partial admission.In full admission,this design seems unsuitable for the future works.

    ACKNOWLEDGEMENT

    The authors of this paper wish to thank the Ministry of Industry and Trade of the Czech Republic for thefinancial support of Grant No.FT-TA2/037.

    [1] Dejc M E,Zarjankin A E,Filipov G A,et al.Methods of efficiency increasing for turbine stages with relatively short blades[J].Teploenergetika,1960,2:18-24.(in Russian)

    [2] Dejc M E. Technical aerodymics of gases[M].SNTL:Praha,1967.(in Czech)

    [3] Yan J,Gregory-Shmith D G,Ince N Z.Profiled end-wall design for a turbine nozzle row[C]//3rd European Turbomachinery Conference,C557/060/99.London,UK:Proffesional Engineering Publishing,1999:453-464.

    [4] Ingram G L,Gregory-Smith D G,Rose M G,et al.The effect of end-wall profiling on secondary flow and loss development in a turbine cascade[C]//ASME Torbo Expo.Amsterdam,The Netherlands:ASME,2002:GT-2002-30339.

    [5] Sauer H,Muller R,Vogeler K.Reduction of secondary flow losses in turbine cascades by leading edge modifications at the endwall[J]. Journal of Turbomachinery,Transactions of the ASME,2001,123:207-213.

    [6] Funazaki K,Endo T,Tanuma T.Reduction of secondary flow effects in a linear cascade by use of an air suction from the endwall[C]//ASME Torbo Expo.[S.l.]: ASME,1996:96-GT-51.

    [7] Benetka J,Valenta R.Measurement of cascade V S33RZ with meridional shaping[M]. Czech:VZLU,2003.(in Czech)

    [8] Stastny M,Babak M,Valenta R.Radial high velocity profile cascade for a steam turbine[C]//Colloquium Fluid Dynamic 2004.Prague: ASCR,2004:185-188.

    [9] Juza Z,Tajc L,Polansky J.Numerical simulation of the steam flowing through axial turbine stage with modification—Meridian shaping No.1[R].Research Work VZTP 0953,2004.(in Czech)

    [10]Juza Z,Tajc L,Polansky J.Numerical simulation of the steam flowing through axial turbine stage V S33—Prismatic blade [R]. Research Work VZTP0948,2004.(in Czech)

    [11]Juza Z,Tajc L,Polansky J.Numerical simulation of the steam flowing through axial turbine—Comparison of all computed alternatives of the stage V T2[R].Research Work V ZTP0961,2004.(in Czech)

    [12]Dvorak D.Comparison of turbine stage efficiency with relatively small l/b ratio with different shaping of the end walls[D].Pilsen,Czech Republic:Westbohemian University,2005-2006.(in Czech)

