• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    羥烷基胺功能化離子液體吸收SO2的量子化學(xué)計(jì)算

    2010-12-12 02:42:06李學(xué)良陳潔潔陳祥迎李培佩
    物理化學(xué)學(xué)報(bào) 2010年5期
    關(guān)鍵詞:王麗娜合肥工業(yè)大學(xué)建宇

    李學(xué)良 陳潔潔 羅 梅 陳祥迎 李培佩

    (合肥工業(yè)大學(xué)化學(xué)工程學(xué)院,可控化學(xué)與材料化工安徽省重點(diǎn)實(shí)驗(yàn)室,合肥 230009)

    Ionic liquids(ILs)have attracted a great deal of interest in various fields[1-10],due to their outstanding characteristics such as negligible vapor pressure and stability.One of the most important properties is that ILs could be tailored and assembled by changing and adjusting the structures of their cations and anions, offering a key way in designing functional ILs for cyclic absorbents.Therefore,ILs can be the candidate solvents to realize the particular function for absorption,desorption,and separation of sulfur dioxide(SO2).The new ILs will provide a solution to solve the pollution problem of SO2from flue gas.Some ILs have been synthesized and studied for absorbing and desorbing SO2,including guanidinium[11-12],imidazolium[13-15]and ammonium[16]systems.Wu et al.[11]found that the molar absorption ratio of SO2:TMGL reached 1.7 while tetramethylguanidium lactate (TMGL)was exposed to pure SO2gas.Anderson et al.[15]reported that 1-n-hexyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide([hmim][Tf2N])and 1-n-hexyl-3-methylpyridinium bis-(trifluoromethyl-sulfonyl)imide([hmpy][Tf2N])dissolved large amounts(up to 85%(molar fraction,x))of SO2.Yuan and co-workers[16]synthesized and studied nine kinds of ammonium ILs with high solubility of SO2at ambient pressure.

    Owing to the interaction between ILs and SO2,the variation of IL structures and physicochemical properties occurred with the absorption,including charge transfer interaction,viscosity etc. Except for the preparation and absorption studies,some researchers have also paid attention to studying the interaction between ILs and SO2and the absorption mechanism.Ando et al.[17]reported that the Raman spectrum of 1-butyl-3-methylimidazolium bromide(BMIBr)-SO2clearly indicated a specific charge transfer interaction involving SO2and the halide.Barrosse-Antlle et al.[13]indicated that absorption of SO2caused a decrease in viscosity of 1-ethyl-3-methylimidazolium bis(trifluoromethanesufonyl)imide.Huang et al.[14]reported that the 1-butyl-3-methylimidazolium [BMIM]+and TMG cation-based ILs could physically absorb 1-2 mol SO2per mole of IL reversibly at ambient pressure and room temperature as excellent solvents.The results reported by Wu et al.[11]suggest that the TMGL can absorb SO2by both physical and chemical absorptions.Some researchers investigated novel IL for absorption/desorption in extensive fields, such as the poly(ionic liquid)[18],supported IL membranes[19],and combination with IL and porous materials[20-21],etc.

    Theoretical calculation and simulation have provided an important opportunity[22-24]to study SO2absorption.Several excellent works have been reported with theoretical calculations for guanidinium and imidazolium cations performed mostly by molecular dynamics(MD)simulations.Ando et al.[17]investigated BMIBr-SO2by MD simulations,indicating the potential application of cations with substituents like—NH2,—NHR,and—NR2groups,as an efficient gas removal agent.Siqueira et al.[25]reported the MD results that the absorption of SO2with BMIBr resulted in the phase change from crystal to liquid with relatively low viscosity and high conductivity.Wang et al.[26]used a combination of ab initio calculations and OPLS parameters for developing an all-atom force field for the TMGL IL.Then they used quantum chemical calculations to investigate the interaction between SO2and TMGL,and obtained a deeper understanding of the factors that govern the high solubility of SO2in TMGL[27].

    As analyzed above,many progresses have been made on the absorbing SO2process,and it was helpful for understanding the absorption behavior of ILs.However,some explanations about absorption mechanism[11,14]were different.Owing to few systematic studies on different ILs,further systematic and theoretical investigations are needed to understand the mechanism of absorption and desorption of SO2by choosing different cations and anions.Most kinds of ILs are in liquid state,and the physicochemical properties are different with the gas and solid.It may be difficult to exactly and reasonably explain the properties of ILs by gas state models.Therefore,we need to modify the models and construct liquid state models for quantum chemical calculation.With the development of computational chemistry,theoretical calculation and simulation will play a crucial role in absorption studies.Aswe know,the amine groupsare efficient electron donors[17]toward SO2,so we choose ammonium ILs as SO2absorbents and systematically study the effects of ILs with different cations with advanced and accurate method based on DFT.

    The present work studied the ammonium ILs(cation:hydroxyalkyl ammonium,anion:acetate)and IL-SO2systems by quantum chemical calculations,achieving optimized geometry structures,analyzing the interaction,discussing thermodynamic properties,and investigating transition state etc.The theoretical investigation was made to obtain the important data and information,such as vibration information,energy characteristics,and electronic strutures.

    1 Computational details

    1.1 Computational method

    All the calculations have been performed using the DMol3module[28-29]of the Materials Studio program.The minimumenergy geometry structures of the hydroxyalkyl ammonium ILs and IL-SO2were determined by combining generalized gradient approximations[30-31]and density functional theory(DFT)methods.Then the transition state was determined by synchronous transit method[32].Hirshfeld population analysis[33]was performed to analyze the charge transfer.Thermodynamic properties and vibrational spectrum were obtained by the nonlocal exchangecorrelation functional proposed by Perdew et al.[34].Double precision numerical basis sets combined with polarization functions were used to describe the valence electrons,while all-electron core treatment was utilized to describe the core electrons.A spinpolarized scheme was employed to deal with the open-shell systems.The transition state(TS)search was performed by linear synchronous transit(LST)/quadratic synchronous transit(QST) method,gaining the energy barrier of SO2absorption.Then the transition state was confirmed with the nudged elastic band (NEB)methods.Activation energy(Ea)and minimum energy path(MEP)of the absorption reaction can be acquired by LST/QST and NEB,respectively.Then the calculation results verified byexperiment[16]to show the validityoftheoretical calcu-lation.

    1.2 Computation principle

    The total energy(Et)of systems may be written as:

    where ρ is the density of a system,T(ρ)and U(ρ)are the kinetic energy and classical electrostatic energy due to Coulombic interactions,respectively.Exc(ρ)includes all many-body contributions to the total energy,in particular the exchange and correlation energies.

