• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    用于染料敏化太陽能電池的D5同類物分子設(shè)計(jì)

    2010-12-12 02:42:06詹衛(wèi)伸李源作陳茂篤
    物理化學(xué)學(xué)報(bào) 2010年5期

    詹衛(wèi)伸 潘 石 李源作 陳茂篤

    (大連理工大學(xué)物理與光電工程學(xué)院,近場(chǎng)光學(xué)與納米技術(shù)研究所,遼寧大連 116023)

    Since Gr?tzel et al.[1]reported the dye-sensitized solar cells (DSSC)based on Ru complex in 1991,more attention has been paid to DSSC due to its comparatively low cost and high efficiency[1-3].However,DSSC sensitized by free-metal organic dye has attracted more interests from researchers because of its much lower cost[4-11].In particular,the structural diversity and the simple synthetic route of organic dye molecules provide conditions for seeking more competitive DSSC sensitizer.Thus,the molecular design of organic dyes comes into development to improve the function of DSSC[12-20].

    The dye molecules applied to DSSC should have a structure of“donor-conjugate π bridge-acceptor(D-π-A)”[5,19,21-25],in which the“electron acceptor”must contain the“anchoring group”.By the“anchoring group”,dye molecules can absorb onto the surface of TiO2nanocrystalline[6,13,15,20,25-26].At present,the“anchoring group”is usually chosen as carboxyl(—COOH).Most D-π-A dyes take dialkylamines or diphenylamine moieties as electron donor,carboxylic acid,cyanoacrylic acid or rhodanine-3-acetic acid moieties as electron acceptor which also acts as an anchoring group.Carboxy groups can hang on the surface of TiO2,providing a strong restriction to dyes and good electron-channel. Photoabsorption characteristic of D-π-A dyes is connected with intramolecular charge transfer(ICT)excitation from electron donor to electron acceptor moiety,which results in efficient electron transfer from dyes excitation state via electron acceptor moiety (carboxy groups)to TiO2conduction band edge(CB).Charge transfer or separation between electron donors and acceptors in the excitation state can facilitate the electron injection from dyes to TiO2CB,thus it can separate the cationic charge from surface and effectively prevent the photoelectron(the injected electron) from compounding with oxidized dyes[12,25].

    Thelowestunoccupiedmolecularorbital(LUMO)energy level positions of dye molecules and their absorption spectra are the most key factors for the application of dyes to DSSC[27].LUMO energy level of dye must be higher than TiO2conduction band edge,and the higher it is,the larger the driving force for electron injection from dyes excitation state to TiO2will be,which is more beneficial to the improvement of DSSC[10,17-18,22,26,28-31]. Nowadays,the good match between UV-Vis absorption spectra of synthetical sensitized DSSC dyes and that of the solar radiation spectra has not been achieved,which is one of the urgent tasks.It is reported that,the lengthening of conjugated bridge of dye molecular structure could lead to red-shift in molecular absorption spectra[16,20,32].But the length should be proper,as overlong conjugated bridge will cause the accumulation of dye molecules on the surface of TiO2,affecting the properties of DSSC[4,8,25].

    Generally,the abilities of electron donor group(D)donating electrons,electron acceptor group(A)accepting electrons and the electric properties of conjugate π bridge have great influence on the photophysical,electrochemical and intramolecular chargetransfer properties of D-π-A dyes.The need of high-efficiency DSSC can be met by the change of chemical structure of every element(D,A,or conjugate π bridge).Absorption spectra of dye molecules should match solar radiation spectra,and their LUMO and HOMO energy levels must match the conduction band edge energy level of TiO2electrode and the redox potential of I-/I-3electrolyte.For study on the properties of molecule in photophysics and photochemistry,the molecular nonadiabatic process has attracted much attention in recent years.Han et al.[33-35]has investigated the nonadiabatic phenomenon of small molecules in detail.For larger moecules,however,nowadays we can not carry out accurate research on nonadiabatic process and we do not discuss this issue particularly in this paper.

    Recently,an organic dye called D5(Fig.1)attracts more attention because it can sensitize DSSC to enhance its solar energy conversion efficiency by 5%,and are expected to be applied in solid DSSC[7,15,23,26,36-40].But the wavelength of D5 at maximum absorbance is 476 nm,and the maximum wavelength of D5 absorbed on the surface of TiO2blue-shifts to 444 nm[41],which se-riously affects the ability of dye to absorb solar energy.Organic dye D5 is not considered as the bestphotosencitizer.Itispossible to find a better photo-sencitizer used for DSSC by modifying D5 molecules.

    Fig.1 Molecular structures of dye D5 and its analogues(D5xy)x and y in D5xy denote different substituents and positions based on D5.For example,D536,x=3,y=6,using—OCH3to replace—H in the positions of R1 and R6.

    Before trying any synthesis,the density functional theory (DFT)[42-43]and time-dependent DFT(TDDFT)[44-47]were adopted to provide a sound theoretical foundation for the design and filtering of analogues according to their molecular energy levels and absorption spectra[9,14,16,29-30,36,48-51].Based on D5,an attempt on the design of more efficient dye molecules was made via calculation.During the design,the principle of designing a much simpler dye molecule was insisted on.The method of modifying molecules is to introduce substitutent group to D5 skeleton.

    1 Computational methods

    DFT and TDDFT calculations were performed using the Gaussian 03 software package[52].The ground-state geometries of D5 and its analogues were fully optimized in vacuum without any symmetry constraints at the B3LYP level of theory with the 6-31G(d)basis set.The contribution of singly excited state configurations to each electronic transition and the simulated absorption spectra of the D5 analogues were calculated.The electronic absorption spectra require calculation of the allowed excitations and oscillator strengths.These calculations were carried out using TDDFT with the same basis set and exchange-correlation functional in vacuum and solution.The TD-B3LYP calculation containing the solvation effect in ethanol was performed on the geometries optimized in vacuum.DFT and TDDFT with B3LYP functional calculations qualitatively coincide with the experiment results[30,40-41,53-55].The conductor polarizable continuum model(CPCM)[24,56]is conducted using parameters and iterative computation methods suggested by Klamt[57-58]to contain the solvation effect.Natural bond orbital(NBO)analysis was performed in order to analyze the charge populations of the D5 analogues[40,59].

