• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    用于染料敏化太陽能電池的D5同類物分子設(shè)計(jì)

    2010-12-12 02:42:06詹衛(wèi)伸李源作陳茂篤
    物理化學(xué)學(xué)報(bào) 2010年5期

    詹衛(wèi)伸 潘 石 李源作 陳茂篤

    (大連理工大學(xué)物理與光電工程學(xué)院,近場光學(xué)與納米技術(shù)研究所,遼寧大連 116023)

    Since Gr?tzel et al.[1]reported the dye-sensitized solar cells (DSSC)based on Ru complex in 1991,more attention has been paid to DSSC due to its comparatively low cost and high efficiency[1-3].However,DSSC sensitized by free-metal organic dye has attracted more interests from researchers because of its much lower cost[4-11].In particular,the structural diversity and the simple synthetic route of organic dye molecules provide conditions for seeking more competitive DSSC sensitizer.Thus,the molecular design of organic dyes comes into development to improve the function of DSSC[12-20].

    The dye molecules applied to DSSC should have a structure of“donor-conjugate π bridge-acceptor(D-π-A)”[5,19,21-25],in which the“electron acceptor”must contain the“anchoring group”.By the“anchoring group”,dye molecules can absorb onto the surface of TiO2nanocrystalline[6,13,15,20,25-26].At present,the“anchoring group”is usually chosen as carboxyl(—COOH).Most D-π-A dyes take dialkylamines or diphenylamine moieties as electron donor,carboxylic acid,cyanoacrylic acid or rhodanine-3-acetic acid moieties as electron acceptor which also acts as an anchoring group.Carboxy groups can hang on the surface of TiO2,providing a strong restriction to dyes and good electron-channel. Photoabsorption characteristic of D-π-A dyes is connected with intramolecular charge transfer(ICT)excitation from electron donor to electron acceptor moiety,which results in efficient electron transfer from dyes excitation state via electron acceptor moiety (carboxy groups)to TiO2conduction band edge(CB).Charge transfer or separation between electron donors and acceptors in the excitation state can facilitate the electron injection from dyes to TiO2CB,thus it can separate the cationic charge from surface and effectively prevent the photoelectron(the injected electron) from compounding with oxidized dyes[12,25].

    Thelowestunoccupiedmolecularorbital(LUMO)energy level positions of dye molecules and their absorption spectra are the most key factors for the application of dyes to DSSC[27].LUMO energy level of dye must be higher than TiO2conduction band edge,and the higher it is,the larger the driving force for electron injection from dyes excitation state to TiO2will be,which is more beneficial to the improvement of DSSC[10,17-18,22,26,28-31]. Nowadays,the good match between UV-Vis absorption spectra of synthetical sensitized DSSC dyes and that of the solar radiation spectra has not been achieved,which is one of the urgent tasks.It is reported that,the lengthening of conjugated bridge of dye molecular structure could lead to red-shift in molecular absorption spectra[16,20,32].But the length should be proper,as overlong conjugated bridge will cause the accumulation of dye molecules on the surface of TiO2,affecting the properties of DSSC[4,8,25].

    Generally,the abilities of electron donor group(D)donating electrons,electron acceptor group(A)accepting electrons and the electric properties of conjugate π bridge have great influence on the photophysical,electrochemical and intramolecular chargetransfer properties of D-π-A dyes.The need of high-efficiency DSSC can be met by the change of chemical structure of every element(D,A,or conjugate π bridge).Absorption spectra of dye molecules should match solar radiation spectra,and their LUMO and HOMO energy levels must match the conduction band edge energy level of TiO2electrode and the redox potential of I-/I-3electrolyte.For study on the properties of molecule in photophysics and photochemistry,the molecular nonadiabatic process has attracted much attention in recent years.Han et al.[33-35]has investigated the nonadiabatic phenomenon of small molecules in detail.For larger moecules,however,nowadays we can not carry out accurate research on nonadiabatic process and we do not discuss this issue particularly in this paper.

    Recently,an organic dye called D5(Fig.1)attracts more attention because it can sensitize DSSC to enhance its solar energy conversion efficiency by 5%,and are expected to be applied in solid DSSC[7,15,23,26,36-40].But the wavelength of D5 at maximum absorbance is 476 nm,and the maximum wavelength of D5 absorbed on the surface of TiO2blue-shifts to 444 nm[41],which se-riously affects the ability of dye to absorb solar energy.Organic dye D5 is not considered as the bestphotosencitizer.Itispossible to find a better photo-sencitizer used for DSSC by modifying D5 molecules.

    Fig.1 Molecular structures of dye D5 and its analogues(D5xy)x and y in D5xy denote different substituents and positions based on D5.For example,D536,x=3,y=6,using—OCH3to replace—H in the positions of R1 and R6.

    Before trying any synthesis,the density functional theory (DFT)[42-43]and time-dependent DFT(TDDFT)[44-47]were adopted to provide a sound theoretical foundation for the design and filtering of analogues according to their molecular energy levels and absorption spectra[9,14,16,29-30,36,48-51].Based on D5,an attempt on the design of more efficient dye molecules was made via calculation.During the design,the principle of designing a much simpler dye molecule was insisted on.The method of modifying molecules is to introduce substitutent group to D5 skeleton.

    1 Computational methods

    DFT and TDDFT calculations were performed using the Gaussian 03 software package[52].The ground-state geometries of D5 and its analogues were fully optimized in vacuum without any symmetry constraints at the B3LYP level of theory with the 6-31G(d)basis set.The contribution of singly excited state configurations to each electronic transition and the simulated absorption spectra of the D5 analogues were calculated.The electronic absorption spectra require calculation of the allowed excitations and oscillator strengths.These calculations were carried out using TDDFT with the same basis set and exchange-correlation functional in vacuum and solution.The TD-B3LYP calculation containing the solvation effect in ethanol was performed on the geometries optimized in vacuum.DFT and TDDFT with B3LYP functional calculations qualitatively coincide with the experiment results[30,40-41,53-55].The conductor polarizable continuum model(CPCM)[24,56]is conducted using parameters and iterative computation methods suggested by Klamt[57-58]to contain the solvation effect.Natural bond orbital(NBO)analysis was performed in order to analyze the charge populations of the D5 analogues[40,59].