    The results of a vibration analysis or Hessian evaluation can be used to compute enthalpy(H),entropy(S),free energy(G),and heat capacity(Cp)as functions of temperature[35].

    For deeply exploring the absorption reaction,gas state and liquid state models were constructed for hydroxyalkyl ammonium ILs and IL-SO2systems.The amorphous structure has been constructed as the liquid state model by Amorphous Cell(a module of Materials Studio)which is versatile suite of computational tools used to develop an understanding of molecular properties and behavior,especially for liquids and amorphous polymers.By observing the relationship between system structure and properties,we can obtain a more thorough understanding of the important molecular features,allowing us to better design new compounds or new formulations.The representative structures used in this study are optimized and presented in Fig.1.

    Starting from reactants(ammonium ILs and SO2)and products(IL-SO2systems and acetic acid),the synchronous transit methods interpolate the pathway to find the transition state of absorption reaction.The LST and QST tools locate a maximum energy structure,but this maximum may not be the correct transition state.TS confirmation tool can be used to confirm that the transition state of absorption reaction does indeed connect the presumed reactant(R)and product(P).Byusing the LST method, an estimate of the transition state is generated by finding the highest point along the shortest line connecting‘R’and‘P’.The QST method further extends this by subsequently searching for a minimum along a line perpendicular to the previous one.The transition state structure was optimized to achieve the refined activation energy.By guessing the absorption MEP which connects two stable structures(‘R’and‘P’),the NEB method works to confirm the transition state and find the additional minima on the MEP.

    2 Results and discussion

    2.1 Molecule structure change after absorption

    Scheme 1 shows the schematic structure of ILs for reacting with SO2.A variety of substitutent groups can be connected to the nitrogen atom,obtaining many kinds of ILs with different absorbing properties.

    Scheme 1 Schematic structure of the ammonium ionic liquid

    In this work,the substituent group on cation is hydroxyethyl, and all the anion is the acetate.The—NH2,—NHR,and—NR2groups of ammonium ILs,which are efficient electron donors toward SO2.The reversible absorption/desorption reactions of ILs with SO2can be expressed as the following reaction(x=1,2,3):

    The structures of IL-SO2systems are fully optimized,obtaining stable structures and structural parameters.The representative optimized structure of absorption product in liquid state model,hydroxyalkyl ammonium-SO2[(HOCH2CH2)xNH(3-x)SO2] (x=1),was given in Fig.1,including the IL and acetic acid.

    Fig.1 The representative optimized structures and charge distribution in SO2(A)primary ammonium acetate ionic liquid(a=0.600 nm,b=0.665 nm,c=0.665 nm,α=β=γ=90°); (B)HOCH2CH2NH2-SO2+CH3COOH(a=0.615 nm,b=0.695 nm,c=0.725 nm,α=β=γ=90°)

    The charge distribution,average bond distances,and vibration spectrum data were computed and analyzed.In IL-SO2systems, the charge distribution has changed during the absorption reac-tion.The S—N bond forms between atom S and N with the average bond distance of 0.240 nm both in gas state and liquid state models.The S—N bond tends to be chemical combination, for its distance is between chemical bond length(0.184 nm)and the sum of van der Waals radius(0.334 nm).

    The charge distribution of IL?SO2systems indicate that absorption reaction results in the transfer of negative charge from ILs to SO2both in gas and liquid state models.The geometry parameter of SO2and net charge transfer amount are exhibited in Table 1.Compared with isolated SO2molecule,the average distance ofS—O bond(lengthsoftwo S—O bondshave few difference)increases and the bond angle of O—S—O decreases in IL?SO2systems,which means that SO2molecules are absorbed on ILs and the nitrogen atom becomes the important active site.

    From Table 1,in gas state model,it can be found that the average bond distance of S—O expands from 0.1490 to 0.1495 nm and the bond angle of O—S—O diminishes from 117.435°to 116.903°,with the number of substitutes on the N atom increasing.Meanwhile,the increase of substitute number results in much charge transfer from ILs to SO2.Therefore,the sequence of interaction intensity between ILs and SO2can be deduced as: (HO(CH2)2)3N?SO2>(HO(CH2)2)2NH?SO2>HO(CH2)2NH2?SO2.In liquid state model,the variation trend of geometry parameter is not the same as the results calculated from gas state model, while the interaction intensity is stronger for longer bond distance of S—O,smaller angle of O—S—O,and more charge transfer from ILs to SO2than the results in gas state model.

    2.2 Thermodynamic properties

    According to vibrational analysis and calculation,important thermodynamic properties of IL?SO2systems can be obtained. More information about the absorption reaction will be predicted and verified by analyzing the thermodynamic properties of these systems.In this study,we analyzed standard free energy change (ΔG?)and equilibrium constant of the absorption reaction.

    The free energy of ammonium ILs is displayed in Fig.2 as the function of temperature.The ILs were investigated in gas state and liquid state models,while SO2was calculated only in gas state model.The free energy of all the ILs decreases with increasing the temperature.In general,it is found that the free energies of these ILs increase with the number of substitute groups on the nitrogen atom increasing at the same temperature both in gas state model and liquid state one,which follows the sequence:HO(CH2)2N+H3<(HO(CH2)2)2N+H2<(HO(CH2)2)3N+H(anion:acetate).However,in gas state model,the free energy ofammonium IL with primary amine group is larger than secondary ammonium IL when the temperature exceeds 900 K. Each IL in liquid state model has larger free energy than in gas state model,and the difference increases with increasing the temperature.

    Table 1 Average distance of S—O bond(l),bond angle of O—S—O(θ),and net charge transfer amount of SO2

    The free energies of IL?SO2systems(products)and acetic acid with finite temperature correction are presented in Fig.3.In order to reflect the interaction of condensed state,the acetic acid in liquid state was included in the amorphous cell structure of the absorption products,while in gas state model the geometry structure of acetic acid was optimized separately.The values of all the materials decrease with increasing the temperature.At the same temperature,the high molecular weight results in the large free energy in gas state model and liquid state one,except the primary ammonium IL?SO2system in liquid state when the temperature exceeding 900 K.

    Based on the total energy at 0 K and the temperature correction values presented in Fig.2 and Fig.3,ΔG?of the absorption reaction can be calculated at different temperatures,where the total energy presented in the Supporting Information(available free of charge at http://www.whxb.pku.edu.cn)is the total electronic energy at 0 K.The thermodynamic parameters of hydroxyalkyl ammonium IL-SO2with gas state and liquid state models at 298.15 K are listed in Table 2.

