• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    纖維失效對(duì)陶瓷基復(fù)合材料準(zhǔn)靜態(tài)加卸載遲滯回線的影響

    2011-04-19 10:38:16李龍彪宋迎東
    關(guān)鍵詞:回線南京航空航天大學(xué)靜態(tài)

    李龍彪 宋迎東

    (南京航空航天大學(xué)能源與動(dòng)力學(xué)院,南京,210016,中國(guó))

    INTRODUCTION

    Ceramic materials possess high strength and modulus at elevated temperatures.But their use as structural components is severely limited because of their brittleness.Continuous fiber reinforced ceramic matrix composites not only exploit their attractive high-temperature strength but also reduce the propensity for catastrophic failure. These materials have already been implemented on some aero engines components[1].

    Upon quasi-static unloading and subsequent reloading,stress-strain hysteresis develops due to the frictional sliding which occurs along any debonded region[2-3].Li et al.[4-5]investigated the effects of interface debonding and fiber Poisson contraction on hysteresis loops when fiber/matrix interface was chemically bonded.It is found that the completely unloading strain and the area of the hysteresis loops decrease as the increase of interface debonded energy and interface frictional coefficient.Li and Song[6-7]developed approaches to estimate interface shear stress and interface frictional coefficient of ceramic composites from hysteresis loops.It is found that the interface shear stress and interface frictional coefficient degraded as cycle increases.And the degradation rate depends on the fatigue maximum stress,the fatigue load ratio and the cycle number.It should be noted that the models mentioned above do not take into account the effect of fiber failure on the hysteresis loops.When ceramic matrix composites are under quasi-static unloading/reloading, the fracture and intact fibers both slip in the interface debonded region,which affect the shape, area and the location of the hysteresis loops[8-10].

    In this paper,the effect of fiber failure on quasi-static unloading/reloading hysteresis loops is investigated by the micro mechanics approach. The hysteresis loops of different stresses with consideration of fiber failure have been compared with the cases which are not taken consideration of fiber failure.The effects of fiber strength and Weibull modulus on fiber failure,and the shape and area of the hysteresis loops have been analyzed.

    1 STRESS ANALYSIS

    Upon first loading to the fatigue maximum stressemax,it is assumed that matrix cracking and interface debonding occur.To analyze stress distributions in the fiber and the matrix,a unit cell is extracted from the ceramic matrix composites, as shown in Fig.1.The unit cell contains a single fiber surrounded by a cylinder of matrix.The fiber radius is rf,and the matrix radius is R(R= rf/Vf1/2). The length of the unit cell is L/2, which is just the half matrix crack space.The interface debonded length is Ld. On the matrix crack plane,fibers carry all the load(e/Vf), whereedenotes far field applied stress and Vfdenotes fiber volume fraction.The shear-lag model adopted by Budiansky-Hutchinson-Evans[11]is applied in the paper to perform the stress and strain calculations in the interface debonded region(x∈[0,Ld])and interface bonded region(x∈ [Ld, L/2]).

    where Vmdenotes the matrix volume fraction,fi the fiber/matrix interface shear stress,dthe BHE shear-lag parameter,efoandemodenote fiber and matrix axial stress in the interface bonded region, respectively.

    Fig.1 Unit cell of BHE shear-lag model

    When fiber fails,the fiber axial stress distribution in the interface debonded region and bonded region is

    where T is the intact fiber axial stress on the matrix crack plane.

    2 DAMAGE MODELS

    2.1 Matrix cracking

    The brittle nature of the matrix material and the possible formation of initial crack distribution throughout the microstructure suggest that a statistical approach to matrix crack evolution is warranted in ceramic matrix composites.The tensile strength of the brittle matrix is assumed to be described by the two-parameter Weibull distribution where the probability of the matrix failure,Pm is[12]

    whereemdenotes the tensile stress in the matrix, eR and m denote the matrix characteristic strength and matrix Weibull modulus,respectively.To estimate the instantaneous matrix crack space with increasing applied stress,we have

    where L denotes the instantaneous matrix crack space and Lsatthe saturation matrix crack space. Using Eqs.(5,6),the instantaneous matrix crack space is[12]

    2.2 Interface debonding

    When matrix crack propagates to the fiber/ matrix interface,it deflects along the fiber/matrix interface.It has been proved that the fracture mechanics approach is preferred to the shear stress approach for interface debonding[13].The fracture mechanics approach is adopted in the present analysis.The interface debonding criterion is[14]

    where F=πrf2e/Vfis the fiber load at the matrix crack plane,wf(0)the fiber axial displacement at the matrix crack plane,v(x)the relative displacement between fiber and matrix.The interface debonded length Ldis

    2.3 Fiber failure

    There are relatively fewer models for the fiber failure of ceramic matrix composites compared with analyses for damage mechanisms such as matrix cracking and interface debonding.As fibers begin to break,the loads dropped by the broken fibers must be transferred to the intact fibers in the cross-section.The GLS assumption neglects any local stress concentrations in the neighborhood of existing breaks,and is expected to be accurate when the interface shear stress is sufficiently low.