    2 Results and discussion

    2.1 Molecular design of D5 analogues

    For the dye of sensitized DSSC,the energy levels of HOMO and LUMO and its absorption spectra are the most important properties.To obtain efficient electron injection from excited dye to the conduction band of the TiO2electrode,the LUMO energy level of dye molecule must be higher than the conduction band energy level of the TiO2.Not every excited dye molecule can inject electrons to TiO2electrode,because of many other processes causing the de-excitation of dye molecule,which has a strong impact on the electron injection to the TiO2electrode. But with higher energy level of the LUMO,the driving force for the electron injection from dye molecule to TiO2electrode will become stronger,which results in the higher transfer efficiency of DSSC.In order to make the oxidized(lose electrons)dye molecule efficiently recover(gain electrons)from I-/I-3redox couple in the electrolyte,the HOMO energy level of dye molecule has to be lower than the redox potential of I-/I-3.To gain higher lightharvesting efficiency,dye molecule must have greater molar absorption coefficient in the wide area of solar spectra.Solar radiation spectra at the area of 500-600 nm is the strongest.If the absorption spectra of sensitized DSSC dye molecule are included in this region,it will be a perfect sensibilizer.However,up to now,there is not any kind of organic dye molecule suited for DSSC,whose absorption spectra can match perfectly with the solar radiation spectra.Especially,the absorption spectra of dye molecule on TiO2electrode exhibits significant blue-shift,compared with that in the vacuum and polar solvent.So far,the absorption spectra of dye molecule are mainly in the shortwave zone of near ultraviolet region and visible region.Therefore,the red-shift of absorption spectra is still the primary standard to judge the quality of sensitized DSSC dye molecule.The D5 type dye molecule for DSSC will be designed according to the HOMO and LUMO energy levels calculated by DFT and the maximum wavelength of the absorption spectra calculated by TDDFT.

    The results of experiment and calculation demonstrate that D5 is a better free-metal organic dye for DSSC[23,26,36,38,40-41,60].Because of the variety of organic molecular structure,it is possible to design organic dye superior to D5 for DSSC by modifying D5 molecule.Based on our previous investigation[27],the modification to D5 should make the new D5 molecule maximize LUMO energy level,on the condition that its HOMO energy level is lower than I-/I-3,so that the driving force for electron injection of the dye molecule from the excitation state to TiO2electrode could become greater,which can raise conversion efficiency of DSSC. Besides,dye molecular absorption spectra should be red-shifted as much as possible,in order to make the absorption of solar radiation photons more efficient.

    The extension of conjugate π bridge in dye molecular structure and the introduction of the electron-donating substituent and electron-withdrawing substituent to the chromophore backbone could move the HOMO and LUMO energy levels of dye molecules and also cause the red shift in absorption spectrum, which provide a possibility for the adjustments of the photochemical and electrochemical properties of dyes.It should be noticed that the expansion of conjugated π bridge in D-π-A dye molecules can easily lead to the accumulation of dye molecules on TiO2surface,reducing electron-injection yields from the dye molecules to the TiO2conduction band because of intermolecular energy transfer between molecules.In the modification of D5 analogue dye molecules,we did not extend the length of the conjugate π bridge.In addition,the geometry of the dye molecule should not be too large;otherwise,the dye molecules adsorbed onto TiO2surface per unit area as well as the conversion efficiency of DSSC per unit area will be reduced.

    As shown in Fig.1,taking—H from the skeleton of D5 molecule in different positions,we modified the D5 molecules with the electron-donating substituent(—OH,—NH2,—OCH3) and the electron-withdrawing substituent(—CF3,—F,—CN),respectively.Xia et al.[30]have used this method to modify the cou-marin molecule.To facilitate discussion,we numbered the modified organic molecules(Fig.1).We have designed 54 kinds of molecules,6 of which(D521,D526,D529,D531,D544,D545) failed in the DFT optimization.

    By DFT/TDDFT calculation(see Sections 2.3 and 2.4),it is shown that D516,D536 and D537,not only induce red-shift in absorption spectrum relative to D5,but also make LUMO energy level be greater than that of D5.The DSSC sensitized by these types of organic molecules make use of solar energy more efficiently and enlarge the driving force for electron injection into the TiO2electrode.Moreover,its HOMO energy level is lower than the position of the redox I-/I-3.Therefore,the conversion efficiency of the DSSC adopting these types of organic molecules as sensitizers should be greater than that of D5.It should be noted that these types of organic molecules share some common characteristics:firstly,the substituents are all the electron-donating substituent,symmetrically being replaced in pair;secondly,the substituents are located in the electron-donating group or in the conjugate bridge near the electron-donating group.The LUMO energy level position of D516 is the highest,so the driving force for electron injection from excited state into the TiO2is the greatest.

    DFT/TDDFT calculation results(see Sections 2.3 and 2.4) show that the LUMO energy levels of D565,D567 and D568 are lower than that of D5(much higher than conduction band edge of TiO2),the driving force for electron injection from excited state of these molecules into the TiO2is lower than that of D5,which leads to the lower electron transfer rate compared with D5,but their absorption spectra are red-shifted intensely compared with D5,making full use of solar energy.And their HOMO energy levels are lower than that of redox I-/I-3.Therefore,the conversion efficiency of the DSSC adopting these types of molecules as sensitizers is higher than that of D5.These types of organic molecules also share some common characteristics:the substituents are all the electron-withdrawing substituent;the substituents may be located in the electron-donating group,the electron-accepting group or the conjugate bridge.Therefore,the introduction of the electron-withdrawing substituent into D5 dye molecules may cause strong red-shift in the absorption spectra of organic molecules.

    DFT/TDDFT calculation results of other substituted molecules indicate that,compared with the DFT/TDDFT calculations of D5, either LUMO energy level has been improved,with blue-shift in absorption spectrum,or absorption spectrum is red-shifted,with lowerLUMO energy levels.

    2.2 Molecular structures

    Theconjugateπbridgeofnon-planeisnotconductivetoICTof electron transition from the electron-donating group to the electron-accepting group[11,14-16].Fig.2 shows the optimized molecular structures of D5 and some of its analogues.The conjugate bridges of all the D5 analogues except for D537 are all plane, which is just the same as D5.

    Fig.2 Optimized geometrical structures of dye D5 and its analogues

    By analysis of NBO,we find that the charge populations of donor group,conjugated bridge,and acceptor group of D5 are 0.061e,0.114e,and-0.174e,respectively,which is a typical D-π-A molecular structure.For D536,they are 0.057e,0.126e,and -0.184e;for D537,they are 0.057e,0.130e,and-0.184e;for D565,they are 0.097e,0.184e,and-0.281e;for D567,they are 0.184e,-0.094e,and-0.092e;for D568,they are 0.130e,-0.021e, and-0.105e.All of these molecules have similar D-π-A structures.The charge populations of three groups of D516 are 0.154e, 0.043e,and-0.197e,respectively.The positive charges of the electron-donating group and the negative charges of electronaccepting group of D516 are much more than that of D5,but the charges of conjugate π bridge are lower than that of D5.Therefore,this analogue should have D-π-A molecular structure superior to D5.

    Table 1 lists part of the bond lengths of chemical bonds of D5 and its analogues,from which we can find their difference is lower than 1 pm in general,and the greatest difference among individuals is lower than 3 pm.Therefore,it is believed that the molecular stabilities of D5 and its analogues are on the whole the same.