    Table 2 Thermodynamic parameters(298.15 K)of the SO2 absorption reaction with hydroxyalkyl ammonium acetate ionic liquids

    It can be found that the absorption reaction in gas state model can occur spontaneously at 298.15 K,except the IL with secondary amine group,whose ΔG?is 16.15 kJ·mol-1.The reaction between SO2and secondary ammonium IL(gas state)may spontaneously occur in the lower temperature.However,in the liquid state,the difference of ΔG?value is not significant for the reactions of these ILs with SO2molecule.And it is relatively easy for primary ammonium IL to react with SO2,and ΔG?is 1.63 kJ· mol-1in Table 2.The enthalpy change(ΔH)indicates that these absorption reactions are exothermic processes.Whether in gas state model or in liquid state one,the secondary ammonium IL absorbs SO2and generates the least thermal energy.Tertiary ammonium IL-SO2system in gas state exhibits the significant difference of thermodynamic properties among the systems,which may result from the complex molecular structure of the IL or the gas state model not fitted to show the properties of absorption reaction in the theoretical calculation.

    According to the entire calculation data in Fig.4,it is found that the low temperature is good for absorption reaction.The absorption reaction occurs at low temperature.The temperature corresponding ΔG?=0 kJ·mol-1are 743.42,35.26,281.58, 220.00,and 281.57 K for primary(g),secondary(g),primary(l), secondary(l)and tertiary(l),respectively.Exceeding these temperatures,the hydroxyalkyl ammonium IL systems will tend to occur the desorption reaction,indicating that ammonium ILs can be used as recyclable solvent for absorbing SO2.But the desorption temperature of the secondary ammonium IL-SO2system (g)is too low to fit for desulfurization.Although the ΔG?of tertiary ammonium IL in gas state is the lowest at the same temperature,SO2molecule is difficult to escape from IL with increasing the temperature.Maybe SO2will be released in the vacuum environment,which is not very suitable for the industrial application.Therefore,the secondary ammonium IL is not the good one as regenerable SO2absorbent.It is revealed that the structures of ILs play an important role in determining the absorption properties of SO2.

    Naturally,the experimental data can directly examine the validity and correctness of theoretical analysis about the absorption reaction of SO2.We choose primary ammonium acetate IL(2-hydroxyethylammonium acetate)as an example to examine the calculated results.The experiment data of 2-hydroxyethylammonium acetate can be found in Fig.3 of Ref.[16],presenting the equilibrium molar fraction of SO2in absorption reaction at 293.2,298.2,303.2,313.2,and 323.2 K[16].For comparing conveniently,theoretical equilibrium constant(K)was computed from ΔG?by the equation displayed as follows:

    Then the equilibrium constants were converted to theoretical molar fraction of SO2(XSO2)by the following formulas based on the chemical equation (Scheme 1).The pressure of SO2keeps 101.3 kPa in the experiment,so pSO2/p?equals 1(p?is chosen as 101.3 kPa,which is consistent with the pressure in the exported results from software).

    Fig.4 Standard Gibbs free energy changes of the reversible absorption/desorption reactionsY:(HOCH2CH2)x,A:NH(3-x),x=1,2,3

    Fig.5 Comparison of molar fraction of SO2obtained in experiment and theoretical calculation in liquid state and gas state models for HO(CH2)2NH2-SO2system

    Experiment data and theoretical values of XSO2are presented in Fig.5 at different temperatures.In order to conveniently verify the theoretical results,the activity coefficient for the substances in these absorption reactions are considered as‘1’.We found that the values of theoretical calculation with liquid state model were in good agreement with the experiment results,indicating the validity of theoretical analysis.The experimental molar fraction of SO2is a little higher than the theoretical value,which may be resulted from partial physical adsorption besides the chemical absorption.From the results mentioned above,it is concluded that the DFT functional and numerical basis set se-lected in the calculation was appropriate for calculating the absorption reaction of ammonium ILs with SO2in liquid state model,and the theoretical molar fraction of SO2at equilibrium state calculated in this work is successfully verified by experiment results.

    Table 3 Thermodynamic parameters(298.15 K)and the imaginary frequency of hydroxyalkyl ammonium IL-SO2systems

    The differences between results from gas state model and experiment are also displayed in Fig.5.The molar fraction of SO2calculated with gas state model is much higher than the valuesobtained from liquid state model and experiment,and the difference becomes more obvious in relatively high temperature area.

    Fig.6 MEP-1 curve with the HO(CH2)2NH2-SO2system structure of the saddle point(a)and minimum energy points(b-e)based on reactant,1 Ha=2625.50 kJ·mol-1

    Fig.7 MEP-2 curve and the transition state structure (saddle point)of(HO(CH2)2)2NH-SO2systembased on product,minimum energy structures on MEP-2 presented in Supporting Information

    Compared with the model of gas state,liquid state model is much fit for calculating the reaction of ammonium ILs with SO2. Liquid state model could well present the interaction between SO2and ammonium IL.The theoretical calculation depends on the model construction,and the reasonable model will achieve the valuable conclusion.

    The values computed by DFT in this work are successfully verified by experiment results[16],and it indicates that the parameters and quality sets fit the absorption reaction of SO2with ammonium ILs,and computer simulation can be applied to predict the properties of new compounds and analyze the experimental results.The appropriate functional groups will be worked out for other series of ILs by computer simulation.

    2.3 Transition state and reaction pathway

    The energy barrier,thermodynamic parameters(298.15 K) and the imaginary frequency of the SO2absorption reaction are presented in Table 3.Owing to the stable structure of the cation in primary ammonium IL,the energy barrier of the absorption reaction is 162.76 kJ·mol-1.The absorption rate is determined by the activation energy,and it will take a long time to reach the equilibrium status for primary ammonium IL-SO2.

    In order to confirm the reaction pathway,the MEP was worked out by NEB.For primary ammonium IL-SO2system,the MEP curve with the absorption structure of the saddle point(TS) and the structures with minimum energy(M)are shown in Fig.6. The results for secondary and tertiary ammonium IL-SO2systems are displayed in Figs.7 and 8.The structures with minimum energy on MEP-2 and MEP-3 can be found in Supporting Information file.

