• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prussian blue analogue derived NiCoSe4 coupling with nitrogen-doped carbon nanofibers for pseudocapacitive electrodes

    2023-11-21 03:04:44GuohaoYangChengangPeiFangXuHoSeokParkXuYuHuanPang
    Chinese Chemical Letters 2023年11期

    Guohao Yang,Chengang Pei,Fang Xu,Ho–Seok Park,Xu Yu,Huan Pang

    a School of Material Science and Engineering,Guizhou Minzu University,Guiyang 550025,China

    b School of Chemical Engineering,Guizhou Minzu University,Guiyang 550025,China

    c Department of Chemical Engineering,College of Engineering,Sungkyunkwan University,Suwon-si,Gyeonggi-do 440-746,Republic of Korea

    d School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225002,China

    Keywords:Electrospinning Carbon nanofibers Supercapacitors Heteroatom doping Metal selenides

    ABSTRACT The design of pseudocapacitive materials by coupling transition metal compounds with a conductive carbon matrix is important for the high performance of supercapacitors.Herein,we construct the Prussian blue analogue derived nickel-cobalt selenides coupling with nitrogen-doped carbon nanofibers (NiCoSe4-NCNFs) by carbonization and selenization of polyacrylonitrile nanofibers.The effect of selenization and element N doping on the morphological structure and surface chemistry of NiCoSe4-NCNFs are evaluated.Due to the accelerated electrolyte ion diffusion,enlarged active surface area and the modified surface chemistry by the strong interaction at NiCoSe4/NCNFs interfaces,NiCoSe4-NCNFs show excellent capacitive behaviors in 1 mol/L KOH,and the specific capacitance is 1257 F/g at 1 A/g with a rate capability of 78% and cyclic stability of 82.9%.The Gibbs free energy of adsorption OH- is calculated by density functional theory to investigate the charge storage mechanism.This work offers a new strategy to construct the transition metal selenides/carbon nanofibers hybrids for high-performance supercapacitor devices.

    The combustion of fossil fuels results in serious environmental problems and the aim to get rid of the energy crisis is a global concern [1,2].Supercapacitors (SCs) own the merits of high-power density,long-term stability,and less susceptibility to overheating at high charge/discharge rates,which are one promising energy storage system to satisfy the energy demand [3–5].Pseudocapacitors (PCs) arise from the reversible redox reactions by the accommodation of charges at or near the electrode surface [6–9].However,the low energy density is still the dominant limitation of PCs in practical applications.The effort on developing conspicuous electrode materials is an effective strategy to enhance the energy density.

    Prussian blue analogue (PBA) as one member of metal-organic frameworks owns the merits of abundant porosity and uniform element distribution [10,11],and PBA-derived transition metal oxides(TMO) as pseudocapacitive electrode materials have attracted attention due to their rich faradic reaction and large specific surface area [12–14].To overcome their low electrical conductivity,the electronic structure modification of TMO by heteroatoms doping has been reported,such as sulfidation and phosphidation [15–17].Cubic NiS nanoframes and hollow nickel cobalt phosphate with nitrogen-doped carbon show improved capacitive behaviors[16,17].Recently,transition metal selenides (TMS) with excellent capacitive behaviors attract attention.Selenium has similar physical and chemical properties with sulfur and oxygen [18,19] and a larger atomic size than sulfur [20],which result in a smaller band gap and larger polarizability of TMS than TMO [21].The replacement of oxygen sites by selenide species is the primary motivation to explore pseudocapacitive materials.Furthermore,the introduction of a conductive matrix as the second functional component can increase the cyclic stability of electrode materials.

    Carbon-based nanomaterials (carbon nanotubes,graphene) have received extensive attention as conductive materials attributing to their high electrical conductivity [22–25].The hybrids by incorporating TMO with graphene,carbon nanotubes have been constructed to show the enhanced electrochemical performance,such as MnO2/graphene [5] and Co(OH)2/carbon nanotube [26].Onedimensional (1D) carbon nanofibers (CNFs) obtained from the electrospinning technique own large surface-volume ratios and effi-cient ion/electron transport [27–29].After stabilization and carbonization,CNFs with high porosity and the rough surface can expose more specific surfaces and accelerate the electrolyte ion diffusion.It was well known that the performance of electrode materials is strong relative to their morphological structure and chemical composition.Heteroatom-doped CNFs with excellent capacitive performance have been reported.The incorporation of heteroatoms into carbon materials can adjust the electronic structure to improve the electrochemical performance of SCs,such as N-doped CNFs [30] and P-doped CNFs [31].The hybridization of CNFs with TMS or TMO is an attractive strategy to construct the highly active materials to achieve excellent capacitive performance,such as NiO nanoparticles with N doped CNFs [32];CNFs wrapped NiS nanoparticles [33] and hollow Co3O4embedded CNFs [34].Therefore,the design of one-dimensional hybrid by coupling PBAderived bimetallic selenides with heteroatom N doping carbon is necessary to be explored as highly pseudocapacitive materials for SCs.