    The electronic structures of HOMOs and LUMOs of D5 and its analogues D516 and D565 are shown in Fig.3.The HOMOs of D5 are π orbitals,while LUMOs are single states of π*orbi-tals.HOMOs have ground-state characteristics,while LUMOs have excited state characteristics.In the ground state,the electrons are mainly distributed in the electron donor(diphenyl anilinegroup)andconjugated bridge(vinylene and thiophene group). In the excited state,the electrons are distributed in the thiophenes and cyanoacrylic acid groups,but mostly in the anchoring group(carboxyl:—COOH).For D5 analogues,HOMOs(HOMO and HOMO-1)are π orbital which is located in the electron donor groups,electron acceptor groups and the conjugate bridge, or the whole molecule.And the LUMOs(LUMO and LUMO+1) are π*orbital which is located in the conjugate bridge and the electron acceptor(anchor)group.The electronic orbitals of D5 analogues are the same as that of D5 due to their similar molecularstructures.Underillumination,throughintramolecularcharge transfer,electrons move from HOMOs to LUMOs,and eventually reach the anchoring groups.In this system,the light-induced electronic distribution change is considered as one of the decisive factors resulting in efficient charge separation.Thus it can be concluded:the electron transport from electron donor to electron acceptor(anchor)occurred during the course of excitation of dye molecules.As dye molecules are adsorbed on the semiconductor surface via the carboxyl group,the excitation promotes the electron injection process.The electronic structures of D5 and its analogues are very beneficial to solar cells.

    Table 1 Selected bond length (R,in pm)of the dye D5 and its analogues

    Fig.3 Isodensity plots(isodensity contour=0.02 a.u.)of the frontier orbitals of dye D5 and its analogues

    2.3 Energy level diagram

    The diagram for calculated frontier molecular orbital energy levels of the D5,D516,and D565 in vacuum and ethanol is depicted in Fig.4.The LUMO energy level positions of D536, D537,D565,and D567 in vacuum are-2.585,-2.558,-3.374, and-3.374 eV(in ethanol:-2.667,-2.667,-3.347,and-3.320 eV),respectively.The HOMO energy level positions of D536, D537,D565,andD567invacuumare-4.980,-5.061,-5.361,and-5.551 eV(in ethanol:-4.898,-4.980,-5.061,and-5.306 eV), respectively.Whether in vacuum or in the polar solution,LUMO energy level of D5 was much higher than that of TiO2conduction band edge(ca-4.0 eV).Thus,D5 molecule,that is still in excitation state after absorbing photons could inject electrons to TiO2electrode smoothly.HOMOs of D5 are all lower than that of I-/I-3(ca-4.8 eV),therefore,D5 molecule that loses electrons could be restored by getting electrons from electrolyte.

    Fig.4 The frontier molecular orbital energy levels of dye D5 and its analoguesH-1:HOMO-1,H-2:HOMO-2,L+1:LUMO+1,L+2:LUMO+2

    LUMO energy level positions of D516,D536,and D537 are all higher than those of D5,thus,the driving forces for electron injection from molecular excitation state of D516,D536 and D537 to TiO2electrode are larger than that of D5.LUMO energy level positions of D565,D567,and D568 are all lower than that of D5,but higher than that of TiO2conduction band edge; molecules in excited states of D565,D567,and D568 have a strong ability to inject electrons into TiO2electrodes.

    HOMO energy level positions of D5 and its analogues are all lower than that of I-/I-3,therefore,D5 and its analogues,which lose electrons,could be restored by getting electrons from electrolyte.Overall,the positions of LUMOs energy level(LUMO especially)decline in solution,but those of HOMOs(HOMO especially)have slight increases,and LUMOs-HOMOs gaps decrease,causing red-shift in the molecular absorption spectra in solution.

    The HOMO-LUMO gap of the dye D5 and analogues in vacuum was 1.987-2.503 eV(in ethanol:1.714-2.285 eV).Among D5,D516,D536,and D537,HOMO-LUMO gaps of D516 and D536 are the smallest.Among D565,D567,and D568,D565 has the smallest HOMO-LUMO gap.

    Table 2 shows the energy level positions of D5 in vacuum and different solutions.In different polar solutions,MO energies are almost the same.It is clear that different polar solutions have the same effect on MOs energies.Compared with the case of vacuum,the polar solutions have little effect on LUMO+1 and HOMO-1 of D5,and almost no effect on LUMO,but comparatively great effect on HOMO energy level,which could enhance HOMO energy level by about 0.1 eV.Polar solutions decrease the HOMO-LUMO energy gap of D5,which is the main reason for red-shift in dye molecular absorption spectrum.From the HOMO and LUMO energy levels in vacuum and solution,it can conclude that dye molecules in polar solution produce solvent effects of red-shift in absorption spectra[40,61],whose physical mechanism is that the polar solution has no effect on the LUMO energy level of dye molecules,but can improve the HOMO energy level of dye molecules.

    2.4 Electronic absorption spectra

    Fig.5 shows the UV-Vis absorption spectra of D5 and ana-logues D516 and D565 by calculation.Obviously,in the UV-Vis region,the absorption of long wave is more intense than that of the short one.There is a clear red-shift in the absorption spectra of D5 molecule in the solution compared with that in the vacuum,which is aforenamed solvent effect.In ethanol,MeCN,and THF solution,the absorption spectra of D5 are almost the same, namely,the solvent effects of different solutions are nearly identical due to the same impact of the aforementioned polar solution on the MOs energy level of the dye molecules.In the UVVis region,D5 has two clear absorption bands.In vacuum,the central wavelength of the first absorption band is 537 nm,and that of the second one is 393 nm.Because of solvent effect,in the polar solution,the central wavelengths of the two absorption bands of D5 have a red-shift to 603 nm and 415 nm.While the wavelengths of the two absorption peaks acquired by experiment in the solution were 476 nm and 300 nm,respectively[41]. Compared with the experiment,the calculation of the TDDFT shows a considerable red-shift,especially the red-shift in the solution is more visible than the one in vacuum.The difference between the experiment and calculation of the TDDFT may come from two aspects:the calculation method and solvent effect.The energy gaps calculated by the DFT are always smaller than that of the factual one,especially for the bigger conjugated system, which causes low calculated excited energy and significant redshiftinthecalculatedabsorptionspectraandthefactual one[26,40,62]. The solution,especially the polar solution(such as MeCN and THF),through the long-range interaction between solute and solvent,influences the geometry,the electronic structure,and the properties of molecule.Thus,solvent effect causes the energy level of solute molecule to decrease,thereby making a significant red-shift in the absorption band.It shows that it is difficult to conform the calculation to the experiment quantitatively. Though there is difference,the calculation of TDDFT can still describe the spectral features of the D5,because the line shape and the relative intensity of spectra correspond with the experiment qualitatively.

    Table 2Calculated LUMO+1,LUMO,HOMO,and HOMO-1 energies of dye D5 in vacuum,ethanol,MeCN,and THF

    Fig.5 Calculated electronic absorption spectra of dye D5 and its analogues in different media

    The absorption peaks of D516,D536,and D537 in vacuum were 562,560,and 562 nm,respectively,and those in alcoholic solution were 611,627,and 634 nm,respectively.Compared with the absorption spectra of D5(in vacuum and alcoholic solution,the absorption peaks λmaxwere 537 and 603 nm),there are significant red-shifts in the absorption spectra of these D5 analogue molecules.But the molar absorption coefficient ε(31000 and 32000 a.u.in vacuum and alcohol solution,respectively)of D537 at absorption peak are less than those of D516(83000 and 120000 a.u.in vacuum and in alcohol solution,respectively)and D536(70000 and 78000 a.u.in vacuum and in alcohol solution, respectively).The redshifts in absorption spectra of D516 and D536 are basically the same relative to D5.The molar absorption coefficient of D516 at absorption peak is greater than that of D536;thus,D516 is a sensitizer superior to D537 and D536.