    According to the structures of typical points on the MEP-1 in Fig.6,the marked distances of S—N and H—O decrease,and the bond angle of O—S—O declines during the absorption.The distances of S—N and H—O are 0.3383 and 0.1328 nm,respectively,and the bond angle of O—S—O is 117.970°in transition state structure with the highest energy on the MEP curve.The structural information of the minimum points is displayed below the MEP-1 plot.The distance of S—N changes from 0.4041 nm to 0.2398 nm,meanwhile,the distance of H—O changes from 0.2397 nm to 0.0990 nm,forming the chemical bonds.

    Fig.8 MEP-3 curve and the transition state structure (saddle point)of(HO(CH2)2)3N-SO2systembased on product,minimum energy structures on MEP-3 presented in Supporting Information

    The activation energy(Ea)and Δ≠G?of absorption reaction with secondary ammonium IL are listed in Table 3.For Δ≠G?reaches -446.01 kJ·mol-1and Eais the lowest(43.18 kJ·mol-1)of these systems at 298.15 K,the absorption reaction can spontaneously occur and easily arrive at equilibrium state.But the ΔG?of the absorption reaction with this IL is the highest among three ILs in liquid state model.

    Table 4 The distance of H—O bond(l(H—O)),S—N bond (l(S—N))and bond angle of S—O—S(θ)of minimum energy structures and transition state structures on MEP curves

    In Table 4,the distances between S and N in TS structures on the MEPs follow this sequence:TS-3>TS-2>TS-1.On the contrary,the distances between H and O follow the sequence:TS-1>TS-2>TS-3.The possible reason of two sequences is that the steric effect prevents SO2from absorbing.It is easy for the H ion to leave the N atom,but hard for N atom to bond with the S atom.The distance change of S—N in minimum energy structure on MEP-2 follows the same regular with that on MEP-1,diminishing from M1(0.2431 nm)to M8(0.0990 nm),while the distance change of H—O is fluctuation.

    The distance changes of S—N and H—O in minimum energy structure on MEP-3 present relatively complexity in Table 4. The energy barrier of 74.43 kJ·mol-1results in relatively fast absorption through the reaction path.The structural parameters of the transition state are shown in Fig.8.The tertiary ammonium IL can desorb SO2with the temperature increasing as presented in Fig.4,and the ΔG?(2.34 kJ·mol-1,Table 2)and Δ≠G?(-506.10 kJ·mol-1,Table 3)indicate that this reaction can be easy to occur at the room temperature and ambient SO2pressure.Therefore,the calculated results demonstrate ammonium ILs should be the good candidate for regenerable SO2absorbent,and the one with tertiary amine group would be the best.

    3 Conclusions

    Quantum chemical calculations were performed for acquiring the information of the reversible reaction for absorbing/desorbing SO2,obtaining optimized geometry structures,charge distribution and energy characteristics,etc.

    The hydroxyalkyl ammonium ILs react with SO2to form S—N bond and show the charge transfer from ILs to SO2.The absorption reaction results in the increase of S—O bond length and the decrease of O—S—O bond angle.The absorption mainly presents chemical action,proved by the charge distribution and the results of geometry analyses.The nitrogen atom of ammonium ILs plays a key role in the absorption reaction.

    In general,the free energies of all the materials decrease with the increase of temperature and the decrease of molecular weight both in gas state and liquid state models.The absorption reaction occurs at low temperature.The temperature corresponding ΔG?= 0 kJ·mol-1are 281.58,220.00,and 281.57 K for primary(l),secondary(l),and tertiary(l),respectively.The hydroxyalkyl ammonium ILs can be used as regenerable solvents for absorbing SO2.Tertiary ammonium IL-SO2system in gas state model has the lowest ΔG?of all the systems.Furthermore,the theoretical results of XSO2(molar fraction of SO2)calculated in this work are in accord with experiment data.

    The activation energy of the systems follows the sequence: Ea(secondary)<Ea(tertiary)<Ea(primary),exhibiting the effect of IL structure in the absorption reaction.The calculated results with liquid model demonstrate hydroxyalkyl ammonium ILs should be the good candidate for absorbing and recycling SO2. The study may provide a good method in designing novel IL system for regenerable absorbing SO2.

    Supporting Information available: The detailed results of standard Gibbs free energy change calculation,geometry optimization,thermodynamic properties,and transition state calculation have been included.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    1 Lin,Q.;Fu,H.Y.;Yuan,M.L.;Chen,H.;Li,X.J.Acta Phys.-Chim.Sin.,2006,22:1272 [林 棋,付海燕,袁茂林,陳 華,李賢均.物理化學(xué)學(xué)報(bào),2006,22:1272]

    2 Gao,L.X.;Wang,L.N.;Qi,T.;Li,Y.P.;Chu,J.L.;Qu,J.K.Acta Phys.-Chim.Sin.,2008,24:939 [高麗霞,王麗娜,齊 濤,李玉平,初景龍,曲景奎.物理化學(xué)學(xué)報(bào),2008,24:939]

    3 Zhang,X.Z.;Jiao,K.Acta Phys.-Chim.Sin.,2008,24:1439 [張旭志,焦 奎.物理化學(xué)學(xué)報(bào),2008,24:1439]

    4 Izgorodina,E.I.;Forsyth,M.;MacFarlane,D.R.Physical Chemistry Chemical Physics,2009,11:2452

    5 Imanishi,A.;Tamura,M.;Kuwabata,S.Chem.Commun.,2009: 1775

    6 Wasserscheid,P.;Welton,T.Ionic liquids in synthesis.Weinheim: Wiley-VCH,2003:1-355

    7 Sheldon,R.Chem.Commun.,2001:2399

    8 Wasserscheid,P.;Keim,W.Angewandte Chemie-International Edition,2000,39:3772

    9 Sun,G.H.;Li,K.X.;Fan,H.;Gu,J.Y.;Li,Q.;Liu,Y.Acta Phys.-Chim.Sin.,2008,24:103 [孫國(guó)華,李開喜,范 慧,谷建宇,李 強(qiáng),劉 越.物理化學(xué)學(xué)報(bào),2008,24:103]

    10 Yang,P.X.;An,M.Z.;Su,C.N.;Wang,F.P.Acta Phys.-Chim. Sin.,2008,24:2032 [楊培霞,安茂忠,蘇彩娜,王福平.物理化學(xué)學(xué)報(bào),2008,24:2032]