    2 Results and discussion

    2.1 Molecular design of D5 analogues

    For the dye of sensitized DSSC,the energy levels of HOMO and LUMO and its absorption spectra are the most important properties.To obtain efficient electron injection from excited dye to the conduction band of the TiO2electrode,the LUMO energy level of dye molecule must be higher than the conduction band energy level of the TiO2.Not every excited dye molecule can inject electrons to TiO2electrode,because of many other processes causing the de-excitation of dye molecule,which has a strong impact on the electron injection to the TiO2electrode. But with higher energy level of the LUMO,the driving force for the electron injection from dye molecule to TiO2electrode will become stronger,which results in the higher transfer efficiency of DSSC.In order to make the oxidized(lose electrons)dye molecule efficiently recover(gain electrons)from I-/I-3redox couple in the electrolyte,the HOMO energy level of dye molecule has to be lower than the redox potential of I-/I-3.To gain higher lightharvesting efficiency,dye molecule must have greater molar absorption coefficient in the wide area of solar spectra.Solar radiation spectra at the area of 500-600 nm is the strongest.If the absorption spectra of sensitized DSSC dye molecule are included in this region,it will be a perfect sensibilizer.However,up to now,there is not any kind of organic dye molecule suited for DSSC,whose absorption spectra can match perfectly with the solar radiation spectra.Especially,the absorption spectra of dye molecule on TiO2electrode exhibits significant blue-shift,compared with that in the vacuum and polar solvent.So far,the absorption spectra of dye molecule are mainly in the shortwave zone of near ultraviolet region and visible region.Therefore,the red-shift of absorption spectra is still the primary standard to judge the quality of sensitized DSSC dye molecule.The D5 type dye molecule for DSSC will be designed according to the HOMO and LUMO energy levels calculated by DFT and the maximum wavelength of the absorption spectra calculated by TDDFT.

    The results of experiment and calculation demonstrate that D5 is a better free-metal organic dye for DSSC[23,26,36,38,40-41,60].Because of the variety of organic molecular structure,it is possible to design organic dye superior to D5 for DSSC by modifying D5 molecule.Based on our previous investigation[27],the modification to D5 should make the new D5 molecule maximize LUMO energy level,on the condition that its HOMO energy level is lower than I-/I-3,so that the driving force for electron injection of the dye molecule from the excitation state to TiO2electrode could become greater,which can raise conversion efficiency of DSSC. Besides,dye molecular absorption spectra should be red-shifted as much as possible,in order to make the absorption of solar radiation photons more efficient.

    The extension of conjugate π bridge in dye molecular structure and the introduction of the electron-donating substituent and electron-withdrawing substituent to the chromophore backbone could move the HOMO and LUMO energy levels of dye molecules and also cause the red shift in absorption spectrum, which provide a possibility for the adjustments of the photochemical and electrochemical properties of dyes.It should be noticed that the expansion of conjugated π bridge in D-π-A dye molecules can easily lead to the accumulation of dye molecules on TiO2surface,reducing electron-injection yields from the dye molecules to the TiO2conduction band because of intermolecular energy transfer between molecules.In the modification of D5 analogue dye molecules,we did not extend the length of the conjugate π bridge.In addition,the geometry of the dye molecule should not be too large;otherwise,the dye molecules adsorbed onto TiO2surface per unit area as well as the conversion efficiency of DSSC per unit area will be reduced.

    As shown in Fig.1,taking—H from the skeleton of D5 molecule in different positions,we modified the D5 molecules with the electron-donating substituent(—OH,—NH2,—OCH3) and the electron-withdrawing substituent(—CF3,—F,—CN),respectively.Xia et al.[30]have used this method to modify the cou-marin molecule.To facilitate discussion,we numbered the modified organic molecules(Fig.1).We have designed 54 kinds of molecules,6 of which(D521,D526,D529,D531,D544,D545) failed in the DFT optimization.

    By DFT/TDDFT calculation(see Sections 2.3 and 2.4),it is shown that D516,D536 and D537,not only induce red-shift in absorption spectrum relative to D5,but also make LUMO energy level be greater than that of D5.The DSSC sensitized by these types of organic molecules make use of solar energy more efficiently and enlarge the driving force for electron injection into the TiO2electrode.Moreover,its HOMO energy level is lower than the position of the redox I-/I-3.Therefore,the conversion efficiency of the DSSC adopting these types of organic molecules as sensitizers should be greater than that of D5.It should be noted that these types of organic molecules share some common characteristics:firstly,the substituents are all the electron-donating substituent,symmetrically being replaced in pair;secondly,the substituents are located in the electron-donating group or in the conjugate bridge near the electron-donating group.The LUMO energy level position of D516 is the highest,so the driving force for electron injection from excited state into the TiO2is the greatest.

    DFT/TDDFT calculation results(see Sections 2.3 and 2.4) show that the LUMO energy levels of D565,D567 and D568 are lower than that of D5(much higher than conduction band edge of TiO2),the driving force for electron injection from excited state of these molecules into the TiO2is lower than that of D5,which leads to the lower electron transfer rate compared with D5,but their absorption spectra are red-shifted intensely compared with D5,making full use of solar energy.And their HOMO energy levels are lower than that of redox I-/I-3.Therefore,the conversion efficiency of the DSSC adopting these types of molecules as sensitizers is higher than that of D5.These types of organic molecules also share some common characteristics:the substituents are all the electron-withdrawing substituent;the substituents may be located in the electron-donating group,the electron-accepting group or the conjugate bridge.Therefore,the introduction of the electron-withdrawing substituent into D5 dye molecules may cause strong red-shift in the absorption spectra of organic molecules.

    DFT/TDDFT calculation results of other substituted molecules indicate that,compared with the DFT/TDDFT calculations of D5, either LUMO energy level has been improved,with blue-shift in absorption spectrum,or absorption spectrum is red-shifted,with lowerLUMO energy levels.

    2.2 Molecular structures

    Theconjugateπbridgeofnon-planeisnotconductivetoICTof electron transition from the electron-donating group to the electron-accepting group[11,14-16].Fig.2 shows the optimized molecular structures of D5 and some of its analogues.The conjugate bridges of all the D5 analogues except for D537 are all plane, which is just the same as D5.

    Fig.2 Optimized geometrical structures of dye D5 and its analogues

    By analysis of NBO,we find that the charge populations of donor group,conjugated bridge,and acceptor group of D5 are 0.061e,0.114e,and-0.174e,respectively,which is a typical D-π-A molecular structure.For D536,they are 0.057e,0.126e,and -0.184e;for D537,they are 0.057e,0.130e,and-0.184e;for D565,they are 0.097e,0.184e,and-0.281e;for D567,they are 0.184e,-0.094e,and-0.092e;for D568,they are 0.130e,-0.021e, and-0.105e.All of these molecules have similar D-π-A structures.The charge populations of three groups of D516 are 0.154e, 0.043e,and-0.197e,respectively.The positive charges of the electron-donating group and the negative charges of electronaccepting group of D516 are much more than that of D5,but the charges of conjugate π bridge are lower than that of D5.Therefore,this analogue should have D-π-A molecular structure superior to D5.

    Table 1 lists part of the bond lengths of chemical bonds of D5 and its analogues,from which we can find their difference is lower than 1 pm in general,and the greatest difference among individuals is lower than 3 pm.Therefore,it is believed that the molecular stabilities of D5 and its analogues are on the whole the same.