    Herein,we prepared the nickel-cobalt selenides coupled with nitrogen-doped carbon nanofibers (NiCoSe4-NCNFs)viathe selenization and carbonization of the electrospun NiCo PBA/polyacrylonitrile (PAN) nanofibers.The NiCoSe4nanoparticles and N-doped CNFs are the dominant pseudocapacitive materials.Due to the synergistic effect of porous 1D structure and the hybridization of bimetallic selenides with NCNFs,NiCoSe4-NCNFs exhibit excellent capacitive behaviors for SCs in 1 mol/L KOH,such as the high specific capacitance (1257 F/g),good rate capability (78%)and cyclic stability (82.9%).This work presents an effective design concept for constructing 1D bimetallic selenides with heteroatomdoped CNFs as promising pseudocapacitive materials for SCs.

    Fig.1a shows the schematic illustration of NiCoSe4-NCNFs by electrospinning,thermal activation and selenization approaches.The homogeneity of the polymer dispersion is an important factor to electrospun the uniformly distributed 1D nanofibers.The average size of NiCo-PBA is about 200 nm (Fig.S1 in Supporting information).The homogeneous dispersion of NiCo-PBA/PAN is obtained due to their good dispersibility in dimethylformamide(DMF).The well-aligned 1D nanofibers are obtained without forming the beads.The polymer is decomposed to ammonia gas at 800°C,which acts as the nitrogen source to construct the NCNFs.Finally,the NiCoSe4-NCNFs are obtained after the carbonization and selenization of NiCo-PBA/PAN nanofibers.

    Fig.1.(a) Schematic illustration of the preparation process of NiCoSe4-NCNFs.SEM images of (b) NiCo-NCNFs and (c) NiCoSe4-NCNFs.TEM images of (d) NiCo-NCNFs and (e) NiCoSe4-NCNFs.(f) HR-TEM image and (g) elemental mapping of NiCoSe4-NCNFs.

    The morphological structure of NiCoSe4-NCNFs is characterized by scanning electron microscopy (SEM).NiCo-PBA/PAN nanofibers exhibit raised surface,which is different from pristine PAN nanofibers (Fig.S2 in Supporting information).After the carbonization at 800 °C,the polymer nanofibers are decomposed into NCNFs (Fig.S2c) and NiCo-NCNFs (Fig.1b).NiCo-NCNFs show the cracked and collapsed structure of PBA nanocubes by the reduction of metal ions.Especially,the formation of metal selenides for NiCoSe4-NCNFs results in the rough surface morphology and the stable decoration of nanoparticles on or beneath the NCNFs surfaces (Fig.1c).

    As confirmed by transmission electron microscopy (TEM),NiCo-PBA nanocubes are evenly wrapped in PAN nanofibers for NiCo-PBA/PAN,which is different from the smooth surface of PAN nanofibers (Fig.S3 in Supporting information).The raised bump and rough surface are caused by embedding the PBA nanocubes beneath the surface of PAN nanofibers.After carbonization at 800 °C,the transparent phenomena for NiCo-NCNFs disappears attributing to the formation of small-sized NiCo species and nitrogen-doped carbon nanofibers (Fig.1d).The increased diameter of NiCoSe4-NCNFs is attributed to the formation of metal selenides on or beneath the surface of nanofibers (Fig.1e).The increased surface roughness and porosity of nanofibers are conductive to provide abundant pathways for fast ion diffusion.Furthermore,the high-resolution TEM image of NiCoSe4-NCNFs shows the interplanar spacing of 0.263 and 0.208 nm,corresponding to the (210)and (220) planes of NiCoSe4(Fig.1f),respectively.The energydispersive X-ray spectra (EDX) confirms the existence of Ni,Co,Se,N and C elements in Fig.S4 (Supporting information).The distribution of Ni,Co,Se,N and C elements is well-matched with the outline of NiCoSe4-NCNFs (Fig.1g),implying the successful construction of heteroatom N doping and the formation of metal selenides.

    The structure and crystallinity of NiCoSe4-NCNFs were confirmed by X-ray diffraction (XRD) in Fig.2a.The peak at 27° for NCNFs corresponds to the (002) plane of graphitic carbon [35],and the intensity is decreased for NiCoSe4-NCNFs due to the formation metal compounds.Meanwhile,the diffraction peaks of NiCo-NCNFs correspond to the typical planes of NiCo alloys [36].The peaks at 33.7°,37.1° and 43.4° for NiCoSe4-NCNFs are related to the (210),(211),and (220) planes of NiCoSe4(JCPDS No.29–1417).This result proves the successful construction of metal selenides during the activation treatment.The formation of defective sites after N doping and selenization was confirmed by Raman spectra in Fig.S5 (Supporting information),and a larger ID/IG ratio of NiCoSe4-NCNFs than that of NiCo-NCNFs and NCNFs implying more exposed surface area and active site for fast faradic reaction.

    Fig.2.(a) XRD patterns of NCNFs,NiCo-NCNFs,NiCoSe4-NCNFs.High-resolution XPS spectra of NiCoSe4-NCNFs,(b) Co 2p,(c) Ni 2p and (d) N 1s.