    11 Wu,W.Z.;Han,B.X.;Gao,H.X.;Liu,Z.M.;Jiang,T.;Huang,J. Angewandte Chemie-International Edition,2004,43:2415

    12 Huang,J.;Riisager,A.;Berg,R.W.;Fehrmann,R.Journal of Molecular Catalysis A:Chemical,2008,279:170

    13 Barrosse-Antlle,L.E.;Hardacre,C.;Compton,R.G.Journal of Physical Chemistry B,2009,113:1007

    14 Huang,J.;Riisager,A.;Wasserscheid,P.;Fehrmann,R.Chem. Commun.,2006:4027

    15 Anderson,J.L.;Dixon,J.K.;Maginn,E.J.;Brennecke,J.F. Journal of Physical Chemistry B,2006,110:15059

    16 Yuan,X.L.;Zhang,S.J.;Lu,X.M.Journal of Chemical and Engineering Data,2007,52:596

    17 Ando,R.A.;Siqueira,L.J.A.;Bazito,F.C.;Torresi,R.M.; Santos,P.S.Journal of Physical Chemistry B,2007,111:8717

    18 An,D.;Wu,L.B.;Li,B.G.;Zhu,S.P.Macromolecules,2007,40: 3388

    19 Jiang,Y.Y.;Zhou,Z.;Jiao,Z.;Li,L.;Wu,Y.T.;Zhang,Z.B. Journal of Physical Chemistry B,2007,111:5058

    20 Zhang,Z.M.;Wu,L.B.;Dong,J.;Li,B.G.;Zhu,S.P.Industrial &Engineering Chemistry Research,2009,48:2142

    21 Zhou,C.G.;Yao,S.J.;Wu,J.P.;Forrey,R.C.;Chen,L.; Tachibana,A.;Cheng,H.S.Physical Chemistry Chemical Physics, 2008,10:5445

    22 Liu,J.X.;Wei,X.;Zhang,X.G.;Wang,G.X.;Han,E.S.;Wang, J.G.Acta Phys.-Chim.Sin.,2009,25:91 [劉潔翔,魏 賢,張曉光,王桂香,韓恩山,王建國(guó).物理化學(xué)學(xué)報(bào),2009,25:91]

    23 Zhou,D.H.;Wang,Y.Q.;He,N.;Yang,G.Acta Phys.-Chim.Sin., 2006,22:542 [周丹紅,王玉清,賀 寧,楊 剛.物理化學(xué)學(xué)報(bào),2006,22:542]

    24 Jiang,S.Y.;Teng,B.T.;Yuan,J.H.;Guo,X.W.;Luo,M.F.Acta Phys.-Chim.Sin.,2009,25:1629 [蔣仕宇,滕波濤,袁金煥,郭曉偉,羅孟飛.物理化學(xué)學(xué)報(bào),2009,25:1629]

    25 Siqueira,L.J.A.;Ando,R.A.;Bazito,F.F.C.;Torresi,R.M.; Santos,P.S.;Ribeiro,M.C.C.Journal of Physical Chemistry B, 2008,112:6430

    26 Wang,Y.;Pan,H.;Li,H.;Wang,C.Journal of Physical Chemistry B,2007,111:10461

    27 Wang,Y.;Wang,C.M.;Zhang,L.Q.;Li,H.R.Physical Chemistry Chemical Physics,2008,10:5976

    28 Delley,B.Journal of Physical Chemistry,1996,100:6107

    29 Delley,B.Journal of Chemical Physics,2000,113:7756

    30 Perdew,J.P.;Wang,Y.Physical Review B,1992,45:13244

    31 Perdew,J.P.;Chevary,J.A.;Vosko,S.H.;Jackson,K.A.; Pederson,M.R.;Singh,D.J.;Fiolhais,C.Physical Review B, 1992,46:6671

    32 Halgren,T.A.;Lipscomb,W.N.Chemical Physics Letters,1977, 49:225

    33 Hirshfeld,F.L.Theoretica Chimica Acta,1977,44:129

    34 Perdew,J.P.;Burke,K.;Ernzerhof,M.Physical Review Letters, 1996,77:3865

    35 Hirano,T.A note on thermochemistry//MOPAC Manual.7th ed. Stewart,J.J.P.Ed.Stewart Computatinal Chemistry,Colrado Springs,1993:77-81.http://openmopac.net/

