• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    用于染料敏化太陽(yáng)能電池的D5同類(lèi)物分子設(shè)計(jì)

    2010-12-12 02:42:06詹衛(wèi)伸李源作陳茂篤
    物理化學(xué)學(xué)報(bào) 2010年5期

    詹衛(wèi)伸 潘 石 李源作 陳茂篤

    (大連理工大學(xué)物理與光電工程學(xué)院,近場(chǎng)光學(xué)與納米技術(shù)研究所,遼寧大連 116023)

    Since Gr?tzel et al.[1]reported the dye-sensitized solar cells (DSSC)based on Ru complex in 1991,more attention has been paid to DSSC due to its comparatively low cost and high efficiency[1-3].However,DSSC sensitized by free-metal organic dye has attracted more interests from researchers because of its much lower cost[4-11].In particular,the structural diversity and the simple synthetic route of organic dye molecules provide conditions for seeking more competitive DSSC sensitizer.Thus,the molecular design of organic dyes comes into development to improve the function of DSSC[12-20].

    The dye molecules applied to DSSC should have a structure of“donor-conjugate π bridge-acceptor(D-π-A)”[5,19,21-25],in which the“electron acceptor”must contain the“anchoring group”.By the“anchoring group”,dye molecules can absorb onto the surface of TiO2nanocrystalline[6,13,15,20,25-26].At present,the“anchoring group”is usually chosen as carboxyl(—COOH).Most D-π-A dyes take dialkylamines or diphenylamine moieties as electron donor,carboxylic acid,cyanoacrylic acid or rhodanine-3-acetic acid moieties as electron acceptor which also acts as an anchoring group.Carboxy groups can hang on the surface of TiO2,providing a strong restriction to dyes and good electron-channel. Photoabsorption characteristic of D-π-A dyes is connected with intramolecular charge transfer(ICT)excitation from electron donor to electron acceptor moiety,which results in efficient electron transfer from dyes excitation state via electron acceptor moiety (carboxy groups)to TiO2conduction band edge(CB).Charge transfer or separation between electron donors and acceptors in the excitation state can facilitate the electron injection from dyes to TiO2CB,thus it can separate the cationic charge from surface and effectively prevent the photoelectron(the injected electron) from compounding with oxidized dyes[12,25].

    Thelowestunoccupiedmolecularorbital(LUMO)energy level positions of dye molecules and their absorption spectra are the most key factors for the application of dyes to DSSC[27].LUMO energy level of dye must be higher than TiO2conduction band edge,and the higher it is,the larger the driving force for electron injection from dyes excitation state to TiO2will be,which is more beneficial to the improvement of DSSC[10,17-18,22,26,28-31]. Nowadays,the good match between UV-Vis absorption spectra of synthetical sensitized DSSC dyes and that of the solar radiation spectra has not been achieved,which is one of the urgent tasks.It is reported that,the lengthening of conjugated bridge of dye molecular structure could lead to red-shift in molecular absorption spectra[16,20,32].But the length should be proper,as overlong conjugated bridge will cause the accumulation of dye molecules on the surface of TiO2,affecting the properties of DSSC[4,8,25].

    Generally,the abilities of electron donor group(D)donating electrons,electron acceptor group(A)accepting electrons and the electric properties of conjugate π bridge have great influence on the photophysical,electrochemical and intramolecular chargetransfer properties of D-π-A dyes.The need of high-efficiency DSSC can be met by the change of chemical structure of every element(D,A,or conjugate π bridge).Absorption spectra of dye molecules should match solar radiation spectra,and their LUMO and HOMO energy levels must match the conduction band edge energy level of TiO2electrode and the redox potential of I-/I-3electrolyte.For study on the properties of molecule in photophysics and photochemistry,the molecular nonadiabatic process has attracted much attention in recent years.Han et al.[33-35]has investigated the nonadiabatic phenomenon of small molecules in detail.For larger moecules,however,nowadays we can not carry out accurate research on nonadiabatic process and we do not discuss this issue particularly in this paper.

    Recently,an organic dye called D5(Fig.1)attracts more attention because it can sensitize DSSC to enhance its solar energy conversion efficiency by 5%,and are expected to be applied in solid DSSC[7,15,23,26,36-40].But the wavelength of D5 at maximum absorbance is 476 nm,and the maximum wavelength of D5 absorbed on the surface of TiO2blue-shifts to 444 nm[41],which se-riously affects the ability of dye to absorb solar energy.Organic dye D5 is not considered as the bestphotosencitizer.Itispossible to find a better photo-sencitizer used for DSSC by modifying D5 molecules.

    Fig.1 Molecular structures of dye D5 and its analogues(D5xy)x and y in D5xy denote different substituents and positions based on D5.For example,D536,x=3,y=6,using—OCH3to replace—H in the positions of R1 and R6.

    Before trying any synthesis,the density functional theory (DFT)[42-43]and time-dependent DFT(TDDFT)[44-47]were adopted to provide a sound theoretical foundation for the design and filtering of analogues according to their molecular energy levels and absorption spectra[9,14,16,29-30,36,48-51].Based on D5,an attempt on the design of more efficient dye molecules was made via calculation.During the design,the principle of designing a much simpler dye molecule was insisted on.The method of modifying molecules is to introduce substitutent group to D5 skeleton.

    1 Computational methods

    DFT and TDDFT calculations were performed using the Gaussian 03 software package[52].The ground-state geometries of D5 and its analogues were fully optimized in vacuum without any symmetry constraints at the B3LYP level of theory with the 6-31G(d)basis set.The contribution of singly excited state configurations to each electronic transition and the simulated absorption spectra of the D5 analogues were calculated.The electronic absorption spectra require calculation of the allowed excitations and oscillator strengths.These calculations were carried out using TDDFT with the same basis set and exchange-correlation functional in vacuum and solution.The TD-B3LYP calculation containing the solvation effect in ethanol was performed on the geometries optimized in vacuum.DFT and TDDFT with B3LYP functional calculations qualitatively coincide with the experiment results[30,40-41,53-55].The conductor polarizable continuum model(CPCM)[24,56]is conducted using parameters and iterative computation methods suggested by Klamt[57-58]to contain the solvation effect.Natural bond orbital(NBO)analysis was performed in order to analyze the charge populations of the D5 analogues[40,59].