    The electronic structures of HOMOs and LUMOs of D5 and its analogues D516 and D565 are shown in Fig.3.The HOMOs of D5 are π orbitals,while LUMOs are single states of π*orbi-tals.HOMOs have ground-state characteristics,while LUMOs have excited state characteristics.In the ground state,the electrons are mainly distributed in the electron donor(diphenyl anilinegroup)andconjugated bridge(vinylene and thiophene group). In the excited state,the electrons are distributed in the thiophenes and cyanoacrylic acid groups,but mostly in the anchoring group(carboxyl:—COOH).For D5 analogues,HOMOs(HOMO and HOMO-1)are π orbital which is located in the electron donor groups,electron acceptor groups and the conjugate bridge, or the whole molecule.And the LUMOs(LUMO and LUMO+1) are π*orbital which is located in the conjugate bridge and the electron acceptor(anchor)group.The electronic orbitals of D5 analogues are the same as that of D5 due to their similar molecularstructures.Underillumination,throughintramolecularcharge transfer,electrons move from HOMOs to LUMOs,and eventually reach the anchoring groups.In this system,the light-induced electronic distribution change is considered as one of the decisive factors resulting in efficient charge separation.Thus it can be concluded:the electron transport from electron donor to electron acceptor(anchor)occurred during the course of excitation of dye molecules.As dye molecules are adsorbed on the semiconductor surface via the carboxyl group,the excitation promotes the electron injection process.The electronic structures of D5 and its analogues are very beneficial to solar cells.

    Table 1 Selected bond length (R,in pm)of the dye D5 and its analogues

    Fig.3 Isodensity plots(isodensity contour=0.02 a.u.)of the frontier orbitals of dye D5 and its analogues

    2.3 Energy level diagram

    The diagram for calculated frontier molecular orbital energy levels of the D5,D516,and D565 in vacuum and ethanol is depicted in Fig.4.The LUMO energy level positions of D536, D537,D565,and D567 in vacuum are-2.585,-2.558,-3.374, and-3.374 eV(in ethanol:-2.667,-2.667,-3.347,and-3.320 eV),respectively.The HOMO energy level positions of D536, D537,D565,andD567invacuumare-4.980,-5.061,-5.361,and-5.551 eV(in ethanol:-4.898,-4.980,-5.061,and-5.306 eV), respectively.Whether in vacuum or in the polar solution,LUMO energy level of D5 was much higher than that of TiO2conduction band edge(ca-4.0 eV).Thus,D5 molecule,that is still in excitation state after absorbing photons could inject electrons to TiO2electrode smoothly.HOMOs of D5 are all lower than that of I-/I-3(ca-4.8 eV),therefore,D5 molecule that loses electrons could be restored by getting electrons from electrolyte.

    Fig.4 The frontier molecular orbital energy levels of dye D5 and its analoguesH-1:HOMO-1,H-2:HOMO-2,L+1:LUMO+1,L+2:LUMO+2

    LUMO energy level positions of D516,D536,and D537 are all higher than those of D5,thus,the driving forces for electron injection from molecular excitation state of D516,D536 and D537 to TiO2electrode are larger than that of D5.LUMO energy level positions of D565,D567,and D568 are all lower than that of D5,but higher than that of TiO2conduction band edge; molecules in excited states of D565,D567,and D568 have a strong ability to inject electrons into TiO2electrodes.

    HOMO energy level positions of D5 and its analogues are all lower than that of I-/I-3,therefore,D5 and its analogues,which lose electrons,could be restored by getting electrons from electrolyte.Overall,the positions of LUMOs energy level(LUMO especially)decline in solution,but those of HOMOs(HOMO especially)have slight increases,and LUMOs-HOMOs gaps decrease,causing red-shift in the molecular absorption spectra in solution.

    The HOMO-LUMO gap of the dye D5 and analogues in vacuum was 1.987-2.503 eV(in ethanol:1.714-2.285 eV).Among D5,D516,D536,and D537,HOMO-LUMO gaps of D516 and D536 are the smallest.Among D565,D567,and D568,D565 has the smallest HOMO-LUMO gap.

    Table 2 shows the energy level positions of D5 in vacuum and different solutions.In different polar solutions,MO energies are almost the same.It is clear that different polar solutions have the same effect on MOs energies.Compared with the case of vacuum,the polar solutions have little effect on LUMO+1 and HOMO-1 of D5,and almost no effect on LUMO,but comparatively great effect on HOMO energy level,which could enhance HOMO energy level by about 0.1 eV.Polar solutions decrease the HOMO-LUMO energy gap of D5,which is the main reason for red-shift in dye molecular absorption spectrum.From the HOMO and LUMO energy levels in vacuum and solution,it can conclude that dye molecules in polar solution produce solvent effects of red-shift in absorption spectra[40,61],whose physical mechanism is that the polar solution has no effect on the LUMO energy level of dye molecules,but can improve the HOMO energy level of dye molecules.

    2.4 Electronic absorption spectra

    Fig.5 shows the UV-Vis absorption spectra of D5 and ana-logues D516 and D565 by calculation.Obviously,in the UV-Vis region,the absorption of long wave is more intense than that of the short one.There is a clear red-shift in the absorption spectra of D5 molecule in the solution compared with that in the vacuum,which is aforenamed solvent effect.In ethanol,MeCN,and THF solution,the absorption spectra of D5 are almost the same, namely,the solvent effects of different solutions are nearly identical due to the same impact of the aforementioned polar solution on the MOs energy level of the dye molecules.In the UVVis region,D5 has two clear absorption bands.In vacuum,the central wavelength of the first absorption band is 537 nm,and that of the second one is 393 nm.Because of solvent effect,in the polar solution,the central wavelengths of the two absorption bands of D5 have a red-shift to 603 nm and 415 nm.While the wavelengths of the two absorption peaks acquired by experiment in the solution were 476 nm and 300 nm,respectively[41]. Compared with the experiment,the calculation of the TDDFT shows a considerable red-shift,especially the red-shift in the solution is more visible than the one in vacuum.The difference between the experiment and calculation of the TDDFT may come from two aspects:the calculation method and solvent effect.The energy gaps calculated by the DFT are always smaller than that of the factual one,especially for the bigger conjugated system, which causes low calculated excited energy and significant redshiftinthecalculatedabsorptionspectraandthefactual one[26,40,62]. The solution,especially the polar solution(such as MeCN and THF),through the long-range interaction between solute and solvent,influences the geometry,the electronic structure,and the properties of molecule.Thus,solvent effect causes the energy level of solute molecule to decrease,thereby making a significant red-shift in the absorption band.It shows that it is difficult to conform the calculation to the experiment quantitatively. Though there is difference,the calculation of TDDFT can still describe the spectral features of the D5,because the line shape and the relative intensity of spectra correspond with the experiment qualitatively.