    The two-parameter Weibull model is adopted to describe fiber strength distribution,and the GLS assumption is used to determine the load carried by the intact and fracture fibers[15].

    where〈Tb〉denotes the load carried by the broken fibers,and P(T)the fiber failure volume fraction[15].

    where mfis the fiber Weibull modulus,and ec the fiber characteristic strength of a length Wcof the fiber[15].

    where lois the reference length,andeothe fiber reference strength of a length of loof the fiber.

    When fiber fractures,the fiber stress drops to zero at the break,and the stress in the fiber builds up through the stress transfer across the fiber/matrix interface shear stress.

    The sliding length lfrequired to build the fiber stress up to its previous intact value is then[15]

    The probability distribution f(x)of the distance x of a fiber broken from reference matrix crack plane,provided that a break occurs within a distance±lf,is constructed based on the Weibull statistics by Phoenix and Raj[16]

    Using Eqs.(13,15),the average stress carried by the broken fiber is

    Substituting Eq.(16)into Eq.(10)leads to the form of

    The load carried by the intact fibers T at the matrix crack plane for different applied stress can be obtained by solving Eq.(17),and then the fiber failure volume fraction can be obtained by substituting T into Eq.(11).When the load car-ried by the intact fibers reaches the maximum value,composites fail.The composite ultimate tensile strength eutsis

    3 HYSTERESIS THEORIES

    When ceramic matrix composites are under quasi-static loading,matrix cracking occurs first. As increasing the applied stress,the amounts of the matrix cracks increase. Partially matrix cracks deflect along fiber/matrix interface,and some matrix cracks propagate penetrate through fibers,which makes fiber fracture.The interface debonded length considering the effect of fiber failure is

    It is shown from the Eq.(19)that,when none of the fiber fails,T=e/Vfand Ldf= Ld. When Ldf<L/2,fiber/matrix interface partially debonds.When Ldf=L/2,fiber/matrix interface completely debonds.

    3.1 Interface partially debonding

    When interface partially debonds,the unit cell can be divided into interface debonded region (x∈ [0,Ldf])and interface bonded region(x∈[Ldf,L/2]).Upon unloading to e(emin<e<emax),the interface debonded region can be divided into interface counter slip region(x∈ [0,y]) and interface slip region(x∈ [y,Ldf]).The unloading interface counter slip length y is

    where TUdenotes the stress carried by the intact fibers at the matrix crack plane upon unloading, which satisfied the relationship of Eq.(21)

    Upon reloading to e,slip again occurs near the matrix crack plane over a distance z,which denotes a new slip region.The interface debonded region can be divided into new slip region(x∈ [0, z]),counter slip region(x∈ [z,y])and slip region(x∈ [y,Ldf]). The reloading new slip length z is

    where TRis the stress carried by the intact fibers at the matrix crack plane upon reloading,which satisfies the relationship of Eq.(23)

    where Tmsatisfies the relationship of Eq.(24).

    3.2 Interface completely debonding

    When fiber/matrix interface completely debonds,the unit cell can be divided into interface counter slip region(x∈ [0,y])and slip region(x∈ [y,L/2])upon unloading.The unloading interface counter slip length y is

    where TUsatisfies Eq.(21).

    Upon reloading,the unit cell can be divided into interface new slip region(x∈ [0,z]),interface counter slip region(x∈ [z,y])and slip region(x∈ [y,L/2]). The reloading new slip length z is

    where TRsatisfies Eq.(23).

    3.3 Stress-strain relationship

    When damage forms within the composite, the composite strain is determined from Eq.(27), which assumes that the composite strain is equivalent to the average strain in an undamaged fiber.

    By the fiber axial stress during unloading and subsequent reloading,the hysteresis loops of ceramic matrix composites can be determined.

    4 RESULTS AND DISCUSSIONS

    The ceramic composite system of SiC/ CAS[17]is used for the case study and its basic material properties are given by Vf= 38%,Ef=210 GPa,Em=95.5 GPa,rf=7.5μm,Tf=4×10-6/°C,Tm=5×10-6/°C,Δ F=-1 000°C,Yd=0.2 J/m2,fi=15 MPa.

    In the matrix statistical cracking model,the matrix cracking characteristic stresseRis derived as the Aveston-Cooper-Kelly(ACK)steady matrix cracking stress[18]

    where Ym is the matrix fracture energy.Beyerle et al.[17]conducted Chervon-notched flexure tests on the SiC/CAS and yielded the matrix fracture energy,Ym= 25 J/m2.The matrix characteristic strength can be derived by Eq.(28)and given by eR=226 MPa.

    The matrix crack density as a function of stress for the experimental data and present analysis are plotted in Fig.2, where the matrix Weibull modulus m is 5.The predicted results agree well with the experimental data.

    Beyerle et al.[17]conducted fracture mirror experiments of the pulled-out fibers and yielded fiber characteristic strength,ec= 2.0 GPa,fiber Weibull modulus,mf=3.6.The tensile strength eutspredicted by Eq.(18)is 514 MPa,while the experimental strength is 455 MPa.To efficiently model fiber failure process during tensile loading, the fiber characteristic strength is determined by substituting mfand experimental tensile strength into Eq.(18),andec=1.768 GPa.