    The absorption peaks of D565,D567,and D568 in vacuum were 658,616,and 622 nm,respectively,and the ones in alcohol solution were 782,702,and 719 nm,respectively,with intense red-shift relative to D5 and the same maximum molar absorption coefficient as that of D5.In terms of the absorption spectrum,they are better than D5 as sensitizer.D565 had the largest red-shift.Considering that the calculation of TDFDT itself may cause red-shift in the absorption spectra,and that the molecular absorption on TiO2could cause blueshift,D565 absorption spectrum is promising to match solar UV-Vis spectra better.D565 is a DSSC sensitizer superior to D567 and D568.

    In order to know the microscopic information about the absorption bands and electronic transitions,the relevant MO properties should be studied.Since visible and near-UV region are significant spectrum regions for photo-to-current conversion, Table 3 shows the singlet-singlet transitions in the absorption bands of D5 and its analogues.Simulated spectra about the absorption bands near 603 nm in solution shows that initial and final states of electronic transitions mostly lie in HOMO and LUMO, respectively.The initial and final states of electronic transitions mostly lie in HOMO-1 and LUMO respectively in the absorption bands near 415 nm.Weak absorption bands are also detected (353 nm in vacuum,367 nm in solution correspondingly).For these transitions,initial states are the two former HOMOs,and final states are the two former LUMOs.According to the analysis of electronic transitions and molecular orbitals,three absorption bands(two of which in visible region)in UV-Vis region for D5 molecules are typical π→π*transitions.

    Either in vacuum or in solution,D5 and its similar molecules show similar characters that the strongest absorption band (which is also the largest absorption band of red shift)is mainly composed of initial state HOMO and final state LUMO,while the other absorption bands are mainly composed of the(HOMO-2)-HOMO to the LUMO-(LUMO+2).These transitions caused by absorption are π→π*transitions.In these transitions,initial states are mainly related to the molecular orbitals of electrondonor groups,while the final states are mainly related to the molecular orbitals of electron acceptor groups.This shows that absorption is photoinduced electron transfer process.Thus,the excitations generate charge separated states.

    Table 3 Computed excited energies(E),oscillator strengths(f)and two highest electronic transition configurations for dye D5 and its analogues in vacuum and ethanol

    D516′s energy level gaps(LUMO)-(LUMO+1)and(LUMO+ 1)-(LUMO+2)were 0.626 and 0.626 eV,respectively(0.816 and 0.599 eV in the solution,respectively),which are the smallest in the D5 and its analogues.This indicates that,the density of states in D516 is more plentiful than other elements in the vicinity of LUMO,which is the main reason why D516 has the greatest molar absorption coefficient at absorption peak in the visible region.

    3 Conclusions

    Considering both the molecular orbital energy(HOMO and LUMO energy levels)and the absorption spectra,LUMO energy levelsofD5analoguemolecules(D516,D536,D537)areallhigher than that of D5,the driving forces for electron injection from excitation state to TiO2electrode are larger;the absorption spectra of such dye molecules all red-shift compared with D5. Therefore,D516,D536,and D537 are DSSC sensitizers superior to D5.Further analysis shows that,among the D5 analogues, with the greatest molar absorption coefficient,D516 is the best DSSC sensitizer.

    For absorption spectra,the absorption spectra of D5 analogue molecules(D565,D567,D568)all intensely red-shift compared with D5,which could capture solar radiation photons more efficiently than D5,enhancing the utilization efficiency of solar energy.Among them,the spectra of D565 red-shift most strongly, with the greatest molar absorption coefficient,which could match the solar spectra better after being absorbed onto the surface of TiO2.

    With the assistance of NBO analysis,the designed D5 analogue molecules D516,D536,D537,D565,D567,and D568, which are promising to be superior to D5,all share D-π-A structure,among which conjugation bridges are of planar structure,which benefits the generation of charge separated state from dye molecules by optical excitation.The analysis of DFT electron structure shows that,HOMOs of these molecules lie on π orbitals of electron donor,and LUMOs lie on π*orbitals of electron acceptor.TDDFT analysis on the excitation energy(absorption spectroscopy)shows that,the optical excitation causes π-π*transition,resulting in intramolecular charge transfer,with electronic absorption spectra lying in the zone from near-ultraviolet to visible light.

    In summery,it is possible to design free-metal organic dye molecules applied to DSSC using DFT/TDDFT.Calculated results show that,the designed molecules D516 and D565 are expected to be free-metal organic dye molecules applied to DSSC superior to D5.

    1 O′Regan,B.;Gr?tzel,M.Nature,1991,353:737

    2 Gr?tzel,M.Inorg.Chem.,2005,44:6841

    3 Peter,L.M.Phys.Chem.Chem.Phys.,2007,9:2630

    4 Wang,Z.S.;Cui,Y.;Dan-oh,Y.;Kasada,C.;Shinpo,A.;Hara,K. J.Phys.Chem.C,2007,111:7224

    5 Chen,R.;Yang,X.;Tian,H.;Sun,L.C.J.Photochem.Photobiol. A-Chem.,2007,189:295

    6 Tian,H.;Yang,X.;Chen,R.;Pan,Y.;Li,L.;Hagfeldt,A.;Sun,L. C.Chem.Commun.,2007:3741

    7 Kim,S.;Kim,D.;Choi,H.;Kang,M.S.;Song,K.;Kang,S.O.; Ko,J.Chem.Commun.,2008:4951

    8 Ito,S.;Miura,H.;Uchida,S.;Takata,M.;Sumioka,K.;Liska,P.; Comte,P.;Péchy,P.;Gr?tzel,M.Chem.Commun.,2008:5194

    9 Li,C.;Yum,J.H.;Moon,S.J.;Herrmann,A.;Eickemeyer,F.; Pschirer,N.G.;Erk,P.;Sch?neboom,J.;Müllen,K.;Gr?tzel,M.; Nazeeruddin,M.K.ChemSusChem,2008,1:615

    10 Jin,Y.;Hua,J.;Wu,W.;Ma,X.;Meng,F.Synth.Met.,2008,158: 64

    11 Burke,A.;Ito,S.;Snaith,H.;Bach,U.;Kwiatkowski,J.;Gr?tzel, M.Nano Lett.,2008,8:977

    12 Chen,Z.;Li,F.;Huang,C.Curr.Org.Chem.,2007,11:1241

    13 Rochford,J.;Chu,D.;Hagfeldt,A.;Galoppini,E.J.Am.Chem. Soc.,2007,129:4655

    14 Tsai,M.S.;Hsu,Y.C.;Lin,J.T.;Chen,H.C.;Hsu,C.P.J.Phys. Chem.C,2007,111:18785

    15 Chen,R.;Yang,X.;Tian,H.;Wang,X.;Hagfeldt,A.;Sun,L.C. Chem.Mater.,2007,19:4007

    16 Choi,H.;Lee,J.K.;Song,K.H.;Song,K.;Kang,S.O.;Ko,J. Tetrahedron,2007,63:1553

    17 Park,J.K.;Lee,H.R.;Chen,J.;Shinokubo,H.;Osuka,A.;Kim,D. J.Phys.Chem.C,2008,112:16691

    18 Eu,S.;Hayashi,S.;Umeyama,T.;Matano,Y.;Araki,Y.;Imahori, H.J.Phys.Chem.C,2008,112:4396

    19 Yen,Y.S.;Hsu,Y.C.;Lin,J.T.;Chang,C.W.;Hsu,C.P.;Yin,D. J.J.Phys.Chem.C,2008,112:12557

    20 Li,G.;Jiang,K.J.;Li,Y.F.;Li,S.L.;Yang,L.M.J.Phys.Chem. C,2008,112:11591

    21 Hagberg,D.P.;Marinado,T.;Karlsson,K.M.;Nonomura,K.;Qin, P.;Boschloo,G.;Brinck,T.;Hagfeldt,A.;Sun,L.C.J.Org. Chem.,2007,72:9550