    猜你喜歡
    皮爾森米亞波黑
    波黑肉類進(jìn)口遠(yuǎn)超出口
    歐盟駐波黑維和部隊(duì)舉行軍演
    愿望實(shí)現(xiàn)之前
    殺狗
    數(shù)字翹楚皮爾森:忍過(guò)100多次整形的女軍人
    有夢(mèng)的青春不易“殘”
    殺狗
    米亞的心愿
    孩子(2001年12期)2001-05-10 05:38:42
    99精品在免费线老司机午夜| 欧美丝袜亚洲另类 | 久久国产乱子伦精品免费另类| 免费日韩欧美在线观看| 50天的宝宝边吃奶边哭怎么回事| 在线av久久热| 国产精品美女特级片免费视频播放器 | x7x7x7水蜜桃| 久久精品亚洲av国产电影网| 露出奶头的视频| 国产不卡一卡二| 老司机靠b影院| 侵犯人妻中文字幕一二三四区| 美女扒开内裤让男人捅视频| 麻豆av在线久日| 90打野战视频偷拍视频| 欧美午夜高清在线| 亚洲国产毛片av蜜桃av| 久久久久久免费高清国产稀缺| 丁香六月欧美| 精品久久久久久成人av| 久久香蕉激情| 午夜福利在线观看吧| 国内毛片毛片毛片毛片毛片| 美女高潮到喷水免费观看| 亚洲国产看品久久| 黄网站色视频无遮挡免费观看| 午夜91福利影院| 男女高潮啪啪啪动态图| 久久久久久久久久久久大奶| 免费在线观看完整版高清| 国产又色又爽无遮挡免费看| 99国产极品粉嫩在线观看| 变态另类成人亚洲欧美熟女 | 国产精品 欧美亚洲| 亚洲精品国产色婷婷电影| 操出白浆在线播放| 亚洲五月婷婷丁香| 一夜夜www| 久久香蕉国产精品| 在线永久观看黄色视频| 精品久久久久久,| 日韩免费av在线播放| 一级a爱视频在线免费观看| 色播在线永久视频| 国产99久久九九免费精品| 精品一区二区三区av网在线观看| 青草久久国产| 午夜亚洲福利在线播放| 国产欧美日韩精品亚洲av| 日韩欧美一区视频在线观看| 神马国产精品三级电影在线观看 | 午夜久久久在线观看| 亚洲成国产人片在线观看| 日本一区二区免费在线视频| 一级作爱视频免费观看| 久久天躁狠狠躁夜夜2o2o| 91成年电影在线观看| 亚洲精品美女久久av网站| 亚洲精品一二三| 精品国产一区二区三区四区第35| 国产av一区二区精品久久| 欧美精品啪啪一区二区三区| 亚洲精品国产色婷婷电影| 最近最新免费中文字幕在线| 国产精品av久久久久免费| 亚洲精品美女久久av网站| 国产精品一区二区三区四区久久 | 亚洲精品中文字幕一二三四区| 国产一区二区三区综合在线观看| 国产在线观看jvid| 男人舔女人的私密视频| 夜夜看夜夜爽夜夜摸 | 好男人电影高清在线观看| 国产亚洲精品久久久久久毛片| 国产熟女xx| 在线观看舔阴道视频| 精品国产乱子伦一区二区三区| 亚洲成国产人片在线观看| 女人精品久久久久毛片| 久久性视频一级片| 久久性视频一级片| 男人的好看免费观看在线视频 | 免费高清在线观看日韩| 国产成年人精品一区二区 | 日本一区二区免费在线视频| 欧美日韩视频精品一区| 亚洲五月天丁香| 人成视频在线观看免费观看| 亚洲黑人精品在线| 国产精品久久久久久人妻精品电影| 国产亚洲欧美在线一区二区| 日本精品一区二区三区蜜桃| 午夜a级毛片| 亚洲国产看品久久| 在线观看免费视频网站a站| 久久久久九九精品影院| 黄频高清免费视频| 免费高清在线观看日韩| 女生性感内裤真人,穿戴方法视频| 80岁老熟妇乱子伦牲交| 午夜a级毛片| 国产精品爽爽va在线观看网站 | 日日干狠狠操夜夜爽| 精品国产乱码久久久久久男人| 女生性感内裤真人,穿戴方法视频| 免费在线观看完整版高清| 久久精品国产清高在天天线| 1024香蕉在线观看| 88av欧美| 美女高潮喷水抽搐中文字幕| av视频免费观看在线观看| 