    Fig.2 Matrix crack density versus stress of experimental measurement and theoretical prediction

    Fig.3 Effect of fiber failure whenemax=200 M Pa

    The hysteresis loops with and without consideration of fiber failure whenemax=200 M Pa are illustrated in Fig.3(a).At this maximum unloading stress, the fiber/matrix interface partially debonds,2Ldf/L=0.47,and the fiber failure volume fraction is low,P(T)=0.38%.The unloading interface counter slip length y increases as stress decreases until emin,at which the counter slip length y does not approach the interface debonding tip,2y(emin)/L=0.23(Fig.3(b)).As the fiber failure volume fraction is low and the completely unloading interface counter slip length accounts for a small proportion of matrix crack space,the hysteresis loops of the two cases mentioned above are close with each other(Fig.3 (a)).

    Fig.4 Effect of fiber failure whenemax=450 M Pa

    The hysteresis loops with and without consideration of fiber failure whenemax=450 MPa are illustrated in Fig.4(a).At this maximum unloading stress,the fiber/matrix interface completely debonds,and the fiber failure volume fraction is 28.4%. The completely unloading interface counter slip length with consideration of fiber failure reaches interface debonding tip at the unloading stress which is larger than the minimum stress,2y(e>emin)/L=1,however,the counter slip length without consideration of fiber failure reaches interface debonded tip at the minimum stress,2y(e=emin)/L=1(Fig.4(a)).The shape, area and location of the hysteresis loops with consideration of fiber failure are different from those without consideration of fiber failure.When the effects of fiber failure on hysteresis loops are considered,the strains at the maximum and minimum stress,and the area of the hysteresis loops are all increased(Fig.4(b)).

    The effects of fiber characteristic strength on the hysteresis loops and the unloading interface counter slip length whenemax=450 MPa are illustrated in Fig.5.The fiber failure volume fraction is 28.4% when ec=1.768 GPa,while the fiber failure volume fraction is 11% when ec=2.000 GPa.The increase of fiber failure volume fractions whenec=1.768 GPa makes the load carried by the intact fibers increase,which increases the unloading interface counter slip length y,the strains at the maximum and minimum stress and the area of the hysteresis loops.

    Fig.5 Effect of fiber characteristic strength

    The effects of fiber Weibull modulus on the hysteresis loops and the unloading interface counter slip length are illustrated in Fig.6.The fiber failure volume fraction is 28.4% when mf= 3.6,while the fiber failure volume fraction is 21.8% when mf= 4.The increase of fiber failurevolume fractions makes the load carried by the intact fibers increase,which increases the unload-ing interface counter slip length,the strains at the maximum and minimum stress and the area of the hysteresis loops.

    5 EXPERIMENT COMPARISONS

    Pryce and Smith[19]investigated the quasistatic unloading/reloading behavior of unidirectional SiC/CAS at room temperature.The hysteresis loops of the experimental data and the present analysis which considers the effect of fiber failure when emax=170,185,195 and 210 M Pa are shown in Fig.7.The material properties of SiC/CAS are given in Table 1.It is found that the hysteresis loops predicted by the present analysis agree well with the experimental data,which proves the efficiency of the present model.

    Fig.6 Effect of fiber Weibull modulus

    Fig.7 Quasi-static unloading/reloading hysteresis loops

    Table 1 Material properties of SiC/CAS ceramic matrix composites[19]

    6 CONCLUSIONS

    The effect of fiber failure on hysteresis loops under quasi-static unloading and subsequent reloading is investigated in the paper.As increasing the applied stress,the matrix crack space decreases,interface debonded length increases and the fiber failure volume fraction increases.The effect of fiber failure on hysteresis loops becomes obviously with the increase of the applied stress. The shape,area and location of hysteresis loops with consideration of fiber failure are different from those without consideration of fiber failure. The strains at the maximum and minimum stress of hysteresis loops,the area of the hysteresis loops all increase when fiber failure are taken into account.

    When the unloading stress is constant,the fiber failure volume fraction and hysteresis loops as a function of fiber characteristic strength are analyzed.It is found that the fiber failure probability decreases with an increase of fiber characteristic strength and the strains at the maximum and minimum stress,and the area of the hysteresis loops decreases with an increase of fiber characteristic strength.

    When the unloading stress is constant,the fiber failure volume fraction and hysteresis loops as a function of fiber Weibull modulus are analyzed.It is found that the fiber failure probability decreases with an increase of fiber Weibull modulus and the strains at the maximum and minimum stress,and the area of the hysteresis loops decreases with an increase of fiber Weibull modulus.

    [1] Naslain R.Design,preparation and properties of non-oxide CMCs for applicationin engines and nuclear reactors:an overview[J].Composites Science and Technology,2004,64(2):155-170.

    [2] Fantozzi G,Reynaud P.Mechanical hysteresis in ceramic matrix composites[J].Materials Science and Engineering,Part A: Structural Materials,2009, 521/522(15):18-23.