    22 Qin,P.;Yang,X.;Chen,R.;Sun,L.C.;Marinado,T.;Edvinsson, T.;Boschloo,G.;Hagfeldt,A.J.Phys.Chem.C,2007,111:1853

    23 Boschloo,G.;Marinado,T.;Nonomura,K.;Edvinsson,T.;Agrios, A.G.;Hagberg,D.P.;Sun,L.C.;Quintana,M.;Karthikeyan,C.S.; Thelakkat,M.;Hagfeldt,A.Thin Solid Films,2008,516:7214

    24 Balanay,M.P.;Kim,D.H.Phys.Chem.Chem.Phys.,2008,10: 5121

    25 Ooyama,Y.;Harima,Y.Eur.J.Org.Chem.,2009:2903

    26 Marinado,T.;Hagberg,D.P.;Hedlund,M.;Edvinsson,T.; Johansson,E.M.J.;Boschloo,G.;Rensmo,H.;Brinck,T.;Sun,L. C.;Hagfeldty,A.Phys.Chem.Chem.Phys.,2009,11:133

    27 Zhan,W.S.;Pan,S.;Li,Y.Z.;Chen,M.D.Acta Phys.-Chim.Sin., 2009,25:2087 [詹衛(wèi)伸,潘 石,李源作,陳茂篤.物理化學(xué)學(xué)報(bào),2009,25:2087]

    28 Gervaldo,M.;Fungo,F.;Durantini,E.N.;Silber,J.J.;Sereno,L.; Otero,L.J.Phys.Chem.B,2005,109:20953

    29 Zhang,X.H.;Li,C.;Wang,W.B.;Cheng,X.X.;Wang,X.S.; Zhang,B.W.J.Mater.Chem.,2007,17:642

    30 Zhang,X.;Zhang,J.J.;Xia,Y.Y.J.Photochem.Photobiol.AChem.,2008,194:167

    31 Xu,W.;Peng,B.;Chen,J.;Liang,M.;Cai,F.J.Phys.Chem.C, 2008,112:874

    32 Sayama,K.;Tsukagoshi,S.;Mori,T.;Hara,K.;Ohga,Y.;Shinpo, A.;Abe,Y.;Suga,S.;Arakawa,H.Sol.Energy Mater.Sol.Cells, 2003,80:47

    33 Chu,T.S.;Zhang,Y.;Han,K.L.Int.Rev.Phys.Chem.,2006,25: 201

    34 Chu,T.S.;Varandas,A.J.C.;Han,K.L.Chemical Physics Letters, 2009,471:222

    35 Chu,T.S.;Han,K.L.;Hanke,M.;Balint-Kurti,G.G.; Kuppermann,A.;Abrol,R.J.Chem.Phys.,2009,130:144301

    36 Hagberg,D.P.;Yum,J.H.;Lee,H.;Angelis,F.D.;Marinado,T.; Karlsson,K.M.;Humphry-Baker,R.;Sun,L.C.;Hagfeldt,A.; Gr?tzel,M.;Nazeeruddin,M.K.J.Am.Chem.Soc.,2008,130: 6259

    37 Chou,C.S.;Yang,R.Y.;Weng,M.H.;Yeh,C.H.Powder Technology,2008,187:181

    38 Agrios,A.G.;Hagfeldt,A.J.Phys.Chem.C,2008,112:10021

    39 Fredin,K.;Johansson,E.M.J.;Blom,T.;Hedlund,M.;Plogmaker, S.;Siegbahn,H.;Leifer,K.;Rensmo,H.Synth.Met.,2009,159: 166

    40 Zhang,C.R.;Liu,Z.J.;Chen,Y.H.;Chen,H.S.;Wu,Y.Z.;Yuan, L.H.J.Mol.Struct.-Theochem,2009,899:86

    41 Hagberg,D.P.;Edvinsson,T.;Marinado,T.;Boschloo,G.; Hagfeldt,A.;Sun,L.C.Chem.Commun.,2006:2245

    42 Hohenberg,P.;Kohn,W.Phys.Rev.,1964,136:B864

    43 Kohn,W.;Sham,L.J.Phys.Rev.,1965,140:A1133

    44 Bauernschmitt,R.;Ahlrichs,R.Chemical Physics Letters,1996, 256:454

    45 Wiberg,K.B.;Stratmann,R.E.;Frisch,M.J.Chemical Physics Letters,1998,297:60

    46 Hirata,S.;Head-Gordon,M.Chemical Physics Letters,1999,302: 375

    47 Bauernschmitt,R.;Haiser,M.;Treutler,O.;Ahlrichs,R.Chemical Physics Letters,1997,264:573

    48 Kim,S.;Lee,J.K.;Kang,S.O.;Ko,J.;Yum,J.H.;Frantacci,S.; Angelis,F.D.;Censo,D.D.;Nazeeruddin,M.K.;Gr?tzel,M. J.Am.Chem.Soc.,2006,128:16701

    49 Jacquemin,D.;Perpète,E.A.;Scuseria,G.E.;Ciofini,I.;Adamo, C.J.Chem.Theory Comput.,2008,4:123

    50 Wonga,B.M.;Cordaro,J.G.J.Chem.Phys.,2008,129:214703

    51 Di Censo,D.;Fantacci,S.;De Angelis,F.;Klein,C.;Evans,N.; Kalyanasundaram,K.;Bolink,H.J.;Grazel,M.;Nazeeruddin,M. K.Inorg.Chem.,2008,47:980

    52 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision C.02.Pittsburgh,PA:Gaussian Inc.,2003