亚洲精品在线观看二区| 亚洲全国av大片| 国产无遮挡羞羞视频在线观看| 欧美人与性动交α欧美软件| 757午夜福利合集在线观看| 无限看片的www在线观看| 国产亚洲精品一区二区www| 久久精品亚洲精品国产色婷小说| 怎么达到女性高潮| 国产精品一区二区免费欧美| 丰满人妻熟妇乱又伦精品不卡| 国产97色在线日韩免费| 视频区图区小说| 亚洲一卡2卡3卡4卡5卡精品中文| 人成视频在线观看免费观看| 免费搜索国产男女视频| 亚洲人成电影观看| 精品久久久久久成人av| 精品久久久精品久久久| 免费在线观看影片大全网站| 91麻豆精品激情在线观看国产 | 韩国av一区二区三区四区| 纯流量卡能插随身wifi吗| 国产野战对白在线观看| 国产xxxxx性猛交| 亚洲少妇的诱惑av| 国产精品国产高清国产av| 少妇粗大呻吟视频| 成人三级黄色视频| 在线永久观看黄色视频| 日韩欧美一区二区三区在线观看| 亚洲第一av免费看| 91精品三级在线观看| 亚洲九九香蕉| 久久久精品欧美日韩精品| 欧美日韩乱码在线| 久久99一区二区三区| 欧美日韩乱码在线| 黄色片一级片一级黄色片| 操美女的视频在线观看| 日本三级黄在线观看| 黄色a级毛片大全视频| 丁香六月欧美| 成人永久免费在线观看视频| 国产精品久久久久成人av| 岛国在线观看网站| 超碰97精品在线观看| 黄色女人牲交| 精品乱码久久久久久99久播| 亚洲精品美女久久av网站| 国产欧美日韩精品亚洲av| 五月开心婷婷网| 一个人免费在线观看的高清视频| 女生性感内裤真人,穿戴方法视频| 欧美日韩中文字幕国产精品一区二区三区 | 中出人妻视频一区二区| 色尼玛亚洲综合影院| 99精品在免费线老司机午夜| 国产成人精品久久二区二区免费| 在线国产一区二区在线| a级毛片黄视频| 亚洲欧美激情在线| 神马国产精品三级电影在线观看 | 午夜影院日韩av| 久久狼人影院| 国产av一区二区精品久久| 久久精品国产清高在天天线| 亚洲精品美女久久久久99蜜臀| 岛国视频午夜一区免费看| 免费高清视频大片| 亚洲人成77777在线视频| 亚洲人成电影观看| 三级毛片av免费| 亚洲第一欧美日韩一区二区三区| 99久久综合精品五月天人人| 久久影院123| 美女福利国产在线| 一本综合久久免费| 欧美不卡视频在线免费观看 | 99国产精品99久久久久| 天堂中文最新版在线下载| 69av精品久久久久久| 两性夫妻黄色片| 少妇的丰满在线观看| 久久影院123| 中文字幕av电影在线播放| 好看av亚洲va欧美ⅴa在| 一二三四在线观看免费中文在| 亚洲成人免费电影在线观看| 成人av一区二区三区在线看| 乱人伦中国视频| 亚洲美女黄片视频| 国产91精品成人一区二区三区| 国产成年人精品一区二区 | 老司机福利观看| 久久国产精品人妻蜜桃| 精品国产国语对白av| 亚洲va日本ⅴa欧美va伊人久久| 9热在线视频观看99| 不卡一级毛片| 免费少妇av软件| 亚洲av美国av| 亚洲性夜色夜夜综合| 亚洲一区二区三区欧美精品| 真人一进一出gif抽搐免费| 操美女的视频在线观看| 久久影院123| av国产精品久久久久影院| 国产伦一二天堂av在线观看| 欧美+亚洲+日韩+国产| 午夜免费观看网址| 99在线视频只有这里精品首页| 91大片在线观看| 色播在线永久视频| 精品福利观看| 亚洲成人久久性| 日韩成人在线观看一区二区三区| 亚洲国产精品999在线| 国产精品自产拍在线观看55亚洲| 麻豆国产av国片精品| 午夜久久久在线观看| 黄色a级毛片大全视频| 成人永久免费在线观看视频| 少妇粗大呻吟视频| 在线观看一区二区三区| 成年人免费黄色播放视频| 亚洲狠狠婷婷综合久久图片| 中国美女看黄片| 首页视频小说图片口味搜索| 最近最新中文字幕大全电影3 | 乱人伦中国视频| 一级a爱片免费观看的视频| 99国产精品免费福利视频| 免费高清在线观看日韩| a级毛片在线看网站| 69精品国产乱码久久久| 国产精品亚洲av一区麻豆| www.