    [3] Mei H,Cheng L F.Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber preforms[J].Carbon,2009,47(4): 1034-1042.

    [4] Li Longbiao,Song Yingdong,Sun Zhigang.Influence of interface de-bonding on the fatigue hysteresis loops of ceramic matrixcomposites[J].Chinese Journal of Solids and Mechanics,2009,30(1):8-14. (in Chinese)

    [5] Li Longbiao,Song Yingdong,Sun Zhigang.Effect of fiberPoisson contraction on fatigue hysteresis loops of ceramic matrix composites[J].Journal of Nanjing University of Aeronautics and Astronautics, 2009,41(2):181-186.(in Chinese)

    [6] Li Longbiao,Song Yingdong.An approach to estimate interface shear stress of ceramic matrix composites from hysteresis loops[J].Applied Composite Materials,2010,17(3):309-328.

    [7] Li Longbiao,SongYingdong.Estimate interface frictional coefficient of ceramic matrix composites from hysteresis loops [EB/OL]. http://jcm. sagepub.com/content/early/2010/10/20/002199831 0381437.abstract,2010-10-27/2011-03.

    [8] Li Longbiao,Song Yingdong.Influence of fiber failure on fatigue hysteresis loops of ceramic matrix composites[J].Journal of Reinforced Plastics and Composites,2011,30(1):12-25.

    [9] Kun F,Herrmann H J.Damage development under gradual loading of composites[J].Journal of Materials Science,2000,35(18):4685-4693.

    [10]Yang B,Mall S.Cohesive-shear-lag model for cycling stress-strain behavior of unidirectional ceramic matrix composites[J].International Journal of Damage Mechanics,2003,12(1):45-64.

    [11]Budiansky B,Hutchinson J W,Evans A G.Matrix fracture in fiber-reinforced ceramics[J].Journal of Mechanics Physics and Solids,1986,34(2):167-189.

    [12]Curtin W A.Multiple matrix cracking in brittle matrix composites[J].Acta Metallurgica et Materialia, 1993,41(5):1369-1377.

    [13]Sun Y J,Singh R N.The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite[J].Acta Mater,1998,46(5): 1657-1667.

    [14]Gao Y,Mai Y,Cotterell B.Fracture of fiber-reinforced materials[J].Journal of Applied Mathematics and Physics(ZAM P),1988,39(4):550-572.

    [15]Curtin W A,Ahn B K,Takeda N.Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites[J].Acta Mater,1998,46 (10):3409-3420.

    [16]Phoenix S L,Raj R.Scalings in fracture probabilities for a brittle matrix fiber composite[J].Acta Metallurgica et Materialia,1992,40(11):2813-2828.

    [17]Beyerle D S,Spearing S M,Zok F W,et al.Damage and failure in unidirectional ceramic matrix composites[J]. Journal of the American Ceramic Society,1992,75(10):2719-2725.

    [18]Aveston J,Cooper G A,Kelly A.Single and multiple fracture[C]//Properties of Fiber Composites: Conference on Proceedings. England: National Physical Laboratory,IPC,1971:15-26.

    [19]Pryce A W,Smith P A.Matrix cracking in unidirectional ceramic matrix composites under quasi-static and cyclic loading[J].Acta Metallurgica et Materialia,1993,41(4):1269-1281.