    The chemical composition of NiCoSe4-NCNFs was probed by X-ray photoelectron spectroscopy (XPS).NiCoSe4-NCNFs are composed of Ni,Co,Se,N and C elements (Fig.S6 and Table S1 in Supporting information).The deconvoluted peaks of Co 2p at 777.3 and 779.9 eV correspond to Co3+and Co2+of Co 2p3/2,and the peaks at 792.2 and 796.4 eV ascribe to the Co3+and Co2+of Co 2p1/2,accompanying the related satellite peaks (Fig.2b),respectively [37].The deconvoluted Ni 2p spectra show two peaks at 852.1 and 869.2 eV for Ni2+and two peaks at 854.7 and 871.8 eV for Ni3+in Fig.2c,respectively [38].For Se 3d spectra in Fig.S7(Supporting information),the peaks at 54.1,54.8 and 57.9 eV correspond to Se 3d5/2,Se 3d3/2and the oxidation state of selenides.The existent oxygen groups for NiCoSe4-NCNFs can be attributed to the surface oxidation by exposing sample under air conditions[39,40].In comparsion,the oxygen content for NiCoSe4-NCNFs is much lower than that of NiCo-NCNFs implying a high electrical conductivity for NiCoSe4-NCNFs,which is favorable for improving the capacitive performance.During the thermal activation process,the diffusion of electrons is from the metallic Ni/Co center to the non-metallic Se center to improve the synergistic effect in NiCoSe4composites [41].The formation of pyridinic-N and pyrrolic-N bond in implyies the successful incorporation of N into carbon (Fig.2d),which is further confirmed by C 1s spectra in Fig.S8 (Supporting information).The pyridinic and pyrrolic N have been proven as effective active sites for fast faradic reactions [42].The formation of NiCo selenides and N-doped carbon are favorable for improving the capacitive performance of NiCoSe4-NCNFs [43].

    The electrochemical behaviors of NiCoSe4-NCNFs were measured by cyclic voltammetry (CV) in 1 mol/L KOH by a threeelectrode configuration in Fig.3a.NiCoSe4-NCNFs own apparent redox peaks and large current density at 50 mV/s,indicating a highly reversible pseudocapacitive performance.As the scan rate increased from 5 mV/s to 100 mV/s,the symmetrical CV curves for NiCoSe4-NCNFs indicate the reversible redox reaction during the charge/discharge process (Fig.S9 in Supporting information).Meanwhile,NiCoSe4-NCNFs show higher redox peaks than that of NiCo-NCNFs,resulting from the formation of metal selenides as the dominant active sites for fast faradic reactions.The corresponding redox reaction during the charge-discharge process for NiCoSe4is typically presented as follows [44]:

    Fig.3.(a) CV curves at 50 mV/s,(b) GCD curves at 1 A/g,(c) rate capability,(d) cyclic stability and (e) Nyquist plots of NCNFs,NiCo-NCNFs and NiCoSe4-NCNFs.(f) The calculated b values by plotting log(sweep rate) vs.log(peak current).(g) The capacitive and diffusive contribution of NiCoSe4-NCNFs at different scan rates.(h) The geometryoptimized structure of CN-NiCoSe?before and after OH adsorbed at the active sites.

    Galvanostatic charge/discharge (GCD) curves were further carried out at various current densities,and the distorted symmetric GCD curves for NiCoSe4-NCNFs at 1 A/g imply their pseudocapacitive behavior in Fig.3b.The calculated specific capacitance of NiCoSe4-NCNFs (1257 F/g) is 2.1 and 7.9 times higher than that of NiCo-NCNFs (585 F/g) and NCNFs (168 F/g),respectively.The specific capacitance of NiCoSe4-NCNFs maintains a value of 980 F/g with a rate capability of 78% from 1 A/g to 20 A/g (Fig.S10 in Supporting information),which is larger than that of NiCo-NCNFs(70.8%) and NCNFs (55.6%) in Fig.3c.The stability of pseudocapacitive NiCoSe4-NCNFs is confirmed by GCD curves at 5 A/g for 5000 cycles in Fig.3d.The capacitance retention is 82.9% for NiCoSe4-NCNFs,which is much larger than that of NiCo-NCNFs (60.2%).The slow decay in specific capacitance for NiCoSe4-NCNFs can be ascribed to the effective accommodation of electrons on the active surface where the fast reversible redox reaction occurs.The excellent long-term stability of NiCoSe4-NCNFs is further confirmed by CV test for 5000 cycles at 100 mV/s (Fig.S11 in Supporting information).The kinetic behavior of NiCoSe4-NCNFs is evaluated by electrochemical impedance spectroscopy (EIS) in Fig.3e.And the equivalent series resistance (ESR) is obtained by the intercept of Nyquist plot in the high frequency,arising from the electrolyte resistance.The charge transfer resistance (Rct) for NiCoSe4-NCNFs(1.36Ω) is smaller than NiCo-NCNFs (3.2Ω) and NCNFs (2.14Ω).This result demonstrates that NiCoSe4-NCNFs have fast kinetic behaviors at the electrode/electrolyte interface due to the strong interfacial connection between NiCoSe4and NCNFs.