熟女人妻精品国产| 真人做人爱边吃奶动态| 夜夜看夜夜爽夜夜摸 | 国产精品久久久人人做人人爽| 免费高清视频大片| 老鸭窝网址在线观看| 操出白浆在线播放| 欧美中文综合在线视频| 久久精品国产综合久久久| 国产99白浆流出| 啦啦啦免费观看视频1| 国产黄a三级三级三级人| 国产精品久久视频播放| 性少妇av在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲午夜理论影院| 99久久久亚洲精品蜜臀av| 亚洲国产看品久久| 精品久久久久久久毛片微露脸| av网站免费在线观看视频| 亚洲五月婷婷丁香| 免费不卡黄色视频| 熟女少妇亚洲综合色aaa.| 怎么达到女性高潮| 国产精品久久久久成人av| 欧美精品亚洲一区二区| 国产亚洲精品久久久久久毛片| 亚洲国产欧美日韩在线播放| 黑人巨大精品欧美一区二区蜜桃| 男女之事视频高清在线观看| 一级片'在线观看视频| 激情视频va一区二区三区| 免费高清在线观看日韩| 成熟少妇高潮喷水视频| 亚洲欧美日韩另类电影网站| 亚洲成av片中文字幕在线观看| 国产欧美日韩综合在线一区二区| 伦理电影免费视频| 国产成+人综合+亚洲专区| 丰满饥渴人妻一区二区三| 老熟妇仑乱视频hdxx| 在线观看一区二区三区| 久久久久久大精品| 中亚洲国语对白在线视频| 精品一区二区三区四区五区乱码| 99久久综合精品五月天人人| 国产激情欧美一区二区| 国产精品久久久久成人av| 久久香蕉精品热| 欧美日本亚洲视频在线播放| 欧美黑人欧美精品刺激| 性色av乱码一区二区三区2| 制服诱惑二区| www国产在线视频色| 亚洲精品久久午夜乱码| 久久精品成人免费网站| 黄色片一级片一级黄色片| svipshipincom国产片| 午夜91福利影院| 在线观看66精品国产| 自线自在国产av| 亚洲欧美激情综合另类| 亚洲精品国产一区二区精华液| 黄色丝袜av网址大全| 亚洲专区字幕在线| 999精品在线视频| 国产男靠女视频免费网站| www.999成人在线观看| 母亲3免费完整高清在线观看| 男人操女人黄网站| 老司机福利观看| 国产精品亚洲一级av第二区| 亚洲激情在线av| 亚洲人成电影免费在线| www日本在线高清视频| 国产欧美日韩一区二区三| 久久久国产成人免费| 国产精品久久电影中文字幕| 女人爽到高潮嗷嗷叫在线视频| 亚洲人成网站在线播放欧美日韩| 日本五十路高清| а√天堂www在线а√下载| 极品人妻少妇av视频| 91大片在线观看| 曰老女人黄片| 99国产极品粉嫩在线观看| 1024视频免费在线观看| 亚洲色图综合在线观看| 伊人久久大香线蕉亚洲五| 亚洲国产精品一区二区三区在线| 成熟少妇高潮喷水视频| 日本黄色视频三级网站网址| 在线观看免费视频网站a站| 日韩三级视频一区二区三区| 日韩高清综合在线| av网站在线播放免费| 韩国av一区二区三区四区| 每晚都被弄得嗷嗷叫到高潮| 午夜免费观看网址| 日韩人妻精品一区2区三区| 夜夜夜夜夜久久久久| 国产成人免费无遮挡视频| 亚洲五月色婷婷综合| 天天躁狠狠躁夜夜躁狠狠躁| 淫秽高清视频在线观看| 国产熟女午夜一区二区三区| 国产日韩一区二区三区精品不卡| 色老头精品视频在线观看| 亚洲国产毛片av蜜桃av| 国产三级黄色录像| 久久久国产成人精品二区 | 亚洲国产精品999在线| 视频在线观看一区二区三区| 女人被狂操c到高潮| 亚洲av片天天在线观看| 欧美一区二区精品小视频在线| 一区福利在线观看| 精品国产乱码久久久久久男人| 