    猜你喜歡
    王麗娜合肥工業(yè)大學(xué)建宇
    Formation of honeycomb-Kagome hexagonal superlattice pattern with dark discharges in dielectric barrier discharge
    第一次的離別
    合肥工業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)投稿須知
    《合肥工業(yè)大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡(jiǎn)則
    A study of response of thermocline in the South China Sea to ENSO events*
    Analysis of monthly variability of thermocline in the South China Sea*
    大學(xué)有機(jī)化學(xué)教學(xué)中學(xué)案的作用探討
    跳高比賽中的意外
    《合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》重要啟事
    王麗娜近作
    詩(shī)潮(2014年7期)2014-02-28 14:11:39
    99热只有精品国产| 又黄又爽又免费观看的视频| 精品一区二区三区视频在线观看免费 | xxx96com| 水蜜桃什么品种好| 亚洲国产精品999在线| 欧美黄色片欧美黄色片| 久久性视频一级片| 成年女人毛片免费观看观看9| 夜夜躁狠狠躁天天躁| 两性午夜刺激爽爽歪歪视频在线观看 | 免费高清在线观看日韩| 国产麻豆69| 精品国内亚洲2022精品成人| ponron亚洲| 精品乱码久久久久久99久播| 成人手机av| 成人影院久久| 欧美日韩黄片免| 宅男免费午夜| 男人的好看免费观看在线视频 | 18禁国产床啪视频网站| 1024视频免费在线观看| 午夜成年电影在线免费观看| 国产精品98久久久久久宅男小说| 亚洲视频免费观看视频| 国产精品偷伦视频观看了| 精品日产1卡2卡| 一级毛片高清免费大全| av天堂在线播放| 成人免费观看视频高清| 女人精品久久久久毛片| 欧美日韩瑟瑟在线播放| 91成人精品电影| 亚洲av电影在线进入| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图综合在线观看| 热re99久久精品国产66热6| 久久精品国产清高在天天线| 午夜精品在线福利| 精品第一国产精品| 久久香蕉精品热| 欧美在线黄色| 久久天躁狠狠躁夜夜2o2o| 亚洲avbb在线观看| 手机成人av网站| 午夜视频精品福利| 国产精品一区二区精品视频观看| 国产精品一区二区在线不卡| 久久热在线av| 欧美乱码精品一区二区三区| 亚洲人成网站在线播放欧美日韩| 日本免费一区二区三区高清不卡 | 女同久久另类99精品国产91| 男女午夜视频在线观看| 亚洲av成人av| 大型av网站在线播放| 日韩欧美免费精品| 午夜精品久久久久久毛片777| 国产亚洲欧美精品永久| 国产成人免费无遮挡视频| 又黄又粗又硬又大视频| 日韩 欧美 亚洲 中文字幕| 不卡av一区二区三区| 无限看片的www在线观看| 色老头精品视频在线观看| 日韩精品中文字幕看吧| 亚洲精品国产区一区二| 国产免费av片在线观看野外av| 久久精品国产亚洲av高清一级| 日本撒尿小便嘘嘘汇集6| 啦啦啦在线免费观看视频4| 亚洲精品成人av观看孕妇| 纯流量卡能插随身wifi吗| 国产蜜桃级精品一区二区三区| 国产黄a三级三级三级人| 一级片免费观看大全| 香蕉国产在线看| 性少妇av在线| 最近最新中文字幕大全电影3 | 国产精品香港三级国产av潘金莲| 午夜影院日韩av| 精品国产乱码久久久久久男人| 波多野结衣一区麻豆| 精品无人区乱码1区二区| 久久久久精品国产欧美久久久| 法律面前人人平等表现在哪些方面| 韩国av一区二区三区四区| 在线观看66精品国产| 国产精品综合久久久久久久免费 | 久热爱精品视频在线9| 成人特级黄色片久久久久久久| 久久精品91蜜桃| 欧美老熟妇乱子伦牲交| 日韩欧美免费精品| 男人操女人黄网站| 两人在一起打扑克的视频| 黄色丝袜av网址大全| 99国产精品99久久久久| 中文字幕高清在线视频| 超碰97精品在线观看| 久久久久久人人人人人| 日本五十路高清| 精品一区二区三卡| 国产一区二区三区在线臀色熟女 | 午夜免费鲁丝| 精品久久久久久久久久免费视频 | 女同久久另类99精品国产91| 神马国产精品三级电影在线观看 | 午夜精品久久久久久毛片777| 少妇的丰满在线观看| 精品久久久精品久久久| 亚洲全国av大片| av视频免费观看在线观看| 90打野战视频偷拍视频| 香蕉丝袜av| 一边摸一边抽搐一进一小说| e午夜精品久久久久久久| 中文字幕av电影在线播放| 国产成+人综合+亚洲专区| 亚洲欧美日韩另类电影网站| 一边摸一边做爽爽视频免费| 国产三级在线视频| 久久狼人影院| 五月开心婷婷网| 午夜福利免费观看在线| 中国美女看黄片| 三级毛片av免费| www.熟女人妻精品国产| 韩国av一区二区三区四区| 国产亚洲精品久久久久久毛片| 91成人精品电影| 免费高清视频大片| 亚洲七黄色美女视频| 亚洲国产欧美一区二区综合| 午夜精品久久久久久毛片777| 久久草成人影院| 久久热在线av| 亚洲一区中文字幕在线| 免费看a级黄色片| 一二三四社区在线视频社区8| 亚洲av第一区精品v没综合| 精品无人区乱码1区二区| 我的亚洲天堂| 亚洲午夜精品一区,二区,三区| 国产野战对白在线观看| 91精品三级在线观看| 日日干狠狠操夜夜爽| 亚洲人成电影观看| av片东京热男人的天堂| 91大片在线观看| 啦啦啦免费观看视频1| 88av欧美| 久久亚洲真实| 99香蕉大伊视频| 成人18禁在线播放| 美国免费a级毛片| 精品国产超薄肉色丝袜足j| avwww免费| 免费少妇av软件| 美女午夜性视频免费| 88av欧美| 国产熟女午夜一区二区三区| 国产激情久久老熟女| 国产亚洲精品一区二区www| 国产一区二区三区视频了| 一a级毛片在线观看| 美女高潮到喷水免费观看| 中文欧美无线码| 欧洲精品卡2卡3卡4卡5卡区| 丝袜美足系列| 久久香蕉精品热| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日本中文国产一区发布| 