    Table 2Calculated LUMO+1,LUMO,HOMO,and HOMO-1 energies of dye D5 in vacuum,ethanol,MeCN,and THF

    Fig.5 Calculated electronic absorption spectra of dye D5 and its analogues in different media

    The absorption peaks of D516,D536,and D537 in vacuum were 562,560,and 562 nm,respectively,and those in alcoholic solution were 611,627,and 634 nm,respectively.Compared with the absorption spectra of D5(in vacuum and alcoholic solution,the absorption peaks λmaxwere 537 and 603 nm),there are significant red-shifts in the absorption spectra of these D5 analogue molecules.But the molar absorption coefficient ε(31000 and 32000 a.u.in vacuum and alcohol solution,respectively)of D537 at absorption peak are less than those of D516(83000 and 120000 a.u.in vacuum and in alcohol solution,respectively)and D536(70000 and 78000 a.u.in vacuum and in alcohol solution, respectively).The redshifts in absorption spectra of D516 and D536 are basically the same relative to D5.The molar absorption coefficient of D516 at absorption peak is greater than that of D536;thus,D516 is a sensitizer superior to D537 and D536.

    The absorption peaks of D565,D567,and D568 in vacuum were 658,616,and 622 nm,respectively,and the ones in alcohol solution were 782,702,and 719 nm,respectively,with intense red-shift relative to D5 and the same maximum molar absorption coefficient as that of D5.In terms of the absorption spectrum,they are better than D5 as sensitizer.D565 had the largest red-shift.Considering that the calculation of TDFDT itself may cause red-shift in the absorption spectra,and that the molecular absorption on TiO2could cause blueshift,D565 absorption spectrum is promising to match solar UV-Vis spectra better.D565 is a DSSC sensitizer superior to D567 and D568.

    In order to know the microscopic information about the absorption bands and electronic transitions,the relevant MO properties should be studied.Since visible and near-UV region are significant spectrum regions for photo-to-current conversion, Table 3 shows the singlet-singlet transitions in the absorption bands of D5 and its analogues.Simulated spectra about the absorption bands near 603 nm in solution shows that initial and final states of electronic transitions mostly lie in HOMO and LUMO, respectively.The initial and final states of electronic transitions mostly lie in HOMO-1 and LUMO respectively in the absorption bands near 415 nm.Weak absorption bands are also detected (353 nm in vacuum,367 nm in solution correspondingly).For these transitions,initial states are the two former HOMOs,and final states are the two former LUMOs.According to the analysis of electronic transitions and molecular orbitals,three absorption bands(two of which in visible region)in UV-Vis region for D5 molecules are typical π→π*transitions.

    Either in vacuum or in solution,D5 and its similar molecules show similar characters that the strongest absorption band (which is also the largest absorption band of red shift)is mainly composed of initial state HOMO and final state LUMO,while the other absorption bands are mainly composed of the(HOMO-2)-HOMO to the LUMO-(LUMO+2).These transitions caused by absorption are π→π*transitions.In these transitions,initial states are mainly related to the molecular orbitals of electrondonor groups,while the final states are mainly related to the molecular orbitals of electron acceptor groups.This shows that absorption is photoinduced electron transfer process.Thus,the excitations generate charge separated states.

    Table 3 Computed excited energies(E),oscillator strengths(f)and two highest electronic transition configurations for dye D5 and its analogues in vacuum and ethanol

    D516′s energy level gaps(LUMO)-(LUMO+1)and(LUMO+ 1)-(LUMO+2)were 0.626 and 0.626 eV,respectively(0.816 and 0.599 eV in the solution,respectively),which are the smallest in the D5 and its analogues.This indicates that,the density of states in D516 is more plentiful than other elements in the vicinity of LUMO,which is the main reason why D516 has the greatest molar absorption coefficient at absorption peak in the visible region.

    3 Conclusions

    Considering both the molecular orbital energy(HOMO and LUMO energy levels)and the absorption spectra,LUMO energy levelsofD5analoguemolecules(D516,D536,D537)areallhigher than that of D5,the driving forces for electron injection from excitation state to TiO2electrode are larger;the absorption spectra of such dye molecules all red-shift compared with D5. Therefore,D516,D536,and D537 are DSSC sensitizers superior to D5.Further analysis shows that,among the D5 analogues, with the greatest molar absorption coefficient,D516 is the best DSSC sensitizer.

    For absorption spectra,the absorption spectra of D5 analogue molecules(D565,D567,D568)all intensely red-shift compared with D5,which could capture solar radiation photons more efficiently than D5,enhancing the utilization efficiency of solar energy.Among them,the spectra of D565 red-shift most strongly, with the greatest molar absorption coefficient,which could match the solar spectra better after being absorbed onto the surface of TiO2.

    With the assistance of NBO analysis,the designed D5 analogue molecules D516,D536,D537,D565,D567,and D568, which are promising to be superior to D5,all share D-π-A structure,among which conjugation bridges are of planar structure,which benefits the generation of charge separated state from dye molecules by optical excitation.The analysis of DFT electron structure shows that,HOMOs of these molecules lie on π orbitals of electron donor,and LUMOs lie on π*orbitals of electron acceptor.TDDFT analysis on the excitation energy(absorption spectroscopy)shows that,the optical excitation causes π-π*transition,resulting in intramolecular charge transfer,with electronic absorption spectra lying in the zone from near-ultraviolet to visible light.

    In summery,it is possible to design free-metal organic dye molecules applied to DSSC using DFT/TDDFT.Calculated results show that,the designed molecules D516 and D565 are expected to be free-metal organic dye molecules applied to DSSC superior to D5.

    1 O′Regan,B.;Gr?tzel,M.Nature,1991,353:737

    2 Gr?tzel,M.Inorg.Chem.,2005,44:6841

    3 Peter,L.M.Phys.Chem.Chem.Phys.,2007,9:2630

    4 Wang,Z.S.;Cui,Y.;Dan-oh,Y.;Kasada,C.;Shinpo,A.;Hara,K. J.Phys.Chem.C,2007,111:7224

    5 Chen,R.;Yang,X.;Tian,H.;Sun,L.C.J.Photochem.Photobiol. A-Chem.,2007,189:295

    6 Tian,H.;Yang,X.;Chen,R.;Pan,Y.;Li,L.;Hagfeldt,A.;Sun,L. C.Chem.Commun.,2007:3741

    7 Kim,S.;Kim,D.;Choi,H.;Kang,M.S.;Song,K.;Kang,S.O.; Ko,J.Chem.Commun.,2008:4951

    8 Ito,S.;Miura,H.;Uchida,S.;Takata,M.;Sumioka,K.;Liska,P.; Comte,P.;Péchy,P.;Gr?tzel,M.Chem.Commun.,2008:5194

    9 Li,C.;Yum,J.H.;Moon,S.J.;Herrmann,A.;Eickemeyer,F.; Pschirer,N.G.;Erk,P.;Sch?neboom,J.;Müllen,K.;Gr?tzel,M.; Nazeeruddin,M.K.ChemSusChem,2008,1:615