    猜你喜歡
    回線南京航空航天大學(xué)靜態(tài)
    南京航空航天大學(xué)機(jī)電學(xué)院
    無接地極直流輸電線路金屬回線選型設(shè)計(jì)
    吉林電力(2022年1期)2022-11-10 09:20:24
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實(shí)驗(yàn)室
    靜態(tài)隨機(jī)存儲(chǔ)器在軌自檢算法
    ±800?kV特高壓直流金屬回線斷路器保護(hù)誤動(dòng)分析
    8字形載流方形回線的空間磁場(chǎng)分布
    機(jī)床靜態(tài)及動(dòng)態(tài)分析
    具7μA靜態(tài)電流的2A、70V SEPIC/升壓型DC/DC轉(zhuǎn)換器
    久久久国产成人免费| 天堂动漫精品| 亚洲av中文字字幕乱码综合| 日本 欧美在线| 身体一侧抽搐| 国产伦在线观看视频一区| 中文在线观看免费www的网站| 欧美xxxx性猛交bbbb| 老鸭窝网址在线观看| 国产三级黄色录像| 午夜免费成人在线视频| 免费人成在线观看视频色| 国模一区二区三区四区视频| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久九九精品二区国产| 欧美高清性xxxxhd video| 在线免费观看不下载黄p国产 | 精品国产三级普通话版| 男人舔奶头视频| 午夜福利高清视频| 日本黄大片高清| 国产极品精品免费视频能看的| 少妇的逼水好多| 别揉我奶头 嗯啊视频| 成年女人毛片免费观看观看9| 午夜精品久久久久久毛片777| 午夜福利在线观看吧| 日本a在线网址| 俄罗斯特黄特色一大片| 国产国拍精品亚洲av在线观看| 最新中文字幕久久久久| 午夜福利欧美成人| 每晚都被弄得嗷嗷叫到高潮| 欧美最新免费一区二区三区 | 久久精品人妻少妇| 日韩免费av在线播放| 91久久精品电影网| 变态另类成人亚洲欧美熟女| 国产精品乱码一区二三区的特点| 国产伦精品一区二区三区四那| 日韩欧美国产在线观看| 国产精品永久免费网站| 99热这里只有精品一区| 一级黄片播放器| 国产人妻一区二区三区在| 十八禁人妻一区二区| 久久久久国内视频| 色精品久久人妻99蜜桃| 搡老妇女老女人老熟妇| 乱人视频在线观看| 日韩欧美三级三区| 男女下面进入的视频免费午夜| 亚洲自拍偷在线| 久久精品人妻少妇| 精品不卡国产一区二区三区| 国产毛片a区久久久久| 看黄色毛片网站| 成人欧美大片| 天堂网av新在线| 夜夜躁狠狠躁天天躁| 午夜久久久久精精品| 级片在线观看| 精品久久久久久久久久久久久| 亚洲av电影不卡..在线观看| 一级av片app| 亚洲av电影不卡..在线观看| 中出人妻视频一区二区| 人妻久久中文字幕网| 人妻久久中文字幕网| 日本在线视频免费播放| 99热这里只有精品一区| bbb黄色大片| 最近在线观看免费完整版| 午夜免费激情av| 午夜福利视频1000在线观看| 一区二区三区免费毛片| 亚洲精品影视一区二区三区av| 日日干狠狠操夜夜爽| 少妇裸体淫交视频免费看高清| 偷拍熟女少妇极品色| 成年女人永久免费观看视频| 久久久久久国产a免费观看| 一二三四社区在线视频社区8| 有码 亚洲区| 综合色av麻豆| 免费大片18禁| 午夜亚洲福利在线播放| 久久6这里有精品| 精品免费久久久久久久清纯| 岛国在线免费视频观看| 欧美一区二区国产精品久久精品| 变态另类丝袜制服| 亚洲国产欧洲综合997久久,| 久久精品国产亚洲av香蕉五月| 日韩欧美精品v在线| av中文乱码字幕在线| 亚洲国产精品999在线| 丁香欧美五月| 久久人人精品亚洲av| 久久人人精品亚洲av| 美女免费视频网站| 大型黄色视频在线免费观看| 老熟妇仑乱视频hdxx| 窝窝影院91人妻| 51国产日韩欧美| 精品一区二区三区视频在线| 国产精品美女特级片免费视频播放器| 亚洲成av人片免费观看| 日本一二三区视频观看| 亚洲欧美日韩高清专用| 午夜激情福利司机影院| 夜夜夜夜夜久久久久| 亚洲精品乱码久久久v下载方式| 男人狂女人下面高潮的视频| 亚洲av不卡在线观看| 亚洲天堂国产精品一区在线| 看免费av毛片| 免费一级毛片在线播放高清视频| 在线观看舔阴道视频| 天堂av国产一区二区熟女人妻| 中文字幕av在线有码专区| 色综合婷婷激情| 老熟妇乱子伦视频在线观看| 亚洲第一区二区三区不卡| 悠悠久久av| 午夜福利高清视频| 国产三级在线视频| av欧美777| 国产精品免费一区二区三区在线| 深夜a级毛片| 久久精品国产亚洲av香蕉五月| 亚洲国产高清在线一区二区三| 