    53 Zhao,G.J.;Han,K.L.ChemPhysChem,2008,9:1842

    54 Zhao,G.J.;Han,K.L.J.Phys.Chem.A,2007,111:2469

    55 Zhao,G.J.;Han,K.L.J.Phys.Chem.A,2009,113:14329

    56 Barone,V.;Cossi,M.J.Phys.Chem.A,1998,102:1995

    57 Klamt,A.J.Phys.Chem.,1995,99(7):2224

    58 Klamt,A.J.Phys.Chem.,1996,100(9):3349

    59 Reed,A.E.;Weinstock,R.B.;Weinhold,F.J.Chem.Phys.,1985, 83:735

    60 Quintana,M.;Marinado,T.;Nonomura,K.;Boschloo,G.;Hagfeldt, A.J.Photochem.Photobiol.A-Chem.,2009,202:159

    61 Cossi,M.;Rega,N.;Scalmani,G.;Barone,V.J.Comput.Chem., 2003,24:669

    62 Wang,Y.L.;Wu,G.S.Acta Phys.-Chim.Sin.,2007,23:1831 [王溢磊,吳國(guó)是.物理化學(xué)學(xué)報(bào),2007,23:1831]

    av有码第一页| 久久久久人妻精品一区果冻| 久久97久久精品| 午夜福利影视在线免费观看| 激情视频va一区二区三区| videos熟女内射| 少妇被粗大的猛进出69影院| 国产免费现黄频在线看| 亚洲av欧美aⅴ国产| 你懂的网址亚洲精品在线观看| 一级,二级,三级黄色视频| 日本wwww免费看| 伦理电影免费视频| 人妻少妇偷人精品九色| 日韩精品免费视频一区二区三区| 国产有黄有色有爽视频| 极品人妻少妇av视频| 综合色丁香网| 亚洲成人一二三区av| 久久久精品免费免费高清| 精品国产乱码久久久久久男人| 日韩中字成人| 2018国产大陆天天弄谢| 男人爽女人下面视频在线观看| 亚洲精品一区蜜桃| 亚洲av电影在线进入| 1024视频免费在线观看| 欧美少妇被猛烈插入视频| 王馨瑶露胸无遮挡在线观看| 男人舔女人的私密视频| 女性生殖器流出的白浆| 看非洲黑人一级黄片| 午夜免费鲁丝| 超碰97精品在线观看| 少妇的逼水好多| 国产福利在线免费观看视频| 成人国产av品久久久| 看非洲黑人一级黄片| 成人18禁高潮啪啪吃奶动态图| 中文乱码字字幕精品一区二区三区| 亚洲国产精品国产精品| 大香蕉久久网| 欧美日韩视频精品一区| 人人澡人人妻人| 一级a爱视频在线免费观看| 国产精品麻豆人妻色哟哟久久| 国产白丝娇喘喷水9色精品| 国产精品无大码| 国产人伦9x9x在线观看 | 91国产中文字幕| 成人影院久久| 国产亚洲一区二区精品| 亚洲视频免费观看视频| 在线观看免费日韩欧美大片| 两个人看的免费小视频| 亚洲成人一二三区av| kizo精华| 黄片无遮挡物在线观看| 成人18禁高潮啪啪吃奶动态图| 少妇 在线观看| 精品视频人人做人人爽| 男的添女的下面高潮视频| 国产一区亚洲一区在线观看| 我要看黄色一级片免费的| 一区二区三区激情视频| 亚洲精品美女久久久久99蜜臀 | 亚洲精品国产av成人精品| 亚洲精品第二区| 国产精品麻豆人妻色哟哟久久| 丝袜美腿诱惑在线| 精品久久蜜臀av无| 午夜激情av网站| 精品国产一区二区三区四区第35| 母亲3免费完整高清在线观看 | 久久精品国产亚洲av天美| 亚洲国产日韩一区二区| 久久精品国产自在天天线| xxxhd国产人妻xxx| 中文字幕亚洲精品专区| 五月开心婷婷网| 欧美日韩一级在线毛片| videossex国产| 老熟女久久久| av.在线天堂| xxx大片免费视频| 欧美人与性动交α欧美软件| 欧美av亚洲av综合av国产av | 美女国产视频在线观看| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频| 国产熟女欧美一区二区| 国产成人精品婷婷| 九色亚洲精品在线播放| 深夜精品福利| 日韩制服骚丝袜av| 热99国产精品久久久久久7| 欧美精品高潮呻吟av久久| 国产有黄有色有爽视频| 欧美日韩亚洲国产一区二区在线观看 | 老司机影院成人| 国产成人精品一,二区| av.在线天堂| 中文精品一卡2卡3卡4更新| 久久国内精品自在自线图片| 久久精品aⅴ一区二区三区四区 | 国产精品99久久99久久久不卡 | 精品人妻偷拍中文字幕| 欧美日韩视频高清一区二区三区二| 一区二区三区激情视频| 午夜福利在线免费观看网站| 美女国产视频在线观看| 欧美精品亚洲一区二区| 久久精品熟女亚洲av麻豆精品| 纵有疾风起免费观看全集完整版| 一级毛片电影观看| 麻豆精品久久久久久蜜桃| a级片在线免费高清观看视频| 丝袜人妻中文字幕| 青青草视频在线视频观看| 热99国产精品久久久久久7| 青春草视频在线免费观看| 精品福利永久在线观看| 在线观看国产h片| 韩国高清视频一区二区三区| videosex国产| 精品久久蜜臀av无| 久久久久久免费高清国产稀缺| 伦精品一区二区三区| 看非洲黑人一级黄片| 久久国产亚洲av麻豆专区| 免费黄网站久久成人精品| 波野结衣二区三区在线| 国产亚洲欧美精品永久| 热re99久久精品国产66热6| 国产探花极品一区二区| 成人国产麻豆网| 卡戴珊不雅视频在线播放| 三上悠亚av全集在线观看| 90打野战视频偷拍视频| 日韩av免费高清视频| 一级a爱视频在线免费观看| 国产毛片在线视频| 精品国产一区二区久久| 美女国产高潮福利片在线看| 亚洲久久久国产精品| 少妇被粗大猛烈的视频| 一本大道久久a久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 汤姆久久久久久久影院中文字幕| 亚洲成人手机| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久久久大奶| 久久国产亚洲av麻豆专区| 久久久国产欧美日韩av| 成年美女黄网站色视频大全免费| 91久久精品国产一区二区三区| 一区二区三区激情视频| 午夜福利在线免费观看网站| 亚洲国产欧美在线一区| 青春草国产在线视频| 91精品三级在线观看| 久久精品国产自在天天线| 日韩免费高清中文字幕av| 