    10 Jin,Y.;Hua,J.;Wu,W.;Ma,X.;Meng,F.Synth.Met.,2008,158: 64

    11 Burke,A.;Ito,S.;Snaith,H.;Bach,U.;Kwiatkowski,J.;Gr?tzel, M.Nano Lett.,2008,8:977

    12 Chen,Z.;Li,F.;Huang,C.Curr.Org.Chem.,2007,11:1241

    13 Rochford,J.;Chu,D.;Hagfeldt,A.;Galoppini,E.J.Am.Chem. Soc.,2007,129:4655

    14 Tsai,M.S.;Hsu,Y.C.;Lin,J.T.;Chen,H.C.;Hsu,C.P.J.Phys. Chem.C,2007,111:18785

    15 Chen,R.;Yang,X.;Tian,H.;Wang,X.;Hagfeldt,A.;Sun,L.C. Chem.Mater.,2007,19:4007

    16 Choi,H.;Lee,J.K.;Song,K.H.;Song,K.;Kang,S.O.;Ko,J. Tetrahedron,2007,63:1553

    17 Park,J.K.;Lee,H.R.;Chen,J.;Shinokubo,H.;Osuka,A.;Kim,D. J.Phys.Chem.C,2008,112:16691

    18 Eu,S.;Hayashi,S.;Umeyama,T.;Matano,Y.;Araki,Y.;Imahori, H.J.Phys.Chem.C,2008,112:4396

    19 Yen,Y.S.;Hsu,Y.C.;Lin,J.T.;Chang,C.W.;Hsu,C.P.;Yin,D. J.J.Phys.Chem.C,2008,112:12557

    20 Li,G.;Jiang,K.J.;Li,Y.F.;Li,S.L.;Yang,L.M.J.Phys.Chem. C,2008,112:11591

    21 Hagberg,D.P.;Marinado,T.;Karlsson,K.M.;Nonomura,K.;Qin, P.;Boschloo,G.;Brinck,T.;Hagfeldt,A.;Sun,L.C.J.Org. Chem.,2007,72:9550

    22 Qin,P.;Yang,X.;Chen,R.;Sun,L.C.;Marinado,T.;Edvinsson, T.;Boschloo,G.;Hagfeldt,A.J.Phys.Chem.C,2007,111:1853

    23 Boschloo,G.;Marinado,T.;Nonomura,K.;Edvinsson,T.;Agrios, A.G.;Hagberg,D.P.;Sun,L.C.;Quintana,M.;Karthikeyan,C.S.; Thelakkat,M.;Hagfeldt,A.Thin Solid Films,2008,516:7214

    24 Balanay,M.P.;Kim,D.H.Phys.Chem.Chem.Phys.,2008,10: 5121

    25 Ooyama,Y.;Harima,Y.Eur.J.Org.Chem.,2009:2903

    26 Marinado,T.;Hagberg,D.P.;Hedlund,M.;Edvinsson,T.; Johansson,E.M.J.;Boschloo,G.;Rensmo,H.;Brinck,T.;Sun,L. C.;Hagfeldty,A.Phys.Chem.Chem.Phys.,2009,11:133

    27 Zhan,W.S.;Pan,S.;Li,Y.Z.;Chen,M.D.Acta Phys.-Chim.Sin., 2009,25:2087 [詹衛(wèi)伸,潘 石,李源作,陳茂篤.物理化學(xué)學(xué)報(bào),2009,25:2087]

    28 Gervaldo,M.;Fungo,F.;Durantini,E.N.;Silber,J.J.;Sereno,L.; Otero,L.J.Phys.Chem.B,2005,109:20953

    29 Zhang,X.H.;Li,C.;Wang,W.B.;Cheng,X.X.;Wang,X.S.; Zhang,B.W.J.Mater.Chem.,2007,17:642

    30 Zhang,X.;Zhang,J.J.;Xia,Y.Y.J.Photochem.Photobiol.AChem.,2008,194:167

    31 Xu,W.;Peng,B.;Chen,J.;Liang,M.;Cai,F.J.Phys.Chem.C, 2008,112:874

    32 Sayama,K.;Tsukagoshi,S.;Mori,T.;Hara,K.;Ohga,Y.;Shinpo, A.;Abe,Y.;Suga,S.;Arakawa,H.Sol.Energy Mater.Sol.Cells, 2003,80:47

    33 Chu,T.S.;Zhang,Y.;Han,K.L.Int.Rev.Phys.Chem.,2006,25: 201

    34 Chu,T.S.;Varandas,A.J.C.;Han,K.L.Chemical Physics Letters, 2009,471:222

    35 Chu,T.S.;Han,K.L.;Hanke,M.;Balint-Kurti,G.G.; Kuppermann,A.;Abrol,R.J.Chem.Phys.,2009,130:144301

    36 Hagberg,D.P.;Yum,J.H.;Lee,H.;Angelis,F.D.;Marinado,T.; Karlsson,K.M.;Humphry-Baker,R.;Sun,L.C.;Hagfeldt,A.; Gr?tzel,M.;Nazeeruddin,M.K.J.Am.Chem.Soc.,2008,130: 6259

    37 Chou,C.S.;Yang,R.Y.;Weng,M.H.;Yeh,C.H.Powder Technology,2008,187:181

    38 Agrios,A.G.;Hagfeldt,A.J.Phys.Chem.C,2008,112:10021

    39 Fredin,K.;Johansson,E.M.J.;Blom,T.;Hedlund,M.;Plogmaker, S.;Siegbahn,H.;Leifer,K.;Rensmo,H.Synth.Met.,2009,159: 166

    40 Zhang,C.R.;Liu,Z.J.;Chen,Y.H.;Chen,H.S.;Wu,Y.Z.;Yuan, L.H.J.Mol.Struct.-Theochem,2009,899:86

    41 Hagberg,D.P.;Edvinsson,T.;Marinado,T.;Boschloo,G.; Hagfeldt,A.;Sun,L.C.Chem.Commun.,2006:2245

    42 Hohenberg,P.;Kohn,W.Phys.Rev.,1964,136:B864

    43 Kohn,W.;Sham,L.J.Phys.Rev.,1965,140:A1133

    44 Bauernschmitt,R.;Ahlrichs,R.Chemical Physics Letters,1996, 256:454

    45 Wiberg,K.B.;Stratmann,R.E.;Frisch,M.J.Chemical Physics Letters,1998,297:60

    46 Hirata,S.;Head-Gordon,M.Chemical Physics Letters,1999,302: 375

    47 Bauernschmitt,R.;Haiser,M.;Treutler,O.;Ahlrichs,R.Chemical Physics Letters,1997,264:573

    48 Kim,S.;Lee,J.K.;Kang,S.O.;Ko,J.;Yum,J.H.;Frantacci,S.; Angelis,F.D.;Censo,D.D.;Nazeeruddin,M.K.;Gr?tzel,M. J.Am.Chem.Soc.,2006,128:16701