    The electrochemical reaction kinetics of NiCoSe4-NCNFs are studied by Dunn’s methods [45],and the charge storage mechanism can be divided into the capacitive and diffusive dominant process.Especially,the occurrence of faradic reaction at the electrode surface means that the capacitive contribution is dominant,and the diffusive contribution is dominant whereas the faradic reaction occurs inside the bulk electrode [46,47].Thebvalues of 0.5 and 1.0 imply the diffusion-controlled and capacitive-controlled processes as the related dominant charge storage mechanism.The capacitive contribution of NiCoSe4-NCNFs is studied by the redox peak current (i) with the related scan rate (v) [48].Thebvalue is 0.66 and 0.64 for the anodic and cathodic peaks of NiCoSe4-NCNFs in Fig.3f,indicating the dominant capacitive-controlled process.At 5 mV/s,the percentage of capacitive contribution for NiCoSe4-NCNFs is about 60.5%,which is dramatically increased to 86.2% at 100 mV/s (Fig.3g and Fig.S12 in Supporting information).As further confirmed by Trasatti’s method,the capacitive contribution is calculated to 62.3% for NiCoSe4-NCNFs by maximum surface capacitance divided by maximum total capacitance in Fig.S13 (Supporting information).These evidences confirm that the diffusive restriction can be hindered by coupling pseudocapacitive metal selenides with NCNFs.The capacitive-controlled mechanism for NiCoSe4-NCNFs with fast reversible faradic reactions is suitable for application in the high-power energy system.The charge storage mechanism of NiCoSe4-NCNFs was further elucidated by density function theory (DFT) calculation.The more negative energy of OH adsorption (Eads) predicts stronger binding at the active sites.TheEadsvalue of the simulated CN-NiCoSe?(-1.89 eV) is more negative than that of CN-NiCo?(-1.78 eV) and CN?(-0.75 eV) in Fig.3h and Fig.S14 (Supporting information),respectively.The simulated CN-NiCoSe?model would be the most dominant active site for reversible and fast charge transfer.

    The electrochemical performance of the assembled NiCoSe4-NCNFs||NiCoSe4-NCNFs supercapacitors was tested in 1 mol/L Na2SO4with the enlarged potential window of 1.5 V.Fig.4a shows the CV curves of the symmetric supercapacitor at 50 mV/s under different potentials,and the potential window of 1.5 V is finally chosen because of the appearance of electrolyte decomposition at 1.6 V.Fig.4b shows the CV curves of NiCoSe4-NCNFs||NiCoSe4-NCNFs supercapacitors at scan rates from 5 mV/s to 100 mV/s.The distorted rectangular shape of CV curves implies the good reversibility of NiCoSe4-NCNFs.The specific capacitance is 81 F/g at 0.5 A/g and the capacitance retention is about 58% from 0.5 A/g to 5 A/g in Fig.4c,which are both higher than those of NiCo-NCNFs (Fig.S15 in Supporting information).The ESR for NiCoSe4-NCNFs||NiCoSe4-NCNFs arises from the contact interface between electrode and electrolyte (Fig.S16 in Supporting information),and the calculatedRctvalue is 23.5Ω.The Ragone diagram of NiCoSe4-NCNFs||NiCoSe4-NCNFs is calculated from the GCD curves in Fig.4d and the maximum energy density can be delivered to 58.6 Wh/kg with the power density of 864 W/kg.

    Fig.4.(a) CV curves of NiCoSe4-NCNFs||NiCoSe4-NCNFs supercapacitors at 50 mV/s under different potentials.(b) CV,(c) GCD curves at 1.5 V and (d) Ragone plot of NiCoSe4-NCNFs||NiCoSe4-NCNFs.

    Herein,NiCoSe4-NCNFs were prepared by electrospinning,carbonization and selenization.The rough surface and crosslinked structure are helpful for electrolyte ion diffusion and increase the active surface area.Meanwhile,the surface chemistry is modified by forming metal selenides and heteroatoms N doping into CNFs.Due to the synergistic effect of morphological structure and chemical composition,NiCoSe4-NCNFs show excellent capacitive behavior of SCs.The charge storage mechanism of NiCoSe4-NCNFs is demonstrated by Dunn’s method and DFT calculation.This work provides a guideline for constructing the coupling of the PBAderived material with carbon nanofibers for high performance of SCs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The work is supported by the Science and Technology Foundation of Guizhou Provincial Department of Education,China (No.KY[2018]147).X.Yu also thanks the Six Talent Peaks Project of Jiangsu Province (No.XCL-103) and “High-End Talent Project” of Yangzhou University.We also acknowledge the technical support at the Testing Center of Yangzhou University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108152.