    2 Results and discussion

    2.1 Molecular design of D5 analogues

    For the dye of sensitized DSSC,the energy levels of HOMO and LUMO and its absorption spectra are the most important properties.To obtain efficient electron injection from excited dye to the conduction band of the TiO2electrode,the LUMO energy level of dye molecule must be higher than the conduction band energy level of the TiO2.Not every excited dye molecule can inject electrons to TiO2electrode,because of many other processes causing the de-excitation of dye molecule,which has a strong impact on the electron injection to the TiO2electrode. But with higher energy level of the LUMO,the driving force for the electron injection from dye molecule to TiO2electrode will become stronger,which results in the higher transfer efficiency of DSSC.In order to make the oxidized(lose electrons)dye molecule efficiently recover(gain electrons)from I-/I-3redox couple in the electrolyte,the HOMO energy level of dye molecule has to be lower than the redox potential of I-/I-3.To gain higher lightharvesting efficiency,dye molecule must have greater molar absorption coefficient in the wide area of solar spectra.Solar radiation spectra at the area of 500-600 nm is the strongest.If the absorption spectra of sensitized DSSC dye molecule are included in this region,it will be a perfect sensibilizer.However,up to now,there is not any kind of organic dye molecule suited for DSSC,whose absorption spectra can match perfectly with the solar radiation spectra.Especially,the absorption spectra of dye molecule on TiO2electrode exhibits significant blue-shift,compared with that in the vacuum and polar solvent.So far,the absorption spectra of dye molecule are mainly in the shortwave zone of near ultraviolet region and visible region.Therefore,the red-shift of absorption spectra is still the primary standard to judge the quality of sensitized DSSC dye molecule.The D5 type dye molecule for DSSC will be designed according to the HOMO and LUMO energy levels calculated by DFT and the maximum wavelength of the absorption spectra calculated by TDDFT.

    The results of experiment and calculation demonstrate that D5 is a better free-metal organic dye for DSSC[23,26,36,38,40-41,60].Because of the variety of organic molecular structure,it is possible to design organic dye superior to D5 for DSSC by modifying D5 molecule.Based on our previous investigation[27],the modification to D5 should make the new D5 molecule maximize LUMO energy level,on the condition that its HOMO energy level is lower than I-/I-3,so that the driving force for electron injection of the dye molecule from the excitation state to TiO2electrode could become greater,which can raise conversion efficiency of DSSC. Besides,dye molecular absorption spectra should be red-shifted as much as possible,in order to make the absorption of solar radiation photons more efficient.

    The extension of conjugate π bridge in dye molecular structure and the introduction of the electron-donating substituent and electron-withdrawing substituent to the chromophore backbone could move the HOMO and LUMO energy levels of dye molecules and also cause the red shift in absorption spectrum, which provide a possibility for the adjustments of the photochemical and electrochemical properties of dyes.It should be noticed that the expansion of conjugated π bridge in D-π-A dye molecules can easily lead to the accumulation of dye molecules on TiO2surface,reducing electron-injection yields from the dye molecules to the TiO2conduction band because of intermolecular energy transfer between molecules.In the modification of D5 analogue dye molecules,we did not extend the length of the conjugate π bridge.In addition,the geometry of the dye molecule should not be too large;otherwise,the dye molecules adsorbed onto TiO2surface per unit area as well as the conversion efficiency of DSSC per unit area will be reduced.

    As shown in Fig.1,taking—H from the skeleton of D5 molecule in different positions,we modified the D5 molecules with the electron-donating substituent(—OH,—NH2,—OCH3) and the electron-withdrawing substituent(—CF3,—F,—CN),respectively.Xia et al.[30]have used this method to modify the cou-marin molecule.To facilitate discussion,we numbered the modified organic molecules(Fig.1).We have designed 54 kinds of molecules,6 of which(D521,D526,D529,D531,D544,D545) failed in the DFT optimization.

    By DFT/TDDFT calculation(see Sections 2.3 and 2.4),it is shown that D516,D536 and D537,not only induce red-shift in absorption spectrum relative to D5,but also make LUMO energy level be greater than that of D5.The DSSC sensitized by these types of organic molecules make use of solar energy more efficiently and enlarge the driving force for electron injection into the TiO2electrode.Moreover,its HOMO energy level is lower than the position of the redox I-/I-3.Therefore,the conversion efficiency of the DSSC adopting these types of organic molecules as sensitizers should be greater than that of D5.It should be noted that these types of organic molecules share some common characteristics:firstly,the substituents are all the electron-donating substituent,symmetrically being replaced in pair;secondly,the substituents are located in the electron-donating group or in the conjugate bridge near the electron-donating group.The LUMO energy level position of D516 is the highest,so the driving force for electron injection from excited state into the TiO2is the greatest.

    DFT/TDDFT calculation results(see Sections 2.3 and 2.4) show that the LUMO energy levels of D565,D567 and D568 are lower than that of D5(much higher than conduction band edge of TiO2),the driving force for electron injection from excited state of these molecules into the TiO2is lower than that of D5,which leads to the lower electron transfer rate compared with D5,but their absorption spectra are red-shifted intensely compared with D5,making full use of solar energy.And their HOMO energy levels are lower than that of redox I-/I-3.Therefore,the conversion efficiency of the DSSC adopting these types of molecules as sensitizers is higher than that of D5.These types of organic molecules also share some common characteristics:the substituents are all the electron-withdrawing substituent;the substituents may be located in the electron-donating group,the electron-accepting group or the conjugate bridge.Therefore,the introduction of the electron-withdrawing substituent into D5 dye molecules may cause strong red-shift in the absorption spectra of organic molecules.

    DFT/TDDFT calculation results of other substituted molecules indicate that,compared with the DFT/TDDFT calculations of D5, either LUMO energy level has been improved,with blue-shift in absorption spectrum,or absorption spectrum is red-shifted,with lowerLUMO energy levels.

    2.2 Molecular structures

    Theconjugateπbridgeofnon-planeisnotconductivetoICTof electron transition from the electron-donating group to the electron-accepting group[11,14-16].Fig.2 shows the optimized molecular structures of D5 and some of its analogues.The conjugate bridges of all the D5 analogues except for D537 are all plane, which is just the same as D5.

    Fig.2 Optimized geometrical structures of dye D5 and its analogues

    By analysis of NBO,we find that the charge populations of donor group,conjugated bridge,and acceptor group of D5 are 0.061e,0.114e,and-0.174e,respectively,which is a typical D-π-A molecular structure.For D536,they are 0.057e,0.126e,and -0.184e;for D537,they are 0.057e,0.130e,and-0.184e;for D565,they are 0.097e,0.184e,and-0.281e;for D567,they are 0.184e,-0.094e,and-0.092e;for D568,they are 0.130e,-0.021e, and-0.105e.All of these molecules have similar D-π-A structures.The charge populations of three groups of D516 are 0.154e, 0.043e,and-0.197e,respectively.The positive charges of the electron-donating group and the negative charges of electronaccepting group of D516 are much more than that of D5,but the charges of conjugate π bridge are lower than that of D5.Therefore,this analogue should have D-π-A molecular structure superior to D5.

    Table 1 lists part of the bond lengths of chemical bonds of D5 and its analogues,from which we can find their difference is lower than 1 pm in general,and the greatest difference among individuals is lower than 3 pm.Therefore,it is believed that the molecular stabilities of D5 and its analogues are on the whole the same.