久久久久久大精品| 大香蕉久久成人网| 亚洲欧美精品综合久久99| 色综合婷婷激情| 久久久久亚洲av毛片大全| 老汉色av国产亚洲站长工具| 亚洲五月婷婷丁香| 国产精品久久电影中文字幕| 午夜福利影视在线免费观看| 动漫黄色视频在线观看| 亚洲成人免费av在线播放| 亚洲男人天堂网一区| 一个人观看的视频www高清免费观看 | 亚洲第一欧美日韩一区二区三区| 欧美 亚洲 国产 日韩一| 97碰自拍视频| 亚洲久久久国产精品| 青草久久国产| 国产人伦9x9x在线观看| 99国产精品一区二区三区| 欧美+亚洲+日韩+国产| 十八禁网站免费在线| 精品福利永久在线观看| 老司机福利观看| 水蜜桃什么品种好| 国产精品久久久av美女十八| 男女之事视频高清在线观看| 在线观看免费日韩欧美大片| 中文字幕最新亚洲高清| 麻豆成人av在线观看| 国产真人三级小视频在线观看| 51午夜福利影视在线观看| 亚洲成a人片在线一区二区| 国产精品一区二区免费欧美| 欧美日韩瑟瑟在线播放| 精品国产一区二区三区四区第35| 日韩欧美免费精品| 99久久国产精品久久久| 淫妇啪啪啪对白视频| 老熟妇乱子伦视频在线观看| 亚洲成人精品中文字幕电影 | 国产熟女午夜一区二区三区| 一级毛片女人18水好多| 午夜两性在线视频| 久久精品aⅴ一区二区三区四区| 中文字幕人妻丝袜制服| 美女 人体艺术 gogo| 精品国产乱子伦一区二区三区| 亚洲人成网站在线播放欧美日韩| 欧美老熟妇乱子伦牲交| 免费看十八禁软件| 欧美大码av| 久久香蕉精品热| 99热只有精品国产| 男人操女人黄网站| 国产成人免费无遮挡视频| 自线自在国产av| 亚洲av熟女| 国产成人啪精品午夜网站| 丝袜在线中文字幕| 母亲3免费完整高清在线观看| 国产精品野战在线观看 | 亚洲精品久久午夜乱码| 国产精品久久久人人做人人爽| 午夜老司机福利片| 99久久久亚洲精品蜜臀av| 亚洲一码二码三码区别大吗| netflix在线观看网站| 欧美黄色片欧美黄色片| 在线播放国产精品三级| 色在线成人网| av福利片在线| 999久久久精品免费观看国产| 日本a在线网址| 啦啦啦在线免费观看视频4| 国产真人三级小视频在线观看| 亚洲精华国产精华精| cao死你这个sao货| 国产一卡二卡三卡精品| 久久午夜亚洲精品久久| 色综合婷婷激情| 久久亚洲精品不卡| 嫁个100分男人电影在线观看| 真人做人爱边吃奶动态| 亚洲成人精品中文字幕电影 | 国产精品亚洲av一区麻豆| 欧美性长视频在线观看| 久久精品aⅴ一区二区三区四区| 1024视频免费在线观看| 久久伊人香网站| 国产精品一区二区精品视频观看| 一进一出好大好爽视频| 久久久久国内视频| 天堂影院成人在线观看| 美女国产高潮福利片在线看| 少妇被粗大的猛进出69影院| 国内毛片毛片毛片毛片毛片| 桃红色精品国产亚洲av| 国产激情久久老熟女| 国产激情欧美一区二区| 国产精品综合久久久久久久免费 | 精品国产美女av久久久久小说| 男人操女人黄网站| 亚洲国产欧美网| 欧美在线黄色| 久久久久国内视频| 好看av亚洲va欧美ⅴa在| 99在线人妻在线中文字幕| 欧美中文综合在线视频| 午夜影院日韩av| 日韩有码中文字幕| 午夜视频精品福利| 麻豆一二三区av精品| 午夜福利欧美成人| 亚洲第一欧美日韩一区二区三区| 精品久久久久久,| bbb黄色大片| 一区二区三区激情视频| 国产精品久久久久久人妻精品电影| 色综合婷婷激情| 老汉色av国产亚洲站长工具| 50天的宝宝边吃奶边哭怎么回事| 亚洲,欧美精品.| 欧美中文综合在线视频| 午夜a级毛片| 国产97色在线日韩免费| 新久久久久国产一级毛片| 欧美色视频一区免费| 久久香蕉精品热| 一个人观看的视频www高清免费观看 | 脱女人内裤的视频| 天堂动漫精品| 国产精品 欧美亚洲| 久久国产乱子伦精品免费另类| 黄色片一级片一级黄色片| 999久久久精品免费观看国产| 一级,二级,三级黄色视频| 欧美国产精品va在线观看不卡| 国产成人精品在线电影| 一级毛片高清免费大全| 欧美激情极品国产一区二区三区| 亚洲精品av麻豆狂野| 中文字幕人妻丝袜一区二区| 国产成人av激情在线播放| 在线永久观看黄色视频| av网站在线播放免费| 免费看a级黄色片| 无人区码免费观看不卡| 黄色 视频免费看| 青草久久国产| 999精品在线视频| 99riav亚洲国产免费| 九色亚洲精品在线播放| 日韩人妻精品一区2区三区| 久久久久国产精品人妻aⅴ院| 久久中文字幕一级| 成人精品一区二区免费| 淫秽高清视频在线观看| 亚洲国产欧美网| 久久久久久久午夜电影 | 性色av乱码一区二区三区2| 亚洲欧美一区二区三区久久| 99精国产麻豆久久婷婷| 色综合婷婷激情| 亚洲中文av在线| 看免费av毛片| av有码第一页| 99国产精品99久久久久| 久久久国产精品麻豆| 一级毛片精品| 免费高清视频大片| 国产精品野战在线观看 | 国产精品乱码一区二三区的特点 | 亚洲成国产人片在线观看| 人人妻,人人澡人人爽秒播| bbb黄色大片| 午夜精品国产一区二区电影| 无人区码免费观看不卡| 男人舔女人的私密视频| 精品一区二区三区四区五区乱码| 久久久久亚洲av毛片大全| 日本一区二区免费在线视频| 国产精品影院久久| 国产亚洲欧美98| 午夜免费成人在线视频| 女人被狂操c到高潮| 久久人人精品亚洲av| 国产精品自产拍在线观看55亚洲| 国产精品野战在线观看 | 欧美国产精品va在线观看不卡| 免费观看人在逋| 热re99久久国产66热| 亚洲精品国产精品久久久不卡| 久久青草综合色| 天堂√8在线中文| 黄片播放在线免费| 久久久水蜜桃国产精品网| 午夜免费鲁丝| 琪琪午夜伦伦电影理论片6080| 精品国内亚洲2022精品成人| 视频区欧美日本亚洲| 真人做人爱边吃奶动态| 国产精品av久久久久免费| 99久久99久久久精品蜜桃| 一个人免费在线观看的高清视频| 女人爽到高潮嗷嗷叫在线视频| 黑丝袜美女国产一区| 好看av亚洲va欧美ⅴa在| 国产有黄有色有爽视频| 又黄又爽又免费观看的视频| 久久精品91无色码中文字幕| 动漫黄色视频在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美一区二区精品小视频在线| 免费在线观看黄色视频的| 大型黄色视频在线免费观看| 桃色一区二区三区在线观看| 国产真人三级小视频在线观看| 成人亚洲精品av一区二区 | 精品国内亚洲2022精品成人| 日韩三级视频一区二区三区| 精品国产国语对白av| 叶爱在线成人免费视频播放| 无限看片的www在线观看| 天堂中文最新版在线下载| 欧美日韩瑟瑟在线播放| 在线观看午夜福利视频| 久久久久久免费高清国产稀缺| 国产av又大| 三上悠亚av全集在线观看| 久久久精品国产亚洲av高清涩受| 国产野战对白在线观看| 亚洲精品国产一区二区精华液| 国产主播在线观看一区二区| 两个人看的免费小视频| 国产三级黄色录像| 好看av亚洲va欧美ⅴa在| 亚洲欧美一区二区三区黑人| 亚洲欧美精品综合一区二区三区| 两性夫妻黄色片| 欧美亚洲日本最大视频资源| 三级毛片av免费| 纯流量卡能插随身wifi吗| 亚洲人成电影观看| 老熟妇乱子伦视频在线观看| 亚洲,欧美精品.