日韩视频在线欧美| 美女主播在线视频| www日本在线高清视频| 精品人妻在线不人妻| 汤姆久久久久久久影院中文字幕| 久久 成人 亚洲| 新久久久久国产一级毛片| 国产av码专区亚洲av| 精品久久久久久电影网| 男男h啪啪无遮挡| 国产爽快片一区二区三区| 国产免费又黄又爽又色| 免费观看a级毛片全部| 亚洲伊人久久精品综合| 日本午夜av视频| 在线观看三级黄色| 日本av手机在线免费观看| 亚洲成人一二三区av| 久久精品国产a三级三级三级| 99国产精品免费福利视频| 91aial.com中文字幕在线观看| 制服人妻中文乱码| 人妻少妇偷人精品九色| 一区福利在线观看| 亚洲一码二码三码区别大吗| 免费人妻精品一区二区三区视频| 哪个播放器可以免费观看大片| 搡老乐熟女国产| 我要看黄色一级片免费的| 国产免费又黄又爽又色| 99精国产麻豆久久婷婷| 色吧在线观看| 一本大道久久a久久精品| 国产精品麻豆人妻色哟哟久久| 欧美激情高清一区二区三区 | 叶爱在线成人免费视频播放| 两性夫妻黄色片| 在线观看国产h片| 男女高潮啪啪啪动态图| 美女国产高潮福利片在线看| 欧美av亚洲av综合av国产av | 成年美女黄网站色视频大全免费| 国产精品亚洲av一区麻豆 | 亚洲精品成人av观看孕妇| 日韩在线高清观看一区二区三区| 天堂中文最新版在线下载| 成人国语在线视频| 亚洲av免费高清在线观看| 亚洲成人手机| 18禁观看日本| 美女高潮到喷水免费观看| 五月伊人婷婷丁香| 有码 亚洲区| 99九九在线精品视频| 午夜影院在线不卡| 久久精品人人爽人人爽视色| 人成视频在线观看免费观看| 亚洲国产av新网站| 精品一区二区三区四区五区乱码 | 亚洲成人一二三区av| 丝袜喷水一区| 国产精品av久久久久免费| 男女边摸边吃奶| 国产一区二区三区av在线| 国产综合精华液| 亚洲精品成人av观看孕妇| 赤兔流量卡办理| 国产成人精品久久久久久| 国产亚洲午夜精品一区二区久久| 国产1区2区3区精品| 国产精品99久久99久久久不卡 | 精品少妇一区二区三区视频日本电影 | 欧美精品人与动牲交sv欧美| 观看av在线不卡| 欧美精品国产亚洲| av天堂久久9| 中文乱码字字幕精品一区二区三区| 伊人久久国产一区二区| 精品亚洲成a人片在线观看| 久久av网站| 大香蕉久久网| 99久久中文字幕三级久久日本| 欧美日韩视频高清一区二区三区二| 欧美国产精品va在线观看不卡| 欧美成人午夜精品| 国产精品.久久久| 制服诱惑二区| 青春草亚洲视频在线观看| 久久精品夜色国产| 日韩一区二区视频免费看| 老鸭窝网址在线观看| 熟女少妇亚洲综合色aaa.| 激情五月婷婷亚洲| 久久韩国三级中文字幕| 国产亚洲一区二区精品| 精品国产一区二区三区四区第35| 蜜桃在线观看..| 免费高清在线观看日韩| 人人妻人人澡人人看| 精品久久蜜臀av无| 久久女婷五月综合色啪小说| 精品国产乱码久久久久久男人| av免费观看日本| 亚洲av福利一区| 国产精品嫩草影院av在线观看| 久久毛片免费看一区二区三区| 一区在线观看完整版| 热re99久久国产66热| 日本91视频免费播放| 久久久久久久久久久久大奶| 天美传媒精品一区二区| 三上悠亚av全集在线观看| 亚洲经典国产精华液单| 26uuu在线亚洲综合色| 一二三四中文在线观看免费高清| 18禁动态无遮挡网站| 国产男女超爽视频在线观看| 在线观看三级黄色| 少妇 在线观看| 欧美激情极品国产一区二区三区| 亚洲伊人久久精品综合| 国产精品嫩草影院av在线观看| 久热这里只有精品99| 久久99一区二区三区| 国产精品三级大全| 九色亚洲精品在线播放| 新久久久久国产一级毛片| 男女免费视频国产| 国产亚洲欧美精品永久| 亚洲精品日本国产第一区| videos熟女内射| 免费观看av网站的网址| 最近最新中文字幕免费大全7| 不卡av一区二区三区| 18禁观看日本| 人成视频在线观看免费观看| 黑人欧美特级aaaaaa片| 亚洲精品一区蜜桃| 欧美精品人与动牲交sv欧美| 制服人妻中文乱码| 国产一级毛片在线| 国产精品欧美亚洲77777| 人妻人人澡人人爽人人| 热re99久久精品国产66热6| 国产高清不卡午夜福利| 中国三级夫妇交换| 老司机影院成人| 免费在线观看完整版高清| 国产精品一国产av| 毛片一级片免费看久久久久| 秋霞伦理黄片| 午夜日本视频在线| 天堂8中文在线网| 极品少妇高潮喷水抽搐| 国产女主播在线喷水免费视频网站| 欧美日韩视频高清一区二区三区二| 纯流量卡能插随身wifi吗| 大话2 男鬼变身卡| 欧美日韩视频高清一区二区三区二| 国产爽快片一区二区三区| 成年美女黄网站色视频大全免费| 亚洲精品乱久久久久久| 97精品久久久久久久久久精品| 久久久久精品人妻al黑| 国产 精品1| 99久久人妻综合| 欧美激情高清一区二区三区 | 免费高清在线观看日韩| 国产精品不卡视频一区二区| 在线观看免费日韩欧美大片| 我的亚洲天堂| 国产深夜福利视频在线观看| 亚洲精品美女久久av网站| 成人黄色视频免费在线看| 中文字幕av电影在线播放| 女人高潮潮喷娇喘18禁视频| 一区二区日韩欧美中文字幕| 伊人久久大香线蕉亚洲五| 日韩熟女老妇一区二区性免费视频| 少妇的丰满在线观看| 国产精品久久久久久精品古装| 久热这里只有精品99| 欧美激情高清一区二区三区 | 久久久亚洲精品成人影院| 日韩三级伦理在线观看| 曰老女人黄片| 国产一区二区三区综合在线观看| 国产麻豆69| 99久久综合免费| 免费黄频网站在线观看国产| 波野结衣二区三区在线| 国产成人精品婷婷| 一区二区三区激情视频| av有码第一页| 爱豆传媒免费全集在线观看| 麻豆乱淫一区二区| av.在线天堂| 久久热在线av| 久久久久久久国产电影| 一区福利在线观看| 欧美精品高潮呻吟av久久| 国产女主播在线喷水免费视频网站| 久久ye,这里只有精品| 女人被躁到高潮嗷嗷叫费观| 你懂的网址亚洲精品在线观看| 丰满乱子伦码专区| 人妻系列 视频| 久久久久久久久久久免费av| 国产男人的电影天堂91| 黄网站色视频无遮挡免费观看| 日本黄色日本黄色录像| 成人国语在线视频| 亚洲精品第二区| 亚洲av电影在线进入| 国产人伦9x9x在线观看 | 免费观看av网站的网址| 欧美国产精品一级二级三级| 自线自在国产av| 国产av码专区亚洲av| 欧美国产精品一级二级三级| www.