在线观看免费日韩欧美大片| 欧美中文日本在线观看视频| 国产乱人伦免费视频| 国产三级黄色录像| 多毛熟女@视频| 999久久久精品免费观看国产| 老汉色av国产亚洲站长工具| 精品久久久久久电影网| 亚洲精品一卡2卡三卡4卡5卡| 90打野战视频偷拍视频| 国产高清videossex| 大型黄色视频在线免费观看| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩高清在线视频| 精品久久久久久,| 久久香蕉激情| 女同久久另类99精品国产91| 99精国产麻豆久久婷婷| av片东京热男人的天堂| 无限看片的www在线观看| 在线天堂中文资源库| 欧美日韩亚洲国产一区二区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久人人精品亚洲av| 国产精华一区二区三区| 亚洲午夜理论影院| 成人三级黄色视频| 欧美日韩乱码在线| 欧美一级毛片孕妇| 激情在线观看视频在线高清| 亚洲人成77777在线视频| 欧美大码av| 丁香欧美五月| 亚洲七黄色美女视频| 国产日韩一区二区三区精品不卡| 亚洲精品国产区一区二| 大陆偷拍与自拍| 亚洲情色 制服丝袜| 国产三级在线视频| 又大又爽又粗| 色综合婷婷激情| 80岁老熟妇乱子伦牲交| 99精品久久久久人妻精品| 国产伦一二天堂av在线观看| 久久天堂一区二区三区四区| 国产麻豆69| 免费日韩欧美在线观看| 国产欧美日韩一区二区三区在线| 成在线人永久免费视频| 黄色丝袜av网址大全| 成人av一区二区三区在线看| 欧美成人性av电影在线观看| 国产日韩一区二区三区精品不卡| 久久人人97超碰香蕉20202| 久久精品国产亚洲av高清一级| 欧美大码av| 无遮挡黄片免费观看| 色精品久久人妻99蜜桃| 91在线观看av| 欧美午夜高清在线| 99热国产这里只有精品6| 免费一级毛片在线播放高清视频 | 亚洲成人久久性| 啪啪无遮挡十八禁网站| 最近最新中文字幕大全电影3 | 久久久久久久久久久久大奶| 欧美大码av| 老司机靠b影院| 亚洲七黄色美女视频| 国产男靠女视频免费网站| 国产成人精品在线电影| 免费在线观看黄色视频的| 国产亚洲av高清不卡| 嫩草影视91久久| 久久国产精品男人的天堂亚洲| 99国产综合亚洲精品| √禁漫天堂资源中文www| 欧美亚洲日本最大视频资源| 亚洲七黄色美女视频| 午夜日韩欧美国产| 亚洲av成人av| 97超级碰碰碰精品色视频在线观看| 不卡av一区二区三区| 午夜免费观看网址| 中文字幕色久视频| 精品久久久久久,| 久久久久久亚洲精品国产蜜桃av| 日本黄色视频三级网站网址| 交换朋友夫妻互换小说| 一级毛片女人18水好多| 黄片小视频在线播放| 久久伊人香网站| 亚洲第一av免费看| 免费在线观看亚洲国产| 天天躁夜夜躁狠狠躁躁| 欧美日韩视频精品一区| 777久久人妻少妇嫩草av网站| 国产精品自产拍在线观看55亚洲| 91大片在线观看| 一a级毛片在线观看| 亚洲免费av在线视频| www.自偷自拍.com| 大香蕉久久成人网| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲 欧美 日韩 在线 免费| 老鸭窝网址在线观看| 高清欧美精品videossex| 精品乱码久久久久久99久播| 国产极品粉嫩免费观看在线| 精品福利观看| 色综合站精品国产| 欧美大码av| 亚洲成人免费av在线播放| 久久午夜亚洲精品久久| av电影中文网址| 80岁老熟妇乱子伦牲交| 少妇的丰满在线观看| 热re99久久精品国产66热6| 叶爱在线成人免费视频播放| 脱女人内裤的视频| 日韩欧美三级三区| 精品久久久久久久久久免费视频 | 99热只有精品国产| 