    The electronic structures of HOMOs and LUMOs of D5 and its analogues D516 and D565 are shown in Fig.3.The HOMOs of D5 are π orbitals,while LUMOs are single states of π*orbi-tals.HOMOs have ground-state characteristics,while LUMOs have excited state characteristics.In the ground state,the electrons are mainly distributed in the electron donor(diphenyl anilinegroup)andconjugated bridge(vinylene and thiophene group). In the excited state,the electrons are distributed in the thiophenes and cyanoacrylic acid groups,but mostly in the anchoring group(carboxyl:—COOH).For D5 analogues,HOMOs(HOMO and HOMO-1)are π orbital which is located in the electron donor groups,electron acceptor groups and the conjugate bridge, or the whole molecule.And the LUMOs(LUMO and LUMO+1) are π*orbital which is located in the conjugate bridge and the electron acceptor(anchor)group.The electronic orbitals of D5 analogues are the same as that of D5 due to their similar molecularstructures.Underillumination,throughintramolecularcharge transfer,electrons move from HOMOs to LUMOs,and eventually reach the anchoring groups.In this system,the light-induced electronic distribution change is considered as one of the decisive factors resulting in efficient charge separation.Thus it can be concluded:the electron transport from electron donor to electron acceptor(anchor)occurred during the course of excitation of dye molecules.As dye molecules are adsorbed on the semiconductor surface via the carboxyl group,the excitation promotes the electron injection process.The electronic structures of D5 and its analogues are very beneficial to solar cells.

    Table 1 Selected bond length (R,in pm)of the dye D5 and its analogues

    Fig.3 Isodensity plots(isodensity contour=0.02 a.u.)of the frontier orbitals of dye D5 and its analogues

    2.3 Energy level diagram

    The diagram for calculated frontier molecular orbital energy levels of the D5,D516,and D565 in vacuum and ethanol is depicted in Fig.4.The LUMO energy level positions of D536, D537,D565,and D567 in vacuum are-2.585,-2.558,-3.374, and-3.374 eV(in ethanol:-2.667,-2.667,-3.347,and-3.320 eV),respectively.The HOMO energy level positions of D536, D537,D565,andD567invacuumare-4.980,-5.061,-5.361,and-5.551 eV(in ethanol:-4.898,-4.980,-5.061,and-5.306 eV), respectively.Whether in vacuum or in the polar solution,LUMO energy level of D5 was much higher than that of TiO2conduction band edge(ca-4.0 eV).Thus,D5 molecule,that is still in excitation state after absorbing photons could inject electrons to TiO2electrode smoothly.HOMOs of D5 are all lower than that of I-/I-3(ca-4.8 eV),therefore,D5 molecule that loses electrons could be restored by getting electrons from electrolyte.

    Fig.4 The frontier molecular orbital energy levels of dye D5 and its analoguesH-1:HOMO-1,H-2:HOMO-2,L+1:LUMO+1,L+2:LUMO+2

    LUMO energy level positions of D516,D536,and D537 are all higher than those of D5,thus,the driving forces for electron injection from molecular excitation state of D516,D536 and D537 to TiO2electrode are larger than that of D5.LUMO energy level positions of D565,D567,and D568 are all lower than that of D5,but higher than that of TiO2conduction band edge; molecules in excited states of D565,D567,and D568 have a strong ability to inject electrons into TiO2electrodes.

    HOMO energy level positions of D5 and its analogues are all lower than that of I-/I-3,therefore,D5 and its analogues,which lose electrons,could be restored by getting electrons from electrolyte.Overall,the positions of LUMOs energy level(LUMO especially)decline in solution,but those of HOMOs(HOMO especially)have slight increases,and LUMOs-HOMOs gaps decrease,causing red-shift in the molecular absorption spectra in solution.

    The HOMO-LUMO gap of the dye D5 and analogues in vacuum was 1.987-2.503 eV(in ethanol:1.714-2.285 eV).Among D5,D516,D536,and D537,HOMO-LUMO gaps of D516 and D536 are the smallest.Among D565,D567,and D568,D565 has the smallest HOMO-LUMO gap.

    Table 2 shows the energy level positions of D5 in vacuum and different solutions.In different polar solutions,MO energies are almost the same.It is clear that different polar solutions have the same effect on MOs energies.Compared with the case of vacuum,the polar solutions have little effect on LUMO+1 and HOMO-1 of D5,and almost no effect on LUMO,but comparatively great effect on HOMO energy level,which could enhance HOMO energy level by about 0.1 eV.Polar solutions decrease the HOMO-LUMO energy gap of D5,which is the main reason for red-shift in dye molecular absorption spectrum.From the HOMO and LUMO energy levels in vacuum and solution,it can conclude that dye molecules in polar solution produce solvent effects of red-shift in absorption spectra[40,61],whose physical mechanism is that the polar solution has no effect on the LUMO energy level of dye molecules,but can improve the HOMO energy level of dye molecules.

    2.4 Electronic absorption spectra

    Fig.5 shows the UV-Vis absorption spectra of D5 and ana-logues D516 and D565 by calculation.Obviously,in the UV-Vis region,the absorption of long wave is more intense than that of the short one.There is a clear red-shift in the absorption spectra of D5 molecule in the solution compared with that in the vacuum,which is aforenamed solvent effect.In ethanol,MeCN,and THF solution,the absorption spectra of D5 are almost the same, namely,the solvent effects of different solutions are nearly identical due to the same impact of the aforementioned polar solution on the MOs energy level of the dye molecules.In the UVVis region,D5 has two clear absorption bands.In vacuum,the central wavelength of the first absorption band is 537 nm,and that of the second one is 393 nm.Because of solvent effect,in the polar solution,the central wavelengths of the two absorption bands of D5 have a red-shift to 603 nm and 415 nm.While the wavelengths of the two absorption peaks acquired by experiment in the solution were 476 nm and 300 nm,respectively[41]. Compared with the experiment,the calculation of the TDDFT shows a considerable red-shift,especially the red-shift in the solution is more visible than the one in vacuum.The difference between the experiment and calculation of the TDDFT may come from two aspects:the calculation method and solvent effect.The energy gaps calculated by the DFT are always smaller than that of the factual one,especially for the bigger conjugated system, which causes low calculated excited energy and significant redshiftinthecalculatedabsorptionspectraandthefactual one[26,40,62]. The solution,especially the polar solution(such as MeCN and THF),through the long-range interaction between solute and solvent,influences the geometry,the electronic structure,and the properties of molecule.Thus,solvent effect causes the energy level of solute molecule to decrease,thereby making a significant red-shift in the absorption band.It shows that it is difficult to conform the calculation to the experiment quantitatively. Though there is difference,the calculation of TDDFT can still describe the spectral features of the D5,because the line shape and the relative intensity of spectra correspond with the experiment qualitatively.

    Table 2Calculated LUMO+1,LUMO,HOMO,and HOMO-1 energies of dye D5 in vacuum,ethanol,MeCN,and THF

    Fig.5 Calculated electronic absorption spectra of dye D5 and its analogues in different media

    The absorption peaks of D516,D536,and D537 in vacuum were 562,560,and 562 nm,respectively,and those in alcoholic solution were 611,627,and 634 nm,respectively.Compared with the absorption spectra of D5(in vacuum and alcoholic solution,the absorption peaks λmaxwere 537 and 603 nm),there are significant red-shifts in the absorption spectra of these D5 analogue molecules.But the molar absorption coefficient ε(31000 and 32000 a.u.in vacuum and alcohol solution,respectively)of D537 at absorption peak are less than those of D516(83000 and 120000 a.u.in vacuum and in alcohol solution,respectively)and D536(70000 and 78000 a.u.in vacuum and in alcohol solution, respectively).The redshifts in absorption spectra of D516 and D536 are basically the same relative to D5.The molar absorption coefficient of D516 at absorption peak is greater than that of D536;thus,D516 is a sensitizer superior to D537 and D536.