    49 Jacquemin,D.;Perpète,E.A.;Scuseria,G.E.;Ciofini,I.;Adamo, C.J.Chem.Theory Comput.,2008,4:123

    50 Wonga,B.M.;Cordaro,J.G.J.Chem.Phys.,2008,129:214703

    51 Di Censo,D.;Fantacci,S.;De Angelis,F.;Klein,C.;Evans,N.; Kalyanasundaram,K.;Bolink,H.J.;Grazel,M.;Nazeeruddin,M. K.Inorg.Chem.,2008,47:980

    52 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision C.02.Pittsburgh,PA:Gaussian Inc.,2003

    53 Zhao,G.J.;Han,K.L.ChemPhysChem,2008,9:1842

    54 Zhao,G.J.;Han,K.L.J.Phys.Chem.A,2007,111:2469

    55 Zhao,G.J.;Han,K.L.J.Phys.Chem.A,2009,113:14329

    56 Barone,V.;Cossi,M.J.Phys.Chem.A,1998,102:1995

    57 Klamt,A.J.Phys.Chem.,1995,99(7):2224

    58 Klamt,A.J.Phys.Chem.,1996,100(9):3349

    59 Reed,A.E.;Weinstock,R.B.;Weinhold,F.J.Chem.Phys.,1985, 83:735

    60 Quintana,M.;Marinado,T.;Nonomura,K.;Boschloo,G.;Hagfeldt, A.J.Photochem.Photobiol.A-Chem.,2009,202:159

    61 Cossi,M.;Rega,N.;Scalmani,G.;Barone,V.J.Comput.Chem., 2003,24:669

    62 Wang,Y.L.;Wu,G.S.Acta Phys.-Chim.Sin.,2007,23:1831 [王溢磊,吳國是.物理化學(xué)學(xué)報(bào),2007,23:1831]

    纵有疾风起免费观看全集完整版| 午夜91福利影院| 99久国产av精品国产电影| 亚洲欧美一区二区三区国产| 欧美亚洲日本最大视频资源| 久久久欧美国产精品| 亚洲中文av在线| 交换朋友夫妻互换小说| 日韩av不卡免费在线播放| 日韩av在线免费看完整版不卡| 免费观看人在逋| 男女下面插进去视频免费观看| 母亲3免费完整高清在线观看| 成人手机av| av片东京热男人的天堂| 啦啦啦视频在线资源免费观看| 免费日韩欧美在线观看| 伊人久久大香线蕉亚洲五| 一区二区日韩欧美中文字幕| 国产精品av久久久久免费| 麻豆av在线久日| 国产精品秋霞免费鲁丝片| 国产精品欧美亚洲77777| 丝袜美足系列| 亚洲国产欧美日韩在线播放| a级片在线免费高清观看视频| av.在线天堂| 欧美精品一区二区免费开放| 精品久久蜜臀av无| 中文字幕av电影在线播放| 欧美日韩精品网址| 极品少妇高潮喷水抽搐| 欧美老熟妇乱子伦牲交| 狠狠婷婷综合久久久久久88av| 一区二区三区精品91| 18禁裸乳无遮挡动漫免费视频| 国产精品一区二区在线不卡| 亚洲欧美清纯卡通| 丝瓜视频免费看黄片| 国产成人系列免费观看| 欧美日韩综合久久久久久| 欧美日韩成人在线一区二区| 国产精品人妻久久久影院| 精品少妇久久久久久888优播| 王馨瑶露胸无遮挡在线观看| 亚洲国产成人一精品久久久| 午夜福利,免费看| 狠狠婷婷综合久久久久久88av| 日韩一本色道免费dvd| 日本vs欧美在线观看视频| 精品第一国产精品| 亚洲欧美中文字幕日韩二区| 欧美精品高潮呻吟av久久| 国产欧美亚洲国产| 在线观看免费日韩欧美大片| e午夜精品久久久久久久| 中文字幕av电影在线播放| 亚洲熟女毛片儿| 欧美97在线视频| 成人亚洲欧美一区二区av| 国产精品无大码| 国产亚洲午夜精品一区二区久久| 亚洲欧美成人综合另类久久久| 午夜av观看不卡| 免费久久久久久久精品成人欧美视频| 久久久久网色| 久久国产精品男人的天堂亚洲| 黄色一级大片看看| 欧美日韩视频精品一区| 人人澡人人妻人| 日韩 亚洲 欧美在线| 久久久精品区二区三区| 国产成人一区二区在线| 国产一区二区三区av在线| 国产精品免费大片| 男人爽女人下面视频在线观看| 伊人久久大香线蕉亚洲五| 久久久欧美国产精品| 黄频高清免费视频| 亚洲一级一片aⅴ在线观看| 中国国产av一级| a级毛片黄视频| 久久久久久人人人人人| 赤兔流量卡办理| 老司机影院毛片| 丝袜人妻中文字幕| 国产亚洲欧美精品永久| av电影中文网址| 久久久久久人妻| 欧美激情 高清一区二区三区| 久久精品国产亚洲av高清一级| 中文字幕人妻熟女乱码| 日日摸夜夜添夜夜爱| 青春草国产在线视频| 波多野结衣av一区二区av| 亚洲av电影在线进入| 日本av免费视频播放| 一二三四在线观看免费中文在| 久久久欧美国产精品| 欧美日韩一区二区视频在线观看视频在线| 日韩精品有码人妻一区| 久久 成人 亚洲| 国产精品99久久99久久久不卡 | 久久久精品国产亚洲av高清涩受| 看免费av毛片| 亚洲熟女毛片儿| h视频一区二区三区| 亚洲第一区二区三区不卡| 少妇人妻 视频| xxxhd国产人妻xxx| 国产亚洲一区二区精品| 91精品三级在线观看| 这个男人来自地球电影免费观看 | 国产日韩欧美亚洲二区| 丝袜美腿诱惑在线| 在线观看三级黄色| 欧美日韩av久久| 91成人精品电影| 亚洲中文av在线| 日韩精品有码人妻一区| 午夜91福利影院| 