    岛国毛片在线播放| 黄片无遮挡物在线观看| 91久久精品国产一区二区三区| xxx大片免费视频| 亚洲色图综合在线观看| 日韩免费高清中文字幕av| 亚洲精品成人av观看孕妇| 在线观看人妻少妇| 制服丝袜香蕉在线| 在线观看三级黄色| 国产精品久久久久久精品电影小说| 国产在线一区二区三区精| 欧美日本中文国产一区发布| 90打野战视频偷拍视频| 大香蕉久久网| 久久久久久人人人人人| av在线老鸭窝| 亚洲成av片中文字幕在线观看 | 大片免费播放器 马上看| 性色avwww在线观看| 亚洲精品日本国产第一区| av不卡在线播放| 国产精品久久久久久精品电影小说| 侵犯人妻中文字幕一二三四区| 亚洲精品456在线播放app| 久久人人97超碰香蕉20202| 乱码一卡2卡4卡精品| 亚洲三级黄色毛片| h视频一区二区三区| 免费在线观看完整版高清| 大香蕉久久网| 肉色欧美久久久久久久蜜桃| 欧美精品一区二区大全| 在线观看免费日韩欧美大片| 日韩不卡一区二区三区视频在线| 女人精品久久久久毛片| 国产一区二区在线观看日韩| 精品亚洲乱码少妇综合久久| 免费黄网站久久成人精品| 狠狠精品人妻久久久久久综合| 国产色爽女视频免费观看| 尾随美女入室| 亚洲欧美成人精品一区二区| 欧美激情极品国产一区二区三区 | 少妇人妻久久综合中文| 欧美精品一区二区大全| 久久久国产精品麻豆| 汤姆久久久久久久影院中文字幕| 国产一区二区在线观看av| 高清av免费在线| 高清不卡的av网站| 国产老妇伦熟女老妇高清| 午夜福利影视在线免费观看| 制服人妻中文乱码| av片东京热男人的天堂| 欧美亚洲 丝袜 人妻 在线| 成人毛片a级毛片在线播放| 日韩伦理黄色片| 精品久久国产蜜桃| 免费观看性生交大片5| 日本与韩国留学比较| 在线观看人妻少妇| 国产成人av激情在线播放| 香蕉丝袜av| 久久精品久久久久久久性| 亚洲国产av新网站| 国产色婷婷99| 欧美日韩视频高清一区二区三区二| 亚洲人成77777在线视频| 免费人妻精品一区二区三区视频| 丁香六月天网| 亚洲精品国产色婷婷电影| 国产一区二区激情短视频 | 免费黄网站久久成人精品| 九色成人免费人妻av| 看免费成人av毛片| 在线 av 中文字幕| 丰满少妇做爰视频| 一边摸一边做爽爽视频免费| 一边摸一边做爽爽视频免费| 亚洲欧美成人综合另类久久久| 青春草视频在线免费观看| 国产综合精华液| 大话2 男鬼变身卡| 妹子高潮喷水视频| 大码成人一级视频| 不卡视频在线观看欧美| 热99国产精品久久久久久7| 成人手机av| 午夜影院在线不卡| 啦啦啦视频在线资源免费观看| 大话2 男鬼变身卡| 精品99又大又爽又粗少妇毛片| 日韩av免费高清视频| 女性生殖器流出的白浆| 少妇人妻精品综合一区二区| 精品一区二区免费观看| 国产伦理片在线播放av一区| 春色校园在线视频观看| 午夜av观看不卡| 久久精品熟女亚洲av麻豆精品| 在线观看免费高清a一片| 伊人亚洲综合成人网| 久久精品国产鲁丝片午夜精品| 91久久精品国产一区二区三区| 国产熟女欧美一区二区| 国产成人欧美| 多毛熟女@视频| 精品国产露脸久久av麻豆| 国产一级毛片在线| 夫妻午夜视频| 久久久久久久久久人人人人人人| 性色av一级| 丰满乱子伦码专区| 肉色欧美久久久久久久蜜桃| 晚上一个人看的免费电影| √禁漫天堂资源中文www| 免费女性裸体啪啪无遮挡网站| 国产爽快片一区二区三区| av天堂久久9| 成人毛片60女人毛片免费| 新久久久久国产一级毛片| 观看美女的网站| 国产永久视频网站| 在线观看一区二区三区激情| 久久 成人 亚洲| 大香蕉久久成人网| 亚洲人成网站在线观看播放| 亚洲四区av| 女人精品久久久久毛片| 亚洲成色77777| 国产精品久久久久久久久免| 国产精品一区二区在线不卡| 亚洲一码二码三码区别大吗| 涩涩av久久男人的天堂| 嫩草影院入口| 国产精品无大码| av视频免费观看在线观看| 99久国产av精品国产电影| 菩萨蛮人人尽说江南好唐韦庄| 不卡视频在线观看欧美| 欧美丝袜亚洲另类| 91久久精品国产一区二区三区| 国产亚洲精品久久久com| 视频区图区小说| www.av在线官网国产| 飞空精品影院首页| 国产精品女同一区二区软件| 1024视频免费在线观看| 成年女人在线观看亚洲视频| 美国免费a级毛片| 五月伊人婷婷丁香| 国产一区二区三区综合在线观看 | 久久久久久久久久成人| 