    The absorption peaks of D565,D567,and D568 in vacuum were 658,616,and 622 nm,respectively,and the ones in alcohol solution were 782,702,and 719 nm,respectively,with intense red-shift relative to D5 and the same maximum molar absorption coefficient as that of D5.In terms of the absorption spectrum,they are better than D5 as sensitizer.D565 had the largest red-shift.Considering that the calculation of TDFDT itself may cause red-shift in the absorption spectra,and that the molecular absorption on TiO2could cause blueshift,D565 absorption spectrum is promising to match solar UV-Vis spectra better.D565 is a DSSC sensitizer superior to D567 and D568.

    In order to know the microscopic information about the absorption bands and electronic transitions,the relevant MO properties should be studied.Since visible and near-UV region are significant spectrum regions for photo-to-current conversion, Table 3 shows the singlet-singlet transitions in the absorption bands of D5 and its analogues.Simulated spectra about the absorption bands near 603 nm in solution shows that initial and final states of electronic transitions mostly lie in HOMO and LUMO, respectively.The initial and final states of electronic transitions mostly lie in HOMO-1 and LUMO respectively in the absorption bands near 415 nm.Weak absorption bands are also detected (353 nm in vacuum,367 nm in solution correspondingly).For these transitions,initial states are the two former HOMOs,and final states are the two former LUMOs.According to the analysis of electronic transitions and molecular orbitals,three absorption bands(two of which in visible region)in UV-Vis region for D5 molecules are typical π→π*transitions.

    Either in vacuum or in solution,D5 and its similar molecules show similar characters that the strongest absorption band (which is also the largest absorption band of red shift)is mainly composed of initial state HOMO and final state LUMO,while the other absorption bands are mainly composed of the(HOMO-2)-HOMO to the LUMO-(LUMO+2).These transitions caused by absorption are π→π*transitions.In these transitions,initial states are mainly related to the molecular orbitals of electrondonor groups,while the final states are mainly related to the molecular orbitals of electron acceptor groups.This shows that absorption is photoinduced electron transfer process.Thus,the excitations generate charge separated states.

    Table 3 Computed excited energies(E),oscillator strengths(f)and two highest electronic transition configurations for dye D5 and its analogues in vacuum and ethanol

    D516′s energy level gaps(LUMO)-(LUMO+1)and(LUMO+ 1)-(LUMO+2)were 0.626 and 0.626 eV,respectively(0.816 and 0.599 eV in the solution,respectively),which are the smallest in the D5 and its analogues.This indicates that,the density of states in D516 is more plentiful than other elements in the vicinity of LUMO,which is the main reason why D516 has the greatest molar absorption coefficient at absorption peak in the visible region.

    3 Conclusions

    Considering both the molecular orbital energy(HOMO and LUMO energy levels)and the absorption spectra,LUMO energy levelsofD5analoguemolecules(D516,D536,D537)areallhigher than that of D5,the driving forces for electron injection from excitation state to TiO2electrode are larger;the absorption spectra of such dye molecules all red-shift compared with D5. Therefore,D516,D536,and D537 are DSSC sensitizers superior to D5.Further analysis shows that,among the D5 analogues, with the greatest molar absorption coefficient,D516 is the best DSSC sensitizer.

    For absorption spectra,the absorption spectra of D5 analogue molecules(D565,D567,D568)all intensely red-shift compared with D5,which could capture solar radiation photons more efficiently than D5,enhancing the utilization efficiency of solar energy.Among them,the spectra of D565 red-shift most strongly, with the greatest molar absorption coefficient,which could match the solar spectra better after being absorbed onto the surface of TiO2.

    With the assistance of NBO analysis,the designed D5 analogue molecules D516,D536,D537,D565,D567,and D568, which are promising to be superior to D5,all share D-π-A structure,among which conjugation bridges are of planar structure,which benefits the generation of charge separated state from dye molecules by optical excitation.The analysis of DFT electron structure shows that,HOMOs of these molecules lie on π orbitals of electron donor,and LUMOs lie on π*orbitals of electron acceptor.TDDFT analysis on the excitation energy(absorption spectroscopy)shows that,the optical excitation causes π-π*transition,resulting in intramolecular charge transfer,with electronic absorption spectra lying in the zone from near-ultraviolet to visible light.

    In summery,it is possible to design free-metal organic dye molecules applied to DSSC using DFT/TDDFT.Calculated results show that,the designed molecules D516 and D565 are expected to be free-metal organic dye molecules applied to DSSC superior to D5.

    1 O′Regan,B.;Gr?tzel,M.Nature,1991,353:737

    2 Gr?tzel,M.Inorg.Chem.,2005,44:6841

    3 Peter,L.M.Phys.Chem.Chem.Phys.,2007,9:2630

    4 Wang,Z.S.;Cui,Y.;Dan-oh,Y.;Kasada,C.;Shinpo,A.;Hara,K. J.Phys.Chem.C,2007,111:7224

    5 Chen,R.;Yang,X.;Tian,H.;Sun,L.C.J.Photochem.Photobiol. A-Chem.,2007,189:295

    6 Tian,H.;Yang,X.;Chen,R.;Pan,Y.;Li,L.;Hagfeldt,A.;Sun,L. C.Chem.Commun.,2007:3741

    7 Kim,S.;Kim,D.;Choi,H.;Kang,M.S.;Song,K.;Kang,S.O.; Ko,J.Chem.Commun.,2008:4951

    8 Ito,S.;Miura,H.;Uchida,S.;Takata,M.;Sumioka,K.;Liska,P.; Comte,P.;Péchy,P.;Gr?tzel,M.Chem.Commun.,2008:5194

    9 Li,C.;Yum,J.H.;Moon,S.J.;Herrmann,A.;Eickemeyer,F.; Pschirer,N.G.;Erk,P.;Sch?neboom,J.;Müllen,K.;Gr?tzel,M.; Nazeeruddin,M.K.ChemSusChem,2008,1:615

    10 Jin,Y.;Hua,J.;Wu,W.;Ma,X.;Meng,F.Synth.Met.,2008,158: 64

    11 Burke,A.;Ito,S.;Snaith,H.;Bach,U.;Kwiatkowski,J.;Gr?tzel, M.Nano Lett.,2008,8:977

    12 Chen,Z.;Li,F.;Huang,C.Curr.Org.Chem.,2007,11:1241

    13 Rochford,J.;Chu,D.;Hagfeldt,A.;Galoppini,E.J.Am.Chem. Soc.,2007,129:4655

    14 Tsai,M.S.;Hsu,Y.C.;Lin,J.T.;Chen,H.C.;Hsu,C.P.J.Phys. Chem.C,2007,111:18785

    15 Chen,R.;Yang,X.;Tian,H.;Wang,X.;Hagfeldt,A.;Sun,L.C. Chem.Mater.,2007,19:4007

    16 Choi,H.;Lee,J.K.;Song,K.H.;Song,K.;Kang,S.O.;Ko,J. Tetrahedron,2007,63:1553

    17 Park,J.K.;Lee,H.R.;Chen,J.;Shinokubo,H.;Osuka,A.;Kim,D. J.Phys.Chem.C,2008,112:16691

    18 Eu,S.;Hayashi,S.;Umeyama,T.;Matano,Y.;Araki,Y.;Imahori, H.J.Phys.Chem.C,2008,112:4396

    19 Yen,Y.S.;Hsu,Y.C.;Lin,J.T.;Chang,C.W.;Hsu,C.P.;Yin,D. J.J.Phys.Chem.C,2008,112:12557

    20 Li,G.;Jiang,K.J.;Li,Y.F.;Li,S.L.;Yang,L.M.J.Phys.Chem. C,2008,112:11591

    21 Hagberg,D.P.;Marinado,T.;Karlsson,K.M.;Nonomura,K.;Qin, P.;Boschloo,G.;Brinck,T.;Hagfeldt,A.;Sun,L.C.J.Org. Chem.,2007,72:9550