自偷自拍.com| 中文天堂在线官网| 少妇猛男粗大的猛烈进出视频| 女人被躁到高潮嗷嗷叫费观| 韩国av在线不卡| 精品人妻熟女毛片av久久网站| 美女主播在线视频| 99久久精品国产国产毛片| 国产成人一区二区在线| 精品久久蜜臀av无| 亚洲精品中文字幕在线视频| 男女免费视频国产| 啦啦啦在线观看免费高清www| 最近2019中文字幕mv第一页| 国产在线视频一区二区| 日韩av免费高清视频| 伊人久久大香线蕉亚洲五| 一级毛片黄色毛片免费观看视频| 激情五月婷婷亚洲| 亚洲国产精品国产精品| 亚洲欧美一区二区三区黑人 | 久久久精品国产亚洲av高清涩受| 一区二区三区激情视频| 大香蕉久久网| 可以免费在线观看a视频的电影网站 | 亚洲精品乱久久久久久| 热re99久久国产66热| 久久这里有精品视频免费| 成人国语在线视频| 18禁动态无遮挡网站| 男的添女的下面高潮视频| 国产在线视频一区二区| av免费观看日本| 曰老女人黄片| 日本免费在线观看一区| 搡老乐熟女国产| 亚洲少妇的诱惑av| 亚洲第一区二区三区不卡| 最近中文字幕高清免费大全6| 欧美av亚洲av综合av国产av | 亚洲欧美一区二区三区黑人 | 18禁国产床啪视频网站| 国产精品无大码| 黑人欧美特级aaaaaa片| 精品人妻在线不人妻| 久久久久视频综合| 欧美成人午夜精品| 国产免费福利视频在线观看| 久久97久久精品| 欧美人与性动交α欧美精品济南到 | 看非洲黑人一级黄片| 男女啪啪激烈高潮av片| 国产综合精华液| 丰满饥渴人妻一区二区三| 岛国毛片在线播放| 亚洲av男天堂| 少妇人妻精品综合一区二区| 在线天堂最新版资源| 91在线精品国自产拍蜜月| 国产一区有黄有色的免费视频| 少妇人妻 视频| 91国产中文字幕| 亚洲美女视频黄频| 日韩中文字幕欧美一区二区 | 亚洲婷婷狠狠爱综合网| 赤兔流量卡办理| 美女主播在线视频| 九色亚洲精品在线播放| 国产成人精品久久久久久| videossex国产| 看十八女毛片水多多多| 国产av国产精品国产| 亚洲精品美女久久av网站| 黄色怎么调成土黄色| 亚洲视频免费观看视频| 亚洲综合色网址| 国产日韩欧美在线精品| 国产97色在线日韩免费| 精品人妻一区二区三区麻豆| 国产深夜福利视频在线观看| a级片在线免费高清观看视频| a级毛片在线看网站| 大片免费播放器 马上看| 久久久精品免费免费高清| 99热网站在线观看| 亚洲欧美精品综合一区二区三区 | 成人国产麻豆网| 国产成人aa在线观看| 人人妻人人澡人人爽人人夜夜| 成年女人毛片免费观看观看9 | 国产欧美日韩一区二区三区在线| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久久免费视频了| 秋霞伦理黄片| 美女国产视频在线观看| 激情视频va一区二区三区| 丝袜美腿诱惑在线| 国产免费视频播放在线视频| 亚洲,欧美精品.| 久久久久视频综合| 午夜激情av网站| 成人免费观看视频高清| 亚洲av电影在线观看一区二区三区| 少妇被粗大的猛进出69影院| 成年女人在线观看亚洲视频| 国产野战对白在线观看| 精品国产乱码久久久久久小说| 亚洲国产最新在线播放| 人妻 亚洲 视频| 大片电影免费在线观看免费| 国产亚洲精品第一综合不卡| 在线观看免费日韩欧美大片| 水蜜桃什么品种好| 免费女性裸体啪啪无遮挡网站| 男男h啪啪无遮挡| 久久av网站| 夫妻午夜视频| 国产淫语在线视频| 一级片'在线观看视频| 国产亚洲精品第一综合不卡| 欧美日韩一级在线毛片| 日韩一区二区三区影片| 亚洲精品aⅴ在线观看| 王馨瑶露胸无遮挡在线观看| 老汉色av国产亚洲站长工具| 国产人伦9x9x在线观看 | 超色免费av| 男人爽女人下面视频在线观看| 人体艺术视频欧美日本| 国产精品久久久久久av不卡| 国产不卡av网站在线观看| 中国三级夫妇交换| av在线app专区| 日韩中字成人| 国产无遮挡羞羞视频在线观看| 成人毛片a级毛片在线播放| 国产精品嫩草影院av在线观看| av.在线天堂| 国产精品久久久久成人av| 波野结衣二区三区在线| 啦啦啦在线免费观看视频4| 亚洲,欧美,日韩| 国产精品一区二区在线不卡| 成人午夜精彩视频在线观看| 男女高潮啪啪啪动态图| 国产免费又黄又爽又色| 爱豆传媒免费全集在线观看| 久久人人97超碰香蕉20202| 久久精品国产自在天天线| 黄色 视频免费看| 大香蕉久久成人网| 秋霞在线观看毛片| 伊人亚洲综合成人网| 久久国产亚洲av麻豆专区| 亚洲成色77777| 9191精品国产免费久久| 免费大片黄手机在线观看| 青春草亚洲视频在线观看| 国产精品二区激情视频| 欧美少妇被猛烈插入视频| 精品视频人人做人人爽| 免费不卡的大黄色大毛片视频在线观看| 中文字幕制服av| 国产精品一国产av| 国产一级毛片在线| 欧美日韩一级在线毛片| 中文字幕制服av| 久久精品国产自在天天线| 人妻系列 视频| 国产精品成人在线| 欧美成人精品欧美一级黄| av免费观看日本| 久久久久久久国产电影| 黄片无遮挡物在线观看| 一边摸一边做爽爽视频免费| 日韩av在线免费看完整版不卡| 老司机亚洲免费影院| 寂寞人妻少妇视频99o| 午夜激情av网站| 日韩av不卡免费在线播放| 9热在线视频观看99| 免费人妻精品一区二区三区视频| 黄色 视频免费看| 国产国语露脸激情在线看| 久久久久久久大尺度免费视频| 成人国产麻豆网| 天天躁狠狠躁夜夜躁狠狠躁| xxx大片免费视频| 成年女人在线观看亚洲视频| 国产免费一区二区三区四区乱码| 成人免费观看视频高清| 人妻人人澡人人爽人人| 久久人妻熟女aⅴ| 午夜激情av网站| 日产精品乱码卡一卡2卡三| 日韩中文字幕欧美一区二区 | 亚洲国产精品国产精品| 可以免费在线观看a视频的电影网站 | 欧美日韩精品网址| 这个男人来自地球电影免费观看 | 国产精品久久久久久精品古装| 午夜av观看不卡| 中文字幕制服av| 人人妻人人澡人人看| 伊人久久国产一区二区| 亚洲av男天堂| 国产免费又黄又爽又色| 有码 亚洲区| 亚洲,欧美,日韩| 亚洲精品av麻豆狂野| 在线天堂最新版资源| 在现免费观看毛片| 午夜日本视频在线| 在线观看www视频免费| 久久精品久久久久久噜噜老黄| 99久久人妻综合| 少妇的丰满在线观看| 国产午夜精品一二区理论片| 老熟女久久久| 国产成人免费观看mmmm| 国产精品麻豆人妻色哟哟久久| 不卡视频在线观看欧美| 激情五月婷婷亚洲| 精品人妻熟女毛片av久久网站| 午夜福利视频精品| 成人亚洲欧美一区二区av| 婷婷色综合www| 成人手机av| 国产亚洲精品第一综合不卡| 大片电影免费在线观看免费| 老女人水多毛片| 久久久国产一区二区|