久久精品国产a三级三级三级| 成人免费观看视频高清| 精品国产乱码久久久久久小说| 综合色丁香网| 亚洲av综合色区一区| 80岁老熟妇乱子伦牲交| 一区二区三区精品91| 黑人猛操日本美女一级片| 99久国产av精品国产电影| 亚洲国产毛片av蜜桃av| 中文字幕另类日韩欧美亚洲嫩草| 日本wwww免费看| 一区二区三区四区激情视频| 男人舔女人的私密视频| 精品国产一区二区三区久久久樱花| 一区二区av电影网| 一区二区三区乱码不卡18| 乱人伦中国视频| 九草在线视频观看| 菩萨蛮人人尽说江南好唐韦庄| 少妇猛男粗大的猛烈进出视频| 久久久久精品性色| 青春草视频在线免费观看| 日本欧美国产在线视频| 飞空精品影院首页| 日韩熟女老妇一区二区性免费视频| 欧美日韩一级在线毛片| 久久国产亚洲av麻豆专区| 国产精品久久久久久久久免| 99国产精品免费福利视频| 亚洲人成电影观看| 久久99热这里只频精品6学生| 国产无遮挡羞羞视频在线观看| 成人午夜精彩视频在线观看| 日韩av在线免费看完整版不卡| 亚洲欧洲日产国产| 亚洲欧美一区二区三区国产| 国产午夜精品一二区理论片| 亚洲精品视频女| 18禁裸乳无遮挡动漫免费视频| 日韩精品有码人妻一区| 亚洲五月色婷婷综合| 91精品三级在线观看| 少妇人妻久久综合中文| 国产老妇伦熟女老妇高清| 亚洲欧美成人精品一区二区| 成人国产av品久久久| 高清视频免费观看一区二区| 亚洲精品日韩在线中文字幕| 9色porny在线观看| 亚洲成人一二三区av| 亚洲,欧美,日韩| 一区在线观看完整版| 亚洲色图综合在线观看| 97在线人人人人妻| 你懂的网址亚洲精品在线观看| 国产97色在线日韩免费| 最近的中文字幕免费完整| 18禁国产床啪视频网站| 国产精品一国产av| 午夜日韩欧美国产| 国产日韩欧美亚洲二区| 国产欧美亚洲国产| 一级毛片 在线播放| 亚洲欧美清纯卡通| 国产xxxxx性猛交| 亚洲国产精品一区二区三区在线| 国产人伦9x9x在线观看| 女的被弄到高潮叫床怎么办| 不卡视频在线观看欧美| 中文字幕人妻熟女乱码| 欧美少妇被猛烈插入视频| 最近的中文字幕免费完整| 午夜福利一区二区在线看| 亚洲激情五月婷婷啪啪| 国产亚洲最大av| 国产精品国产三级国产专区5o| 亚洲第一青青草原| 中文欧美无线码| 黄片播放在线免费| 亚洲成人一二三区av| 国产在线视频一区二区| 最新在线观看一区二区三区 | 免费久久久久久久精品成人欧美视频| 黄网站色视频无遮挡免费观看| 久久av网站| 久久性视频一级片| 亚洲精品久久午夜乱码| 婷婷成人精品国产| www.av在线官网国产| 国产麻豆69| 青青草视频在线视频观看| 蜜桃国产av成人99| 丝袜美腿诱惑在线| 男女高潮啪啪啪动态图| 老司机靠b影院| 欧美激情极品国产一区二区三区| 久久这里只有精品19| 国产欧美亚洲国产| 各种免费的搞黄视频| 欧美乱码精品一区二区三区| 婷婷色av中文字幕| 午夜福利在线免费观看网站| 亚洲成国产人片在线观看| 啦啦啦视频在线资源免费观看| 人人妻,人人澡人人爽秒播 | 女人久久www免费人成看片| 亚洲欧洲国产日韩| 久久精品国产综合久久久| 亚洲国产毛片av蜜桃av| 久久天躁狠狠躁夜夜2o2o | 国精品久久久久久国模美| 九九爱精品视频在线观看| 欧美日韩综合久久久久久| 中国三级夫妇交换| 国产精品一区二区精品视频观看| a级片在线免费高清观看视频| 亚洲一码二码三码区别大吗| 国产视频首页在线观看| 欧美成人精品欧美一级黄| 久久精品人人爽人人爽视色| 男女高潮啪啪啪动态图| 欧美亚洲日本最大视频资源| 国产一区二区三区综合在线观看| 国产精品秋霞免费鲁丝片| 国产精品熟女久久久久浪| 亚洲人成网站在线观看播放| 操出白浆在线播放| 9191精品国产免费久久| 精品一品国产午夜福利视频| 国产熟女午夜一区二区三区| 色播在线永久视频| 美女中出高潮动态图| 天堂中文最新版在线下载| 免费高清在线观看视频在线观看| 国产免费视频播放在线视频| 丁香六月天网| 亚洲av中文av极速乱| 黄色毛片三级朝国网站| 欧美97在线视频| 国产有黄有色有爽视频| 欧美国产精品一级二级三级| 另类精品久久| 欧美激情高清一区二区三区 | 国产一区有黄有色的免费视频| 精品免费久久久久久久清纯 | h视频一区二区三区| 日本av免费视频播放| netflix在线观看网站| 日韩电影二区| 只有这里有精品99| 国语对白做爰xxxⅹ性视频网站| 欧美黑人精品巨大| 久久久久精品久久久久真实原创| 国产精品99久久99久久久不卡 | 丝袜美足系列| 美女高潮到喷水免费观看| av天堂久久9| 日韩 欧美 亚洲 中文字幕| 精品久久久久久电影网| 国产爽快片一区二区三区| 又大又爽又粗| 97精品久久久久久久久久精品| 国产精品av久久久久免费| 久久97久久精品| 亚洲欧美成人精品一区二区| 久久久久精品国产欧美久久久 | 久久久久精品性色| 久久99一区二区三区| av卡一久久| 亚洲在久久综合| √禁漫天堂资源中文www| 免费黄频网站在线观看国产| 日韩一卡2卡3卡4卡2021年| 国产一级毛片在线| 制服诱惑二区| 韩国av在线不卡| 精品福利永久在线观看| 热99国产精品久久久久久7| 亚洲人成77777在线视频| 综合色丁香网| 亚洲精品一二三| 午夜激情久久久久久久| 亚洲第一av免费看| 最近最新中文字幕免费大全7| 悠悠久久av| 亚洲av国产av综合av卡| www日本在线高清视频| 国产成人精品在线电影| 嫩草影院入口| 国产免费现黄频在线看| 免费观看性生交大片5| 久久久欧美国产精品| 2018国产大陆天天弄谢| 日韩精品免费视频一区二区三区| 久久久国产一区二区| 精品人妻一区二区三区麻豆| 日本wwww免费看| 在线亚洲精品国产二区图片欧美| 欧美人与性动交α欧美精品济南到| 少妇 在线观看| 亚洲欧美精品自产自拍| 欧美国产精品va在线观看不卡| 波野结衣二区三区在线| 国产免费视频播放在线视频| 国产免费现黄频在线看| 王馨瑶露胸无遮挡在线观看| 国产av精品麻豆| 一二三四中文在线观看免费高清| 国产欧美亚洲国产| 卡戴珊不雅视频在线播放| 老汉色av国产亚洲站长工具| 久久久久久久精品精品| 看免费成人av毛片| 观看美女的网站| 久久天堂一区二区三区四区| 国产日韩一区二区三区精品不卡| 亚洲,欧美精品.