    22 Qin,P.;Yang,X.;Chen,R.;Sun,L.C.;Marinado,T.;Edvinsson, T.;Boschloo,G.;Hagfeldt,A.J.Phys.Chem.C,2007,111:1853

    23 Boschloo,G.;Marinado,T.;Nonomura,K.;Edvinsson,T.;Agrios, A.G.;Hagberg,D.P.;Sun,L.C.;Quintana,M.;Karthikeyan,C.S.; Thelakkat,M.;Hagfeldt,A.Thin Solid Films,2008,516:7214

    24 Balanay,M.P.;Kim,D.H.Phys.Chem.Chem.Phys.,2008,10: 5121

    25 Ooyama,Y.;Harima,Y.Eur.J.Org.Chem.,2009:2903

    26 Marinado,T.;Hagberg,D.P.;Hedlund,M.;Edvinsson,T.; Johansson,E.M.J.;Boschloo,G.;Rensmo,H.;Brinck,T.;Sun,L. C.;Hagfeldty,A.Phys.Chem.Chem.Phys.,2009,11:133

    27 Zhan,W.S.;Pan,S.;Li,Y.Z.;Chen,M.D.Acta Phys.-Chim.Sin., 2009,25:2087 [詹衛(wèi)伸,潘 石,李源作,陳茂篤.物理化學(xué)學(xué)報(bào),2009,25:2087]

    28 Gervaldo,M.;Fungo,F.;Durantini,E.N.;Silber,J.J.;Sereno,L.; Otero,L.J.Phys.Chem.B,2005,109:20953

    29 Zhang,X.H.;Li,C.;Wang,W.B.;Cheng,X.X.;Wang,X.S.; Zhang,B.W.J.Mater.Chem.,2007,17:642

    30 Zhang,X.;Zhang,J.J.;Xia,Y.Y.J.Photochem.Photobiol.AChem.,2008,194:167

    31 Xu,W.;Peng,B.;Chen,J.;Liang,M.;Cai,F.J.Phys.Chem.C, 2008,112:874

    32 Sayama,K.;Tsukagoshi,S.;Mori,T.;Hara,K.;Ohga,Y.;Shinpo, A.;Abe,Y.;Suga,S.;Arakawa,H.Sol.Energy Mater.Sol.Cells, 2003,80:47

    33 Chu,T.S.;Zhang,Y.;Han,K.L.Int.Rev.Phys.Chem.,2006,25: 201

    34 Chu,T.S.;Varandas,A.J.C.;Han,K.L.Chemical Physics Letters, 2009,471:222

    35 Chu,T.S.;Han,K.L.;Hanke,M.;Balint-Kurti,G.G.; Kuppermann,A.;Abrol,R.J.Chem.Phys.,2009,130:144301

    36 Hagberg,D.P.;Yum,J.H.;Lee,H.;Angelis,F.D.;Marinado,T.; Karlsson,K.M.;Humphry-Baker,R.;Sun,L.C.;Hagfeldt,A.; Gr?tzel,M.;Nazeeruddin,M.K.J.Am.Chem.Soc.,2008,130: 6259

    37 Chou,C.S.;Yang,R.Y.;Weng,M.H.;Yeh,C.H.Powder Technology,2008,187:181

    38 Agrios,A.G.;Hagfeldt,A.J.Phys.Chem.C,2008,112:10021

    39 Fredin,K.;Johansson,E.M.J.;Blom,T.;Hedlund,M.;Plogmaker, S.;Siegbahn,H.;Leifer,K.;Rensmo,H.Synth.Met.,2009,159: 166

    40 Zhang,C.R.;Liu,Z.J.;Chen,Y.H.;Chen,H.S.;Wu,Y.Z.;Yuan, L.H.J.Mol.Struct.-Theochem,2009,899:86

    41 Hagberg,D.P.;Edvinsson,T.;Marinado,T.;Boschloo,G.; Hagfeldt,A.;Sun,L.C.Chem.Commun.,2006:2245

    42 Hohenberg,P.;Kohn,W.Phys.Rev.,1964,136:B864

    43 Kohn,W.;Sham,L.J.Phys.Rev.,1965,140:A1133

    44 Bauernschmitt,R.;Ahlrichs,R.Chemical Physics Letters,1996, 256:454

    45 Wiberg,K.B.;Stratmann,R.E.;Frisch,M.J.Chemical Physics Letters,1998,297:60

    46 Hirata,S.;Head-Gordon,M.Chemical Physics Letters,1999,302: 375

    47 Bauernschmitt,R.;Haiser,M.;Treutler,O.;Ahlrichs,R.Chemical Physics Letters,1997,264:573

    48 Kim,S.;Lee,J.K.;Kang,S.O.;Ko,J.;Yum,J.H.;Frantacci,S.; Angelis,F.D.;Censo,D.D.;Nazeeruddin,M.K.;Gr?tzel,M. J.Am.Chem.Soc.,2006,128:16701

    49 Jacquemin,D.;Perpète,E.A.;Scuseria,G.E.;Ciofini,I.;Adamo, C.J.Chem.Theory Comput.,2008,4:123

    50 Wonga,B.M.;Cordaro,J.G.J.Chem.Phys.,2008,129:214703

    51 Di Censo,D.;Fantacci,S.;De Angelis,F.;Klein,C.;Evans,N.; Kalyanasundaram,K.;Bolink,H.J.;Grazel,M.;Nazeeruddin,M. K.Inorg.Chem.,2008,47:980

    52 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision C.02.Pittsburgh,PA:Gaussian Inc.,2003