麻豆乱淫一区二区| 久久久精品94久久精品| 国产福利在线免费观看视频| 少妇精品久久久久久久| 丰满少妇做爰视频| 亚洲国产精品专区欧美| 看十八女毛片水多多多| 晚上一个人看的免费电影| 亚洲国产毛片av蜜桃av| 黄色配什么色好看| 人人妻人人澡人人爽人人夜夜| 国产白丝娇喘喷水9色精品| 亚洲成av片中文字幕在线观看 | 纯流量卡能插随身wifi吗| 咕卡用的链子| 国产激情久久老熟女| 国产极品天堂在线| 人人妻人人爽人人添夜夜欢视频| 热re99久久精品国产66热6| 观看美女的网站| 成人国产麻豆网| 你懂的网址亚洲精品在线观看| 天天影视国产精品| a 毛片基地| av天堂久久9| av女优亚洲男人天堂| 中文字幕免费在线视频6| 黄色 视频免费看| 亚洲国产成人一精品久久久| 成年av动漫网址| 久久精品国产鲁丝片午夜精品| 涩涩av久久男人的天堂| 秋霞伦理黄片| 亚洲av综合色区一区| 91精品伊人久久大香线蕉| 五月玫瑰六月丁香| 天天躁夜夜躁狠狠久久av| 尾随美女入室| 九九爱精品视频在线观看| 又黄又粗又硬又大视频| 免费久久久久久久精品成人欧美视频 | 高清欧美精品videossex| 少妇的逼好多水| 欧美精品一区二区免费开放| 看十八女毛片水多多多| 又黄又爽又刺激的免费视频.| 国产 精品1| 日本爱情动作片www.在线观看| 精品一区二区三区四区五区乱码 | 精品卡一卡二卡四卡免费| 午夜激情久久久久久久| 蜜臀久久99精品久久宅男| 亚洲精品美女久久久久99蜜臀 | 午夜老司机福利剧场| 国产国拍精品亚洲av在线观看| 国产极品天堂在线| 人人妻人人澡人人爽人人夜夜| 国产成人精品一,二区| 国产日韩欧美视频二区| 久久久久久久精品精品| 亚洲美女视频黄频| 欧美精品人与动牲交sv欧美| 99re6热这里在线精品视频| 国产爽快片一区二区三区| 欧美国产精品va在线观看不卡| 中文字幕最新亚洲高清| 亚洲国产av新网站| 精品人妻偷拍中文字幕| 精品人妻一区二区三区麻豆| 欧美国产精品va在线观看不卡| 亚洲av电影在线观看一区二区三区| 亚洲国产av新网站| av网站免费在线观看视频| 中国美白少妇内射xxxbb| 内地一区二区视频在线| 久久久久网色| 91在线精品国自产拍蜜月| 日韩中文字幕视频在线看片| 亚洲激情五月婷婷啪啪| 90打野战视频偷拍视频| 午夜视频国产福利| 精品99又大又爽又粗少妇毛片| 久久久久网色| 亚洲,一卡二卡三卡| 亚洲av福利一区| 日本与韩国留学比较| 中文字幕人妻丝袜制服| 色5月婷婷丁香| 免费黄频网站在线观看国产| 韩国高清视频一区二区三区| 亚洲欧美清纯卡通| 国产成人av激情在线播放| xxx大片免费视频| av免费观看日本| 久久久久久久久久久久大奶| 女人久久www免费人成看片| 亚洲精品久久成人aⅴ小说| 丝瓜视频免费看黄片| 日韩 亚洲 欧美在线| 性色avwww在线观看| 国产成人av激情在线播放| 国产国拍精品亚洲av在线观看| 免费播放大片免费观看视频在线观看| 男女啪啪激烈高潮av片| 欧美日韩综合久久久久久| 深夜精品福利| 一区二区日韩欧美中文字幕 | 免费人成在线观看视频色| 精品99又大又爽又粗少妇毛片| 在线免费观看不下载黄p国产| 一级毛片我不卡| 黑人欧美特级aaaaaa片| 少妇的逼好多水| 99久久中文字幕三级久久日本| 91国产中文字幕| 天天躁夜夜躁狠狠久久av| 一级毛片黄色毛片免费观看视频| 欧美人与善性xxx| 日韩精品免费视频一区二区三区 | h视频一区二区三区| videos熟女内射| 久久久久久久国产电影| 性色av一级| 少妇人妻精品综合一区二区| 老司机亚洲免费影院| 在线观看www视频免费| 国产片特级美女逼逼视频| 18禁在线无遮挡免费观看视频| 在线观看美女被高潮喷水网站| 男女边吃奶边做爰视频| 久久久久视频综合| 极品人妻少妇av视频| 看非洲黑人一级黄片| 街头女战士在线观看网站| 亚洲精品乱码久久久久久按摩| 亚洲欧美精品自产自拍| 99国产综合亚洲精品| 看十八女毛片水多多多| 日韩,欧美,国产一区二区三区| 亚洲欧美成人精品一区二区| 久久这里有精品视频免费| tube8黄色片| 97在线人人人人妻| 精品99又大又爽又粗少妇毛片| 妹子高潮喷水视频| 天堂俺去俺来也www色官网| 久久久久精品性色| 日韩 亚洲 欧美在线| 18禁国产床啪视频网站| 