在线观看66精品国产| 麻豆成人av在线观看| 成人欧美大片| 99在线人妻在线中文字幕| 国产乱人伦免费视频| 一区二区三区激情视频| 91久久精品电影网| 午夜福利18| 亚洲乱码一区二区免费版| 国产高清激情床上av| 精品午夜福利在线看| 久久久久久国产a免费观看| 在线观看美女被高潮喷水网站 | 两人在一起打扑克的视频| 特大巨黑吊av在线直播| 国产精品永久免费网站| 免费一级毛片在线播放高清视频| 熟妇人妻久久中文字幕3abv| 一级黄色大片毛片| 91午夜精品亚洲一区二区三区 | 国产野战对白在线观看| eeuss影院久久| 亚州av有码| 噜噜噜噜噜久久久久久91| 99久久无色码亚洲精品果冻| 毛片一级片免费看久久久久 | 日韩欧美三级三区| a级毛片a级免费在线| 在线观看美女被高潮喷水网站 | 国产单亲对白刺激| 亚洲男人的天堂狠狠| 怎么达到女性高潮| av专区在线播放| 国产亚洲精品av在线| 波野结衣二区三区在线| 午夜免费成人在线视频| 久久精品国产亚洲av香蕉五月| 亚洲精品色激情综合| 88av欧美| 免费大片18禁| 欧美乱妇无乱码| 女人被狂操c到高潮| 亚洲avbb在线观看| 丁香六月欧美| 特级一级黄色大片| 久久国产精品影院| 午夜免费成人在线视频| 欧美精品国产亚洲| 少妇裸体淫交视频免费看高清| 男插女下体视频免费在线播放| 欧美成狂野欧美在线观看| 首页视频小说图片口味搜索| 国产精品永久免费网站| 成人一区二区视频在线观看| 亚洲一区二区三区不卡视频| 国产乱人伦免费视频| 日韩人妻高清精品专区| 少妇人妻一区二区三区视频| 精品久久久久久久久亚洲 | 精品不卡国产一区二区三区| 久久精品91蜜桃| 欧美最新免费一区二区三区 | 国产私拍福利视频在线观看| 亚洲18禁久久av| 国产黄色小视频在线观看| 青草久久国产| 亚洲一区高清亚洲精品| a在线观看视频网站| 一级黄片播放器| 特级一级黄色大片| 美女高潮喷水抽搐中文字幕| 最新在线观看一区二区三区| 精品一区二区三区视频在线观看免费| 美女xxoo啪啪120秒动态图 | 亚洲av成人av| 久久99热6这里只有精品| 白带黄色成豆腐渣| 女生性感内裤真人,穿戴方法视频| 欧美色欧美亚洲另类二区| 久久久久国产精品人妻aⅴ院| 他把我摸到了高潮在线观看| 欧美黄色淫秽网站| 国产免费一级a男人的天堂| 免费看美女性在线毛片视频| 亚洲人成网站高清观看| 欧美日本亚洲视频在线播放| 久久午夜亚洲精品久久| 欧美绝顶高潮抽搐喷水| 在线观看一区二区三区| 亚洲人成电影免费在线| 婷婷精品国产亚洲av| 99在线人妻在线中文字幕| 婷婷丁香在线五月| 国产精品久久久久久亚洲av鲁大| 成年人黄色毛片网站| 99久久99久久久精品蜜桃| 一进一出好大好爽视频| 无人区码免费观看不卡| 国产午夜福利久久久久久| а√天堂www在线а√下载| 精品久久久久久久久久免费视频| 久久久久亚洲av毛片大全| 毛片一级片免费看久久久久 | 国产熟女xx| 国产精品久久久久久精品电影| 99在线视频只有这里精品首页| 在线观看舔阴道视频| 一进一出好大好爽视频| 精品午夜福利视频在线观看一区| 日韩人妻高清精品专区| 99riav亚洲国产免费| 午夜日韩欧美国产| 亚洲18禁久久av| 色av中文字幕| 亚洲精品一区av在线观看| 性色avwww在线观看| 亚洲国产日韩欧美精品在线观看| 国产精品,欧美在线| 久久久久性生活片| 三级男女做爰猛烈吃奶摸视频| 十八禁网站免费在线| 国产v大片淫在线免费观看| 91久久精品电影网| 俺也久久电影网| 熟妇人妻久久中文字幕3abv| 久久人人爽人人爽人人片va | 国产三级在线视频| 麻豆国产av国片精品| 婷婷亚洲欧美| 俄罗斯特黄特色一大片| 国产精品野战在线观看| 免费电影在线观看免费观看| 蜜桃久久精品国产亚洲av| 亚洲精品一区av在线观看| 亚洲成av人片免费观看| 99视频精品全部免费 在线| 欧美日韩乱码在线| 国产亚洲精品av在线| 国产高清视频在线观看网站| 九色国产91popny在线| 少妇人妻一区二区三区视频| 色视频www国产| 色哟哟哟哟哟哟| 99国产精品一区二区蜜桃av| 免费看光身美女| 久久精品综合一区二区三区| 免费在线观看日本一区| 国产91精品成人一区二区三区| 一级av片app| 永久网站在线| www.www免费av| 亚洲,欧美,日韩| 一二三四社区在线视频社区8| 亚洲美女搞黄在线观看 | 女同久久另类99精品国产91| 我要看日韩黄色一级片| 国产探花在线观看一区二区| 国产蜜桃级精品一区二区三区| 国产精品亚洲av一区麻豆| 我的老师免费观看完整版| 嫩草影院入口| 免费无遮挡裸体视频| 听说在线观看完整版免费高清| 