    53 Zhao,G.J.;Han,K.L.ChemPhysChem,2008,9:1842

    54 Zhao,G.J.;Han,K.L.J.Phys.Chem.A,2007,111:2469

    55 Zhao,G.J.;Han,K.L.J.Phys.Chem.A,2009,113:14329

    56 Barone,V.;Cossi,M.J.Phys.Chem.A,1998,102:1995

    57 Klamt,A.J.Phys.Chem.,1995,99(7):2224

    58 Klamt,A.J.Phys.Chem.,1996,100(9):3349

    59 Reed,A.E.;Weinstock,R.B.;Weinhold,F.J.Chem.Phys.,1985, 83:735

    60 Quintana,M.;Marinado,T.;Nonomura,K.;Boschloo,G.;Hagfeldt, A.J.Photochem.Photobiol.A-Chem.,2009,202:159

    61 Cossi,M.;Rega,N.;Scalmani,G.;Barone,V.J.Comput.Chem., 2003,24:669

    62 Wang,Y.L.;Wu,G.S.Acta Phys.-Chim.Sin.,2007,23:1831 [王溢磊,吳國(guó)是.物理化學(xué)學(xué)報(bào),2007,23:1831]

    在线观看66精品国产| www.自偷自拍.com| av视频免费观看在线观看| 免费高清在线观看日韩| 国产成人一区二区三区免费视频网站| 免费观看精品视频网站| 精品一区二区三区视频在线观看免费| 一区二区日韩欧美中文字幕| 亚洲精华国产精华精| 日韩一卡2卡3卡4卡2021年| 久久热在线av| 精品国内亚洲2022精品成人| 麻豆久久精品国产亚洲av| 午夜a级毛片| 亚洲性夜色夜夜综合| 给我免费播放毛片高清在线观看| 黑人欧美特级aaaaaa片| 女同久久另类99精品国产91| 日韩 欧美 亚洲 中文字幕| 俄罗斯特黄特色一大片| 在线观看午夜福利视频| 国产精品一区二区在线不卡| 在线观看免费视频日本深夜| 一进一出好大好爽视频| 一区二区三区精品91| 日韩欧美在线二视频| 国产免费男女视频| 一级a爱片免费观看的视频| 久久久久久久午夜电影| 母亲3免费完整高清在线观看| 国产成人欧美在线观看| 在线观看舔阴道视频| ponron亚洲| 国产精品二区激情视频| 99在线视频只有这里精品首页| xxx96com| 丝袜在线中文字幕| 女性生殖器流出的白浆| 国产国语露脸激情在线看| 我的亚洲天堂| 999精品在线视频| 久久精品aⅴ一区二区三区四区| 日本免费a在线| av福利片在线| 看黄色毛片网站| 久久久久久人人人人人| 亚洲精品粉嫩美女一区| 亚洲色图 男人天堂 中文字幕| 国产亚洲欧美98| 久久热在线av| 男人舔女人的私密视频| 成人免费观看视频高清| 免费不卡黄色视频| 91在线观看av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美一区二区三区黑人| 国产成人啪精品午夜网站| 亚洲va日本ⅴa欧美va伊人久久| 女人被躁到高潮嗷嗷叫费观| 88av欧美| 国产亚洲av嫩草精品影院| www.精华液| 欧美绝顶高潮抽搐喷水| 丁香欧美五月| 日日干狠狠操夜夜爽| 两人在一起打扑克的视频| 脱女人内裤的视频| 18禁观看日本| 亚洲狠狠婷婷综合久久图片| 国产区一区二久久| 亚洲最大成人中文| 欧美av亚洲av综合av国产av| 俄罗斯特黄特色一大片| 欧美色欧美亚洲另类二区 | 国产精品亚洲一级av第二区| 日韩欧美一区视频在线观看| 久久精品成人免费网站| 亚洲欧洲精品一区二区精品久久久| 国产乱人伦免费视频| 搡老岳熟女国产| 亚洲九九香蕉| e午夜精品久久久久久久| 制服人妻中文乱码| 动漫黄色视频在线观看| 国产一区二区三区综合在线观看| 欧美色视频一区免费| 国产日韩一区二区三区精品不卡| 少妇 在线观看| 日本 av在线| 欧美成人性av电影在线观看| www.精华液| 国产精品一区二区精品视频观看| 91麻豆精品激情在线观看国产| 一个人观看的视频www高清免费观看 | 91精品三级在线观看| 成人手机av| 久久久久精品国产欧美久久久| 老司机在亚洲福利影院| 久热这里只有精品99| av有码第一页| 国内精品久久久久久久电影| 国产免费男女视频| 久热这里只有精品99| 最近最新免费中文字幕在线| 在线播放国产精品三级| 精品国产亚洲在线| 成人免费观看视频高清| 色综合欧美亚洲国产小说| 午夜激情av网站| 男女做爰动态图高潮gif福利片 | 一边摸一边做爽爽视频免费| 欧美激情 高清一区二区三区| 大香蕉久久成人网| 在线国产一区二区在线| 一区二区日韩欧美中文字幕| 国产成人影院久久av| 最新美女视频免费是黄的| 欧美日韩黄片免| 在线天堂中文资源库| 精品熟女少妇八av免费久了| 欧美 亚洲 国产 日韩一| 亚洲片人在线观看| 在线观看午夜福利视频| 国产亚洲精品综合一区在线观看 | 老熟妇仑乱视频hdxx| 女性生殖器流出的白浆| 成人国语在线视频| 精品国产亚洲在线| 91av网站免费观看| 天堂影院成人在线观看| 亚洲 国产 在线| 亚洲狠狠婷婷综合久久图片| 99久久综合精品五月天人人| av免费在线观看网站| 亚洲视频免费观看视频| 亚洲色图 男人天堂 中文字幕| 免费一级毛片在线播放高清视频 | 国产人伦9x9x在线观看| 91字幕亚洲| 极品教师在线免费播放| 丰满人妻熟妇乱又伦精品不卡| 一级黄色大片毛片| 国产三级黄色录像| 婷婷精品国产亚洲av在线| 91av网站免费观看| 精品久久久久久成人av| 悠悠久久av| 90打野战视频偷拍视频| √禁漫天堂资源中文www| 亚洲人成网站在线播放欧美日韩| 国产一区二区在线av高清观看| 亚洲成a人片在线一区二区| 成人国产综合亚洲| 琪琪午夜伦伦电影理论片6080| 日韩一卡2卡3卡4卡2021年| 色老头精品视频在线观看| 色综合亚洲欧美另类图片| 如日韩欧美国产精品一区二区三区| 久久 成人 亚洲| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品成人综合色| 中文字幕最新亚洲高清| 欧美+亚洲+日韩+国产| 久久精品国产亚洲av高清一级| svipshipincom国产片| 老汉色∧v一级毛片| 国产成人精品在线电影| 制服人妻中文乱码| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产成人免费| 亚洲午夜理论影院| 88av欧美| 熟女少妇亚洲综合色aaa.