| 亚洲七黄色美女视频| 欧美久久黑人一区二区| 国产精品免费一区二区三区在线| 成人亚洲精品av一区二区 | 真人一进一出gif抽搐免费| 亚洲中文字幕日韩| 国产黄色免费在线视频| 国产精品98久久久久久宅男小说| 亚洲精品中文字幕一二三四区| 亚洲专区字幕在线| 黑丝袜美女国产一区| 亚洲中文日韩欧美视频| 欧美激情极品国产一区二区三区| 黄色丝袜av网址大全| 黄色女人牲交| √禁漫天堂资源中文www| 美女午夜性视频免费| 色婷婷av一区二区三区视频| 老汉色∧v一级毛片| 欧美成狂野欧美在线观看| 国产精品1区2区在线观看.| 亚洲国产精品一区二区三区在线| 超碰成人久久| 国产精品日韩av在线免费观看 | 亚洲欧美日韩高清在线视频| 亚洲国产中文字幕在线视频| xxxhd国产人妻xxx| 午夜福利免费观看在线| 岛国在线观看网站| 国产精品成人在线| av天堂在线播放| 一级片'在线观看视频| 亚洲成人国产一区在线观看| 国产成人免费无遮挡视频| 久久中文字幕一级| 变态另类成人亚洲欧美熟女 | 黄色怎么调成土黄色| 国产免费现黄频在线看| 一边摸一边抽搐一进一出视频| 18禁裸乳无遮挡免费网站照片 | 可以在线观看毛片的网站| 嫩草影院精品99| 色老头精品视频在线观看| 嫁个100分男人电影在线观看| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美98| 国产高清激情床上av| 久久人人爽av亚洲精品天堂| 黑丝袜美女国产一区| 国产精品国产高清国产av| 高清毛片免费观看视频网站 | 男人的好看免费观看在线视频 | 校园春色视频在线观看| 亚洲成av片中文字幕在线观看| 男男h啪啪无遮挡| 欧美成人性av电影在线观看| 精品一区二区三区视频在线观看免费 | 欧美大码av| 女生性感内裤真人,穿戴方法视频| 香蕉久久夜色| 久久久久国内视频| www.自偷自拍.com| 亚洲精品国产一区二区精华液| 欧美黑人欧美精品刺激| 91九色精品人成在线观看| 夜夜爽天天搞| 纯流量卡能插随身wifi吗| 可以免费在线观看a视频的电影网站| 他把我摸到了高潮在线观看| 成人精品一区二区免费| 亚洲黑人精品在线| 999精品在线视频| 女人精品久久久久毛片| 久久精品国产清高在天天线| 亚洲av片天天在线观看| 久久久久久久久久久久大奶| 三上悠亚av全集在线观看| 91麻豆av在线| 天堂动漫精品| 超碰成人久久| 制服诱惑二区| 亚洲自拍偷在线| 搡老乐熟女国产| 亚洲av电影在线进入| 777久久人妻少妇嫩草av网站| 国产熟女午夜一区二区三区| 一级a爱片免费观看的视频| 久久午夜综合久久蜜桃| 日韩视频一区二区在线观看| 黄色成人免费大全| 视频区图区小说| 精品一品国产午夜福利视频| 可以在线观看毛片的网站| 久久精品国产亚洲av高清一级| 一区二区三区激情视频| 欧美丝袜亚洲另类 | 老鸭窝网址在线观看| 999精品在线视频| 亚洲成国产人片在线观看| 99热只有精品国产| 无限看片的www在线观看| 桃红色精品国产亚洲av| 亚洲美女黄片视频| 黑人欧美特级aaaaaa片| 精品国产乱码久久久久久男人| 中文亚洲av片在线观看爽| 97超级碰碰碰精品色视频在线观看| 他把我摸到了高潮在线观看| netflix在线观看网站| 视频在线观看一区二区三区| 久久欧美精品欧美久久欧美| 国内久久婷婷六月综合欲色啪| 女生性感内裤真人,穿戴方法视频| 亚洲国产精品合色在线| 麻豆国产av国片精品| 丁香欧美五月| 亚洲精品久久午夜乱码| 性色av乱码一区二区三区2| 国产无遮挡羞羞视频在线观看| 性欧美人与动物交配| 日韩欧美三级三区| 久久精品亚洲精品国产色婷小说| 久久九九热精品免费| 91成人精品电影| 国产在线精品亚洲第一网站| 中文字幕另类日韩欧美亚洲嫩草| 动漫黄色视频在线观看| 大码成人一级视频| 久久久水蜜桃国产精品网| 曰老女人黄片| 热99re8久久精品国产| 日韩欧美一区二区三区在线观看| 9191精品国产免费久久| 18禁裸乳无遮挡免费网站照片 | 老司机深夜福利视频在线观看| 午夜精品在线福利| 亚洲国产精品sss在线观看 | 国产精品久久久人人做人人爽| 国产1区2区3区精品| 色精品久久人妻99蜜桃| 免费看a级黄色片| 欧美久久黑人一区二区| 久久精品国产亚洲av高清一级| 欧美日韩亚洲高清精品| 欧美另类亚洲清纯唯美| 淫秽高清视频在线观看| 日韩中文字幕欧美一区二区| 久久久国产成人精品二区 | 国产伦一二天堂av在线观看| 久久九九热精品免费| 国产xxxxx性猛交| 久久国产亚洲av麻豆专区| 老鸭窝网址在线观看| 婷婷精品国产亚洲av在线| xxx96com| 亚洲av第一区精品v没综合| 老熟妇仑乱视频hdxx| www.精华液| 亚洲人成77777在线视频| 亚洲熟女毛片儿| www国产在线视频色| 日韩三级视频一区二区三区| 国产精品免费视频内射| 亚洲免费av在线视频| 亚洲熟妇中文字幕五十中出 | 欧美色视频一区免费| 亚洲精品久久成人aⅴ小说| 丝袜美足系列| 成人手机av| 在线观看一区二区三区| 成人精品一区二区免费| 黄片大片在线免费观看| 啦啦啦免费观看视频1| 美女福利国产在线| 在线观看免费日韩欧美大片| 亚洲国产看品久久| 国产亚洲精品综合一区在线观看 | 男女午夜视频在线观看| xxxhd国产人妻xxx| 久久天躁狠狠躁夜夜2o2o| 国产野战对白在线观看| 欧美最黄视频在线播放免费 | 99国产精品一区二区三区| bbb黄色大片| 免费在线观看完整版高清| 一边摸一边抽搐一进一出视频| 免费在线观看亚洲国产| 免费在线观看完整版高清| 亚洲午夜精品一区,二区,三区| 国产麻豆69| 99热只有精品国产| 9热在线视频观看99| 97超级碰碰碰精品色视频在线观看| 免费高清视频大片| 一级黄色大片毛片|