成人美女网站在线观看视频| 欧美午夜高清在线| 成人亚洲精品av一区二区| 成人国产一区最新在线观看| 国产精品嫩草影院av在线观看 | 亚洲成人免费电影在线观看| 国产精品女同一区二区软件 | 全区人妻精品视频| 性色av乱码一区二区三区2| 亚洲欧美日韩高清在线视频| 国产精品一区二区三区四区久久| 亚洲第一欧美日韩一区二区三区| 人人妻,人人澡人人爽秒播| 精品欧美国产一区二区三| 白带黄色成豆腐渣| 成人午夜高清在线视频| 亚洲va日本ⅴa欧美va伊人久久| АⅤ资源中文在线天堂| 中文字幕免费在线视频6| 人人妻,人人澡人人爽秒播| 国产真实乱freesex| 又黄又爽又免费观看的视频| 国产高清有码在线观看视频| 日韩精品中文字幕看吧| 成人午夜高清在线视频| 激情在线观看视频在线高清| 欧美zozozo另类| 特级一级黄色大片| 搡老妇女老女人老熟妇| 欧美绝顶高潮抽搐喷水| 精品免费久久久久久久清纯| 一个人看视频在线观看www免费| 免费高清视频大片| 国内久久婷婷六月综合欲色啪| 人人妻,人人澡人人爽秒播| 亚洲成av人片免费观看| 欧美区成人在线视频| 亚洲aⅴ乱码一区二区在线播放| 9191精品国产免费久久| 午夜福利免费观看在线| 可以在线观看毛片的网站| 日韩欧美三级三区| 精品一区二区三区av网在线观看| 日韩欧美三级三区| 观看免费一级毛片| 在线观看一区二区三区| 别揉我奶头 嗯啊视频| 一a级毛片在线观看| 美女高潮的动态| 成人国产一区最新在线观看| 51国产日韩欧美| 老熟妇仑乱视频hdxx| 一本一本综合久久| 国产一级毛片七仙女欲春2| 日本一二三区视频观看| 999久久久精品免费观看国产| 亚洲av第一区精品v没综合| 午夜视频国产福利| 深夜精品福利| 精品人妻一区二区三区麻豆 | 99国产精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 日韩欧美国产在线观看| 五月伊人婷婷丁香| 精品午夜福利视频在线观看一区| 看黄色毛片网站| 亚洲av美国av| 十八禁国产超污无遮挡网站| 91麻豆精品激情在线观看国产| 99久久成人亚洲精品观看| 国产精品av视频在线免费观看| 国产精品亚洲av一区麻豆| 老熟妇仑乱视频hdxx| 禁无遮挡网站| 国产黄片美女视频| 欧美黑人巨大hd| 欧美激情久久久久久爽电影| 欧美成人a在线观看| .国产精品久久| 精品免费久久久久久久清纯| 激情在线观看视频在线高清| 精品久久久久久久末码| 亚洲人成网站在线播放欧美日韩| 日日干狠狠操夜夜爽| 天天一区二区日本电影三级| 国产精品久久久久久人妻精品电影| 欧美乱色亚洲激情| 听说在线观看完整版免费高清| 欧美高清成人免费视频www| or卡值多少钱| 中文资源天堂在线| 69人妻影院| 亚洲国产精品合色在线| 色播亚洲综合网| 国产白丝娇喘喷水9色精品| 日韩av在线大香蕉| 精品不卡国产一区二区三区| 真人一进一出gif抽搐免费| 国内精品美女久久久久久| 午夜福利视频1000在线观看| 一进一出抽搐gif免费好疼| 1024手机看黄色片| 老熟妇仑乱视频hdxx| 久久久色成人| 全区人妻精品视频| 午夜精品久久久久久毛片777| 日本免费一区二区三区高清不卡| 少妇人妻精品综合一区二区 | 欧美成狂野欧美在线观看| 亚洲一区二区三区色噜噜| 久久性视频一级片| 大型黄色视频在线免费观看| 日本黄色片子视频| 一区福利在线观看| 丰满人妻熟妇乱又伦精品不卡| 婷婷六月久久综合丁香| 淫妇啪啪啪对白视频| 精品午夜福利在线看| 美女被艹到高潮喷水动态| 美女黄网站色视频| 亚洲三级黄色毛片| 九九热线精品视视频播放| 欧美高清成人免费视频www| 美女xxoo啪啪120秒动态图 | 欧美成狂野欧美在线观看| 人妻夜夜爽99麻豆av| 国产真实乱freesex| 91午夜精品亚洲一区二区三区 | 国产探花极品一区二区| 亚洲五月天丁香| 精品不卡国产一区二区三区| 一级作爱视频免费观看| 欧美+亚洲+日韩+国产| 亚洲一区高清亚洲精品| 日本 av在线| 真实男女啪啪啪动态图| 亚洲av成人av| 搡老熟女国产l中国老女人| 男女之事视频高清在线观看| 欧美最新免费一区二区三区 | 成人精品一区二区免费| 久久精品影院6| 中文字幕高清在线视频| 男女之事视频高清在线观看| 看十八女毛片水多多多| 欧美乱妇无乱码| 亚洲 国产 在线| 日本撒尿小便嘘嘘汇集6| 婷婷色综合大香蕉| 黄色丝袜av网址大全| 欧美黄色片欧美黄色片| 丁香六月欧美| 嫩草影院新地址| 国产乱人伦免费视频| 久久性视频一级片| 男人舔奶头视频| 99久久精品国产亚洲精品| 色在线成人网| 在线播放国产精品三级| 天堂动漫精品| 亚洲一区二区三区不卡视频| 全区人妻精品视频| 欧美在线一区亚洲| 久久香蕉精品热| 日韩有码中文字幕| av中文乱码字幕在线| 亚洲av电影不卡..