永久网站在线| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩一区二区三区精品不卡| 最后的刺客免费高清国语| 欧美3d第一页| 男人添女人高潮全过程视频| 秋霞伦理黄片| 免费看不卡的av| 日韩在线高清观看一区二区三区| 国产午夜精品一二区理论片| 欧美变态另类bdsm刘玥| 亚洲精品久久成人aⅴ小说| 亚洲国产色片| 精品一区二区三区视频在线| 国产亚洲精品久久久com| av不卡在线播放| 女性被躁到高潮视频| 人妻少妇偷人精品九色| 国产 精品1| 久久久久久久亚洲中文字幕| 插逼视频在线观看| 日本午夜av视频| 中国国产av一级| 国产精品一区www在线观看| 老女人水多毛片| videosex国产| 看非洲黑人一级黄片| 91精品国产国语对白视频| 精品国产国语对白av| 99久久精品国产国产毛片| 亚洲欧美中文字幕日韩二区| 亚洲五月色婷婷综合| 欧美丝袜亚洲另类| 成年av动漫网址| 久久久a久久爽久久v久久| 少妇精品久久久久久久| 秋霞伦理黄片| 人人妻人人爽人人添夜夜欢视频| 看免费成人av毛片| 欧美日韩综合久久久久久| 日本-黄色视频高清免费观看| 国产成人精品久久久久久| 男女下面插进去视频免费观看 | 国精品久久久久久国模美| 精品卡一卡二卡四卡免费| 婷婷色综合www| 最近的中文字幕免费完整| 国产69精品久久久久777片| 飞空精品影院首页| 精品亚洲成a人片在线观看| 国产精品久久久av美女十八| 亚洲精品久久成人aⅴ小说| 尾随美女入室| 人人妻人人澡人人爽人人夜夜| 精品国产一区二区三区久久久樱花| 香蕉丝袜av| 婷婷色麻豆天堂久久| 最黄视频免费看| 亚洲综合色惰| 夫妻午夜视频| 一区二区三区四区激情视频| 最后的刺客免费高清国语| 国产精品一区www在线观看| 在线观看www视频免费| 亚洲av在线观看美女高潮| 成年女人在线观看亚洲视频| 人人妻人人爽人人添夜夜欢视频| videosex国产| 男的添女的下面高潮视频| 男人操女人黄网站| 七月丁香在线播放| av一本久久久久| 美女福利国产在线| 丝袜脚勾引网站| 中文字幕制服av| 亚洲第一av免费看| 中国美白少妇内射xxxbb| 久久女婷五月综合色啪小说| 满18在线观看网站| 成人手机av| 少妇的丰满在线观看| 久久ye,这里只有精品| 91精品伊人久久大香线蕉| 久久久久网色| 香蕉精品网在线| 成人综合一区亚洲| 免费大片黄手机在线观看| 满18在线观看网站| 国产熟女午夜一区二区三区| xxx大片免费视频| 久久青草综合色| www日本在线高清视频| 蜜桃国产av成人99| 久久国产精品男人的天堂亚洲 | 亚洲一级一片aⅴ在线观看| 制服人妻中文乱码| 婷婷色综合www| 婷婷成人精品国产| 亚洲国产看品久久| 大香蕉久久网| 亚洲一区二区三区欧美精品| 日本vs欧美在线观看视频| 成人影院久久| 久久国内精品自在自线图片| 久久精品久久久久久久性| 国产成人精品一,二区| 免费看光身美女| 伊人亚洲综合成人网| 日韩制服骚丝袜av| 国产视频首页在线观看| 美国免费a级毛片| 女的被弄到高潮叫床怎么办| 久久这里有精品视频免费| 免费高清在线观看日韩| 国产极品天堂在线| 精品久久蜜臀av无| 91精品国产国语对白视频| 麻豆精品久久久久久蜜桃| 亚洲第一av免费看| 亚洲成色77777| 成人手机av| 欧美另类一区| 又黄又粗又硬又大视频| 99久久综合免费| 日韩一区二区三区影片| 国产色婷婷99| 国产av码专区亚洲av| 美女主播在线视频| 国产亚洲最大av| 国产精品嫩草影院av在线观看| 国产爽快片一区二区三区| 尾随美女入室| 国产精品 国内视频| 成人国语在线视频| 毛片一级片免费看久久久久| 99热这里只有是精品在线观看| 美女中出高潮动态图| 99视频精品全部免费 在线| 26uuu在线亚洲综合色| 国产综合精华液| 日韩视频在线欧美| 日本wwww免费看| 黄网站色视频无遮挡免费观看| 成人综合一区亚洲| 国产av码专区亚洲av| 亚洲美女视频黄频| 久久99热这里只频精品6学生| 亚洲精品成人av观看孕妇| 亚洲国产看品久久| 亚洲欧美一区二区三区黑人 | 天天操日日干夜夜撸| 少妇的丰满在线观看| 咕卡用的链子| 久久精品国产鲁丝片午夜精品| 国产在线免费精品| 69精品国产乱码久久久| 成人漫画全彩无遮挡| 免费黄色在线免费观看| 一区二区日韩欧美中文字幕 | 