| 黄网站色视频无遮挡免费观看| 黄色视频不卡| 久久精品国产99精品国产亚洲性色 | 精品国产亚洲在线| 国产高清有码在线观看视频 | 在线观看午夜福利视频| av电影中文网址| avwww免费| 国产亚洲av嫩草精品影院| 亚洲av成人一区二区三| 久久精品国产清高在天天线| 非洲黑人性xxxx精品又粗又长| 欧美不卡视频在线免费观看 | 两个人免费观看高清视频| 成年人黄色毛片网站| 色综合婷婷激情| 国产又色又爽无遮挡免费看| 久99久视频精品免费| 欧美国产精品va在线观看不卡| 1024香蕉在线观看| 久久久久久亚洲精品国产蜜桃av| 动漫黄色视频在线观看| 日本a在线网址| 国产aⅴ精品一区二区三区波| 久久久久亚洲av毛片大全| 免费看美女性在线毛片视频| 级片在线观看| 波多野结衣av一区二区av| 午夜福利在线观看吧| 久久久久久久久中文| 国产精品香港三级国产av潘金莲| 欧美日韩一级在线毛片| 国产精品久久久av美女十八| 91国产中文字幕| 在线观看舔阴道视频| 久久精品国产清高在天天线| 成人三级做爰电影| 99久久久亚洲精品蜜臀av| 国产伦人伦偷精品视频| 亚洲精品av麻豆狂野| 在线观看一区二区三区| 久久久精品国产亚洲av高清涩受| 国产乱人伦免费视频| 视频区欧美日本亚洲| 亚洲第一电影网av| 亚洲欧美日韩无卡精品| 国产精品秋霞免费鲁丝片| 老熟妇乱子伦视频在线观看| 日韩视频一区二区在线观看| 黄片播放在线免费| 黄色女人牲交| 久久久国产成人精品二区| 亚洲成人免费电影在线观看| 日韩av在线大香蕉| 91九色精品人成在线观看| 婷婷六月久久综合丁香| 狂野欧美激情性xxxx| 丝袜在线中文字幕| 午夜免费激情av| 午夜福利影视在线免费观看| 国产亚洲欧美在线一区二区| 亚洲国产精品久久男人天堂| 亚洲第一av免费看| 国产精品秋霞免费鲁丝片| 国产精品99久久99久久久不卡| 男女之事视频高清在线观看| x7x7x7水蜜桃| 免费一级毛片在线播放高清视频 | 青草久久国产| xxx96com| 欧美日韩黄片免| 男女床上黄色一级片免费看| 波多野结衣一区麻豆| 国产成人免费无遮挡视频| 黄色 视频免费看| 国产精品,欧美在线| 青草久久国产| 日韩大尺度精品在线看网址 | 麻豆国产av国片精品| 我的亚洲天堂| 日本免费一区二区三区高清不卡 | 怎么达到女性高潮| 成人av一区二区三区在线看| 亚洲国产精品成人综合色| 国产亚洲精品综合一区在线观看 | 亚洲成人免费电影在线观看| 极品教师在线免费播放| 久久影院123| 亚洲成人精品中文字幕电影| 国产精品美女特级片免费视频播放器 | 久久精品国产综合久久久| 人人妻人人澡欧美一区二区 | 一级毛片精品| 岛国视频午夜一区免费看| 婷婷丁香在线五月| 身体一侧抽搐| 午夜精品在线福利| 91在线观看av| 免费高清在线观看日韩| 亚洲在线自拍视频| 亚洲片人在线观看| 欧美丝袜亚洲另类 | 嫩草影视91久久| 亚洲av熟女| 精品高清国产在线一区| 丰满的人妻完整版| 亚洲一区高清亚洲精品| 12—13女人毛片做爰片一| 一边摸一边抽搐一进一小说| 国产成人免费无遮挡视频| 在线免费观看的www视频| 久久久精品国产亚洲av高清涩受| 一级a爱视频在线免费观看| 999久久久国产精品视频| 波多野结衣高清无吗| 久久人妻福利社区极品人妻图片| 欧美日韩一级在线毛片| 精品久久久久久成人av| 午夜激情av网站| 男女午夜视频在线观看| 女生性感内裤真人,穿戴方法视频| 国产精品久久视频播放| 国产国语露脸激情在线看| 欧美国产日韩亚洲一区| 久久国产精品影院| 午夜福利一区二区在线看| 亚洲五月婷婷丁香| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久人妻精品电影| 精品国产乱子伦一区二区三区| 欧美+亚洲+日韩+国产| 免费人成视频x8x8入口观看| 夜夜躁狠狠躁天天躁| 两个人免费观看高清视频| 可以在线观看的亚洲视频| 午夜两性在线视频| 国内毛片毛片毛片毛片毛片| 国产亚洲精品综合一区在线观看 | 少妇粗大呻吟视频| 电影成人av| 在线十欧美十亚洲十日本专区| 十八禁网站免费在线| 老司机午夜福利在线观看视频| 亚洲熟女毛片儿| 俄罗斯特黄特色一大片| 午夜福利影视在线免费观看| 男女做爰动态图高潮gif福利片 | 精品少妇一区二区三区视频日本电影| 俄罗斯特黄特色一大片| 国产成人免费无遮挡视频| 中文字幕人成人乱码亚洲影| 久久久久国产一级毛片高清牌| 国产精品影院久久| 香蕉国产在线看| 久热爱精品视频在线9| videosex国产| 精品久久久久久久人妻蜜臀av | 女警被强在线播放| 又紧又爽又黄一区二区| 日本 欧美在线| 欧美乱码精品一区二区三区| 欧美成狂野欧美在线观看| 黄色丝袜av网址大全| 在线观看免费视频网站a站| 欧美中文日本在线观看视频| 色在线成人网| 久9热在线精品视频| 亚洲中文字幕日韩| 久久久久九九精品影院| 亚洲一区中文字幕在线| 国产伦人伦偷精品视频| 成人欧美大片| 99在线人妻在线中文字幕| 国产精品 欧美亚洲| 在线观看免费视频网站a站| 亚洲人成伊人成综合网2020| 最好的美女福利视频网| 国产国语露脸激情在线看| 日本免费一区二区三区高清不卡 | 亚洲中文字幕日韩| 99国产精品一区二区蜜桃av| 咕卡用的链子| 国产精品影院久久| 久久精品成人免费网站| 怎么达到女性高潮| 亚洲第一av免费看| 嫁个100分男人电影在线观看| 欧美久久黑人一区二区| 亚洲少妇的诱惑av| 欧美激情高清一区二区三区| x7x7x7水蜜桃| netflix在线观看网站| 亚洲成人精品中文字幕电影| 久久久久久国产a免费观看| 欧美成人免费av一区二区三区| 黄色成人免费大全| 午夜福利一区二区在线看| 日韩有码中文字幕| 丝袜美足系列| 日韩欧美一区视频在线观看| 亚洲精华国产精华精| 男男h啪啪无遮挡| 亚洲 国产 在线| 色精品久久人妻99蜜桃| 国产精品一区二区精品视频观看| 久久中文字幕一级| 不卡av一区二区三区| 国产伦人伦偷精品视频| 亚洲午夜精品一区,二区,三区| 亚洲av日韩精品久久久久久密| 91精品国产国语对白视频| 久久久久久大精品| 亚洲自偷自拍图片 自拍| 国产精品九九99| 精品高清国产在线一区| 成在线人永久免费视频| 色综合婷婷激情| av在线天堂中文字幕| 看免费av毛片| 日韩视频一区二区在线观看| 真人做人爱边吃奶动态| 免费高清在线观看日韩| 欧美性长视频在线观看| 深夜精品福利| 亚洲av电影不卡..