在线观看| 久久中文看片网| 啦啦啦观看免费观看视频高清| 久久久久久国产a免费观看| 搞女人的毛片| 久久午夜福利片| 一区二区三区高清视频在线| 99热这里只有是精品在线观看 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产单亲对白刺激| 久久精品国产清高在天天线| 窝窝影院91人妻| 超碰av人人做人人爽久久| 国产精品一区二区三区四区免费观看 | 中文资源天堂在线| 欧美黑人巨大hd| 人妻夜夜爽99麻豆av| aaaaa片日本免费| 欧美日韩黄片免| 久久久色成人| 国产爱豆传媒在线观看| 麻豆国产av国片精品| 亚洲电影在线观看av| 亚洲欧美清纯卡通| 亚洲一区二区三区色噜噜| 99在线视频只有这里精品首页| 精品一区二区三区人妻视频| 别揉我奶头~嗯~啊~动态视频| 国产高清视频在线播放一区| 真人一进一出gif抽搐免费| 一区二区三区高清视频在线| 欧美日韩福利视频一区二区| 午夜福利在线观看免费完整高清在 | 12—13女人毛片做爰片一| 久久99热6这里只有精品| 国产精品av视频在线免费观看| 精品国内亚洲2022精品成人| 18禁在线播放成人免费| 在线观看免费视频日本深夜| 高清毛片免费观看视频网站| av中文乱码字幕在线| 亚洲美女搞黄在线观看 | 久久久久久久久大av| 国产激情偷乱视频一区二区| 亚洲黑人精品在线| 成人av一区二区三区在线看| 人妻久久中文字幕网| 波多野结衣高清作品| 一本综合久久免费| 美女cb高潮喷水在线观看| 亚洲精品在线观看二区| 久久精品国产亚洲av天美| 精品久久国产蜜桃| 亚洲最大成人中文| 久久九九热精品免费| 国产三级在线视频| 国产aⅴ精品一区二区三区波| 色哟哟·www| 欧美不卡视频在线免费观看| 国产真实乱freesex| 一级a爱片免费观看的视频| 成人美女网站在线观看视频| 观看美女的网站| 中文亚洲av片在线观看爽| x7x7x7水蜜桃| 国产私拍福利视频在线观看| 国产精品不卡视频一区二区 | ponron亚洲| 首页视频小说图片口味搜索| 97超视频在线观看视频| 国产熟女xx| 午夜老司机福利剧场| 午夜福利在线在线| 又爽又黄a免费视频| 久久久精品欧美日韩精品| 精品不卡国产一区二区三区| 在线看三级毛片| 久久99热这里只有精品18| 国产欧美日韩精品一区二区| 久久亚洲真实| 国产三级中文精品| 直男gayav资源| 亚洲精品粉嫩美女一区| 白带黄色成豆腐渣| 少妇人妻精品综合一区二区 | 国产亚洲欧美98| 亚洲综合色惰| 亚洲国产日韩欧美精品在线观看| 嫁个100分男人电影在线观看| 精品人妻偷拍中文字幕| 丰满人妻熟妇乱又伦精品不卡| a级毛片免费高清观看在线播放| 欧美不卡视频在线免费观看| 性色avwww在线观看| 国产极品精品免费视频能看的| 国产人妻一区二区三区在| 欧美bdsm另类| 欧美潮喷喷水| 少妇裸体淫交视频免费看高清| 99视频精品全部免费 在线| 欧美丝袜亚洲另类 | а√天堂www在线а√下载| 麻豆久久精品国产亚洲av| bbb黄色大片| 亚洲精品一区av在线观看| 国产精品伦人一区二区| 男人舔女人下体高潮全视频| 乱码一卡2卡4卡精品| 亚洲av一区综合| 激情在线观看视频在线高清| 午夜激情欧美在线| 高清日韩中文字幕在线| 在线观看舔阴道视频| 99riav亚洲国产免费| 亚洲国产精品sss在线观看| 国产 一区 欧美 日韩| 免费看美女性在线毛片视频| 日本黄大片高清| 亚洲人成网站在线播| 国产三级黄色录像| 国产精品亚洲一级av第二区| 最新在线观看一区二区三区| 久久久久久久久大av| 免费一级毛片在线播放高清视频| 一级毛片久久久久久久久女| 在线十欧美十亚洲十日本专区| 日韩高清综合在线| 成人av一区二区三区在线看| 99热这里只有是精品在线观看 | 别揉我奶头 嗯啊视频| 有码 亚洲区| 国产精品国产高清国产av| 一本久久中文字幕| 99国产极品粉嫩在线观看| bbb黄色大片| 亚洲精品成人久久久久久| 丰满人妻熟妇乱又伦精品不卡| 国产av不卡久久| 内射极品少妇av片p| 午夜老司机福利剧场| 欧美+亚洲+日韩+国产| 欧美另类亚洲清纯唯美| 国产成年人精品一区二区| 啦啦啦韩国在线观看视频| 一个人免费在线观看电影| 小说图片视频综合网站| 给我免费播放毛片高清在线观看| 一进一出抽搐gif免费好疼| 欧美成人免费av一区二区三区| 丰满的人妻完整版| 99久久精品一区二区三区| 超碰av人人做人人爽久久| 亚洲电影在线观看av| 国内精品久久久久久久电影|