91aial.com中文字幕在线观看| 精品少妇黑人巨大在线播放| 不卡视频在线观看欧美| 欧美精品一区二区免费开放| 搡老乐熟女国产| 久久久久久久亚洲中文字幕| 久久久久久伊人网av| 久久久久国产精品人妻一区二区| av有码第一页| 国产精品三级大全| 天天躁夜夜躁狠狠躁躁| 纵有疾风起免费观看全集完整版| 综合色丁香网| 巨乳人妻的诱惑在线观看| freevideosex欧美| 国产综合精华液| 国产精品蜜桃在线观看| 女性生殖器流出的白浆| 99热网站在线观看| 又黄又粗又硬又大视频| 久久国产精品男人的天堂亚洲 | 国精品久久久久久国模美| 精品99又大又爽又粗少妇毛片| videosex国产| 99久久中文字幕三级久久日本| 99久久精品国产国产毛片| 精品国产一区二区三区四区第35| 欧美精品一区二区大全| 欧美少妇被猛烈插入视频| 麻豆乱淫一区二区| 亚洲在久久综合| 亚洲欧洲国产日韩| 少妇人妻精品综合一区二区| 亚洲欧美精品自产自拍| 一二三四中文在线观看免费高清| 亚洲丝袜综合中文字幕| 亚洲国产av影院在线观看| 麻豆精品久久久久久蜜桃| 国产精品久久久久久久电影| 视频中文字幕在线观看| 日韩精品免费视频一区二区三区 | 国产免费视频播放在线视频| 精品亚洲成a人片在线观看| 永久免费av网站大全| 亚洲国产精品一区三区| 女的被弄到高潮叫床怎么办| 大陆偷拍与自拍| 午夜久久久在线观看| 久久精品久久久久久久性| 五月开心婷婷网| 一本色道久久久久久精品综合| 在线 av 中文字幕| 亚洲欧美成人精品一区二区| 国产一区二区在线观看日韩| 人妻人人澡人人爽人人| 久久这里有精品视频免费| 日本av免费视频播放| 99九九在线精品视频| 午夜福利乱码中文字幕| 午夜av观看不卡| 夜夜骑夜夜射夜夜干| 欧美变态另类bdsm刘玥| 婷婷色综合大香蕉| 又黄又粗又硬又大视频| 国产成人午夜福利电影在线观看| 中文字幕人妻熟女乱码| 亚洲四区av| 欧美+日韩+精品| 亚洲av.av天堂| 国产精品99久久99久久久不卡 | 菩萨蛮人人尽说江南好唐韦庄| 男人爽女人下面视频在线观看| 欧美+日韩+精品| 爱豆传媒免费全集在线观看| 久久久久国产精品人妻一区二区| 免费大片黄手机在线观看| 韩国高清视频一区二区三区| 亚洲国产日韩一区二区| 国产一区亚洲一区在线观看| 99热6这里只有精品| 免费av不卡在线播放| 欧美少妇被猛烈插入视频| 中文字幕亚洲精品专区| 国产免费一级a男人的天堂| 日韩成人av中文字幕在线观看| 国产亚洲精品第一综合不卡 | videossex国产| 久久久欧美国产精品| 极品人妻少妇av视频| 在线免费观看不下载黄p国产| 色94色欧美一区二区| 久久久精品94久久精品| 高清毛片免费看| 天天躁夜夜躁狠狠久久av| 午夜福利视频精品| 少妇被粗大的猛进出69影院 | 欧美另类一区| 高清在线视频一区二区三区| 视频在线观看一区二区三区| 丝袜美足系列| kizo精华| 亚洲精品色激情综合| 女的被弄到高潮叫床怎么办| 亚洲av欧美aⅴ国产| 大片免费播放器 马上看| 蜜桃在线观看..| 亚洲精品色激情综合| 18禁动态无遮挡网站| 国产精品 国内视频| 最后的刺客免费高清国语| 亚洲性久久影院| 久久人人爽人人爽人人片va| 内地一区二区视频在线| 丝袜人妻中文字幕| 亚洲av免费高清在线观看| 九草在线视频观看| 丰满乱子伦码专区| tube8黄色片| 少妇人妻 视频| 欧美3d第一页| 日韩人妻精品一区2区三区| 一本久久精品| 大香蕉久久网| 亚洲情色 制服丝袜| 日韩电影二区| 成人国产av品久久久| 美女大奶头黄色视频| 午夜福利影视在线免费观看| 在线天堂中文资源库| 亚洲精品国产色婷婷电影| 亚洲第一av免费看| 极品人妻少妇av视频| 国产精品久久久久久久久免| freevideosex欧美| 中文乱码字字幕精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 欧美性感艳星| 80岁老熟妇乱子伦牲交| 在线观看三级黄色| 丁香六月天网| 国产一区二区在线观看av| 欧美日韩亚洲高清精品| 一区二区三区精品91| 最近的中文字幕免费完整| 制服丝袜香蕉在线| 午夜福利影视在线免费观看| 国产白丝娇喘喷水9色精品| 亚洲精品久久午夜乱码| 熟女av电影| 久久ye,这里只有精品| 人妻 亚洲 视频| 国产男女内射视频| 国产又爽黄色视频|