国产精品久久电影中文字幕| 日本欧美视频一区| 免费不卡黄色视频| 国产野战对白在线观看| 精品久久蜜臀av无| 18禁观看日本| 一级作爱视频免费观看| 欧美日韩黄片免| 欧美成狂野欧美在线观看| 亚洲 欧美 日韩 在线 免费| 高清毛片免费观看视频网站 | 久热这里只有精品99| 国产精品亚洲av一区麻豆| 国产精品影院久久| 欧美人与性动交α欧美精品济南到| 国产亚洲精品综合一区在线观看 | 新久久久久国产一级毛片| 交换朋友夫妻互换小说| 国产精品电影一区二区三区| 在线视频色国产色| 一级作爱视频免费观看| 黄网站色视频无遮挡免费观看| 亚洲人成77777在线视频| 国产人伦9x9x在线观看| 久久久国产欧美日韩av| tocl精华| 一级a爱视频在线免费观看| 国产精品自产拍在线观看55亚洲| 黑人猛操日本美女一级片| 伊人久久大香线蕉亚洲五| 久久久久九九精品影院| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人av| 黄色a级毛片大全视频| 亚洲,欧美精品.| 丰满迷人的少妇在线观看| 男女做爰动态图高潮gif福利片 | 在线观看午夜福利视频| 成年版毛片免费区| 亚洲国产精品一区二区三区在线| 国产亚洲精品一区二区www| 嫩草影院精品99| 色综合婷婷激情| 久久久国产精品麻豆| 欧美大码av| 欧美黄色片欧美黄色片| 91老司机精品| 亚洲av成人av| 看片在线看免费视频| 免费高清在线观看日韩| 人人澡人人妻人| 欧美黑人欧美精品刺激| 国产人伦9x9x在线观看| 国产精品免费一区二区三区在线| 色综合欧美亚洲国产小说| 欧美在线黄色| 精品日产1卡2卡| 日韩精品免费视频一区二区三区| 女人精品久久久久毛片| 国产欧美日韩一区二区三区在线| 成年人黄色毛片网站| 精品国产超薄肉色丝袜足j| 日韩大码丰满熟妇| 亚洲 欧美 日韩 在线 免费| 午夜免费激情av| 中文亚洲av片在线观看爽| 成年人黄色毛片网站| 国产精品综合久久久久久久免费 | 国产高清激情床上av| svipshipincom国产片| 一级a爱片免费观看的视频| av网站在线播放免费| 午夜福利欧美成人| 一级片'在线观看视频| 国产又色又爽无遮挡免费看| 亚洲欧美精品综合久久99| 婷婷精品国产亚洲av在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成+人综合+亚洲专区| 淫秽高清视频在线观看| 亚洲中文日韩欧美视频| 99国产精品免费福利视频| 男女高潮啪啪啪动态图| 美女午夜性视频免费| 婷婷丁香在线五月| 巨乳人妻的诱惑在线观看| 99久久综合精品五月天人人| 亚洲美女黄片视频| 夜夜夜夜夜久久久久| 亚洲成人免费av在线播放| 18禁美女被吸乳视频| 国产成人免费无遮挡视频| 天堂动漫精品| 亚洲精品av麻豆狂野| 久久精品人人爽人人爽视色| 亚洲中文日韩欧美视频| 久久中文字幕人妻熟女| 免费日韩欧美在线观看| 精品国产乱码久久久久久男人| 精品久久久精品久久久| 久久人妻福利社区极品人妻图片| 欧美最黄视频在线播放免费 | 久久中文字幕人妻熟女| 亚洲欧美一区二区三区久久| 嫩草影院精品99| 搡老熟女国产l中国老女人| 天天添夜夜摸| 一本大道久久a久久精品| 久久久精品欧美日韩精品| 国产亚洲精品一区二区www| 欧美激情高清一区二区三区| 女性被躁到高潮视频| 久久精品国产亚洲av高清一级| 两性午夜刺激爽爽歪歪视频在线观看 | 丰满饥渴人妻一区二区三| 丝袜人妻中文字幕| 色哟哟哟哟哟哟| 免费在线观看黄色视频的| av中文乱码字幕在线| 国产单亲对白刺激| 国产成人系列免费观看| av天堂久久9| 长腿黑丝高跟| 高清欧美精品videossex| 电影成人av|