在线观看| 久热爱精品视频在线9| 天堂√8在线中文| 午夜久久久久精精品| 巨乳人妻的诱惑在线观看| 熟女少妇亚洲综合色aaa.| 国产亚洲精品第一综合不卡| 日韩有码中文字幕| 欧美性长视频在线观看| 亚洲久久久国产精品| 午夜老司机福利片| 久热爱精品视频在线9| 亚洲av美国av| 久久性视频一级片| 精品久久久久久久人妻蜜臀av | 美女高潮到喷水免费观看| av福利片在线| 欧美精品亚洲一区二区| 一二三四社区在线视频社区8| e午夜精品久久久久久久| 少妇熟女aⅴ在线视频| 国产免费av片在线观看野外av| 黄色片一级片一级黄色片| 91九色精品人成在线观看| 精品国产一区二区三区四区第35| 亚洲黑人精品在线| 色尼玛亚洲综合影院| 日韩精品青青久久久久久| 亚洲成a人片在线一区二区| 黑人巨大精品欧美一区二区蜜桃| 免费不卡黄色视频| 男人舔女人的私密视频| 久久草成人影院| 在线观看一区二区三区| 亚洲avbb在线观看| 午夜免费观看网址| 制服人妻中文乱码| 亚洲精品国产精品久久久不卡| 午夜久久久久精精品| 免费高清视频大片| www国产在线视频色| 男女下面进入的视频免费午夜 | 欧美另类亚洲清纯唯美| 搡老岳熟女国产| 国产精品永久免费网站| 国产精品久久久久久精品电影 | 黑人欧美特级aaaaaa片| 欧美激情极品国产一区二区三区| 高潮久久久久久久久久久不卡| 国产黄a三级三级三级人| 中文字幕久久专区| 国内毛片毛片毛片毛片毛片| 成人精品一区二区免费| 久久中文字幕人妻熟女| 手机成人av网站| 亚洲av第一区精品v没综合| 久热爱精品视频在线9| 亚洲精华国产精华精| 身体一侧抽搐| 亚洲人成电影免费在线| 国产成人系列免费观看| a在线观看视频网站| 日韩精品中文字幕看吧| 国产精品 国内视频| 亚洲精品国产区一区二| 久久午夜亚洲精品久久| 久久久久亚洲av毛片大全| 婷婷丁香在线五月| 中文字幕人成人乱码亚洲影| 99久久综合精品五月天人人| 精品一品国产午夜福利视频| svipshipincom国产片| 亚洲熟妇中文字幕五十中出| 黑人操中国人逼视频| 国产一区二区三区在线臀色熟女| 757午夜福利合集在线观看| 人成视频在线观看免费观看| 麻豆久久精品国产亚洲av| 日韩一卡2卡3卡4卡2021年| 午夜影院日韩av| svipshipincom国产片| 男女做爰动态图高潮gif福利片 | 人人妻,人人澡人人爽秒播| 久久精品国产99精品国产亚洲性色 | 男人舔女人的私密视频| 精品午夜福利视频在线观看一区| 成人三级黄色视频| 美女扒开内裤让男人捅视频| 亚洲av成人av| 亚洲精品av麻豆狂野| 18禁美女被吸乳视频| av电影中文网址| 久久精品成人免费网站| 91字幕亚洲| 老司机午夜十八禁免费视频| 黄色女人牲交| 看片在线看免费视频| 亚洲无线在线观看| 国产乱人伦免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 伊人久久大香线蕉亚洲五| 成人亚洲精品av一区二区| 亚洲成av片中文字幕在线观看| 久久久久久久久免费视频了| 久久久国产精品麻豆| 91九色精品人成在线观看| 中国美女看黄片| 久久人人97超碰香蕉20202| 18禁黄网站禁片午夜丰满| 美女免费视频网站| 性欧美人与动物交配| 欧美老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 大陆偷拍与自拍| 国产精品免费视频内射| 国产精华一区二区三区| 亚洲成人精品中文字幕电影| 色综合欧美亚洲国产小说| 91精品三级在线观看| 熟妇人妻久久中文字幕3abv| 两性夫妻黄色片| 亚洲成人精品中文字幕电影| 9色porny在线观看| 丰满的人妻完整版| 黑人操中国人逼视频| 在线观看午夜福利视频| 老司机靠b影院| 亚洲成国产人片在线观看| 亚洲片人在线观看| 大码成人一级视频| 啦啦啦免费观看视频1| 免费av毛片视频| 18禁裸乳无遮挡免费网站照片 | 欧美日韩亚洲综合一区二区三区_| 黄色毛片三级朝国网站| 丰满的人妻完整版| 成人18禁在线播放| 亚洲少妇的诱惑av| 91国产中文字幕| 国产成人欧美| 一级,二级,三级黄色视频| 欧美精品啪啪一区二区三区| 久久久久久久久久久久大奶| 欧美+亚洲+日韩+国产| 国内精品久久久久久久电影| 日本欧美视频一区| 亚洲精品av麻豆狂野| 嫩草影院精品99| 亚洲熟女毛片儿| 国产精品亚洲av一区麻豆| 日韩精品免费视频一区二区三区| 国产精品野战在线观看| 久久中文字幕一级| 亚洲精品中文字幕在线视频| 婷婷丁香在线五月| 国产精品,欧美在线| 一本大道久久a久久精品| 欧美乱妇无乱码| 久久久久亚洲av毛片大全| 欧美大码av| 亚洲,欧美精品.| 成人精品一区二区免费| 色综合站精品国产| 一本大道久久a久久精品| av超薄肉色丝袜交足视频| 在线观看免费视频日本深夜| 首页视频小说图片口味搜索| 岛国视频午夜一区免费看| 久久久久久久久中文| 十八禁人妻一区二区| 波多野结衣av一区二区av| 亚洲精品国产色婷婷电影| 极品教师在线免费播放| 一区二区三区激情视频| 国内精品久久久久久久电影| 88av欧美| 一区二区三区国产精品乱码| 日韩大码丰满熟妇| 国产精品久久久av美女十八| 日韩欧美国产在线观看| 制服丝袜大香蕉在线| 999精品在线视频| 女人精品久久久久毛片| АⅤ资源中文在线天堂| 国产精品98久久久久久宅男小说| tocl精华| 在线观看一区二区三区| 亚洲av成人一区二区三| 亚洲国产欧美一区二区综合| 国产野战对白在线观看| 日本三级黄在线观看| 亚洲av电影在线进入| 在线观看www视频免费| 精品一区二区三区四区五区乱码| 国产私拍福利视频在线观看| 欧美乱色亚洲激情| 又大又爽又粗| 国产又爽黄色视频| 91大片在线观看| 国产精品精品国产色婷婷| 麻豆久久精品国产亚洲av| 女人精品久久久久毛片| 在线天堂中文资源库| 侵犯人妻中文字幕一二三四区| 国产欧美日韩综合在线一区二区| 宅男免费午夜| 美女国产高潮福利片在线看| 成年人黄色毛片网站| 日韩欧美一区视频在线观看| 亚洲一区二区三区不卡视频| 18美女黄网站色大片免费观看| 国产在线观看jvid| 看黄色毛片网站| 国产精品 国内视频| 亚洲自拍偷在线| 国产成人免费无遮挡视频| 制服丝袜大香蕉在线| 成人国产一区最新在线观看|