| 亚洲欧洲精品一区二区精品久久久 | 涩涩av久久男人的天堂| 一级毛片 在线播放| 亚洲精品一区蜜桃| 国产97色在线日韩免费| 搡老岳熟女国产| 国产97色在线日韩免费| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91| 涩涩av久久男人的天堂| 国产一区亚洲一区在线观看| 精品亚洲成a人片在线观看| 亚洲欧洲国产日韩| 十八禁高潮呻吟视频| 亚洲美女视频黄频| 女人高潮潮喷娇喘18禁视频| 女人精品久久久久毛片| 日本欧美视频一区| 午夜久久久在线观看| 国产免费又黄又爽又色| 国产一区亚洲一区在线观看| 午夜影院在线不卡| 国产激情久久老熟女| 日韩视频在线欧美| av又黄又爽大尺度在线免费看| 无遮挡黄片免费观看| 一本—道久久a久久精品蜜桃钙片| 伊人久久国产一区二区| 久久这里只有精品19| 亚洲av成人不卡在线观看播放网 | 国产 一区精品| 国产精品久久久久久精品古装| 国产黄频视频在线观看| 秋霞在线观看毛片| 91国产中文字幕| 啦啦啦啦在线视频资源| 亚洲美女黄色视频免费看| 免费看av在线观看网站| 成人手机av| 一区二区三区激情视频| 日本午夜av视频| 免费看av在线观看网站| 国产欧美日韩综合在线一区二区| 国产深夜福利视频在线观看| 久久久久精品久久久久真实原创| 高清在线视频一区二区三区| av又黄又爽大尺度在线免费看| 国产色婷婷99| 黑人猛操日本美女一级片| 日韩精品免费视频一区二区三区| 欧美精品av麻豆av| 亚洲视频免费观看视频| 久久久久久久精品精品| 19禁男女啪啪无遮挡网站| 91精品国产国语对白视频| 午夜福利免费观看在线| 高清欧美精品videossex| 最近最新中文字幕大全免费视频 | 人妻 亚洲 视频| 伦理电影免费视频| 亚洲精品美女久久久久99蜜臀 | 亚洲av成人不卡在线观看播放网 | 99热国产这里只有精品6| 狠狠精品人妻久久久久久综合| 日韩伦理黄色片| 亚洲av在线观看美女高潮| 精品一区二区三区四区五区乱码 | 1024香蕉在线观看| 天堂8中文在线网| 国产在线视频一区二区| av国产久精品久网站免费入址| 精品国产乱码久久久久久男人| 99久国产av精品国产电影| 天天操日日干夜夜撸| 老司机影院成人| 久久久亚洲精品成人影院| 亚洲欧美激情在线| 欧美日韩视频精品一区| 99久久人妻综合| 亚洲一级一片aⅴ在线观看| 久久国产精品男人的天堂亚洲| 国产精品免费大片| 亚洲男人天堂网一区| 免费观看性生交大片5| 久久精品人人爽人人爽视色| 99久国产av精品国产电影| 天天躁夜夜躁狠狠久久av| 日韩一区二区三区影片| 免费在线观看黄色视频的| 十八禁高潮呻吟视频| av又黄又爽大尺度在线免费看| 一区福利在线观看| 中国国产av一级| 在线天堂中文资源库| 9191精品国产免费久久| 国产女主播在线喷水免费视频网站| 最近的中文字幕免费完整| 两性夫妻黄色片| 18禁动态无遮挡网站| 国产成人91sexporn| 日本欧美视频一区| 青春草亚洲视频在线观看| 啦啦啦 在线观看视频| 丝袜美足系列| 国产福利在线免费观看视频| 青春草国产在线视频| 中文字幕人妻熟女乱码| 无遮挡黄片免费观看| 亚洲欧洲日产国产| 在线精品无人区一区二区三| 亚洲国产精品一区二区三区在线| 夜夜骑夜夜射夜夜干| 大陆偷拍与自拍| 久久精品亚洲熟妇少妇任你| 亚洲av国产av综合av卡| 欧美成人精品欧美一级黄| av片东京热男人的天堂| 精品一品国产午夜福利视频| 国产一区二区 视频在线| av有码第一页| 欧美人与性动交α欧美软件| 1024视频免费在线观看| 亚洲精品中文字幕在线视频| 精品一区二区三区四区五区乱码 | 免费在线观看完整版高清| 91精品国产国语对白视频| 狠狠婷婷综合久久久久久88av| 日韩 亚洲 欧美在线| 成人黄色视频免费在线看| 亚洲图色成人| 一边亲一边摸免费视频| 中文字幕人妻丝袜一区二区 | 日韩一区二区视频免费看| av在线老鸭窝| 男女高潮啪啪啪动态图| 久久精品国产亚洲av涩爱| 热re99久久国产66热| 男女之事视频高清在线观看 | 国产亚洲av高清不卡| 亚洲天堂av无毛| 丁香六月天网| 亚洲精品国产色婷婷电影| 黄色一级大片看看| 免费日韩欧美在线观看| 国产精品偷伦视频观看了| 老熟女久久久| 午夜久久久在线观看| 中文字幕人妻丝袜一区二区 | 最新的欧美精品一区二区| 亚洲国产欧美日韩在线播放| 亚洲成国产人片在线观看| 国产成人午夜福利电影在线观看| 在线观看免费高清a一片| 精品免费久久久久久久清纯 | 亚洲国产日韩一区二区| 我要看黄色一级片免费的| 日韩av不卡免费在线播放| 国产欧美日韩一区二区三区在线| 国产一区亚洲一区在线观看| 深夜精品福利| 日韩欧美精品免费久久| 亚洲av国产av综合av卡| av线在线观看网站| 久久久精品94久久精品| www.av在线官网国产| 在现免费观看毛片| 波多野结衣一区麻豆| 亚洲精品一区蜜桃| 国产毛片在线视频| 国语对白做爰xxxⅹ性视频网站| 日韩av在线免费看完整版不卡| 在线亚洲精品国产二区图片欧美| 中文精品一卡2卡3卡4更新| 男女床上黄色一级片免费看| 咕卡用的链子| 超色免费av| av在线app专区| 国产精品欧美亚洲77777| 国产在线免费精品| 五月天丁香电影| 成人黄色视频免费在线看| 国产一区有黄有色的免费视频| 丰满迷人的少妇在线观看| 国产高清不卡午夜福利| 秋霞在线观看毛片| 操美女的视频在线观看| kizo精华| 精品久久久精品久久久| 免费人妻精品一区二区三区视频| 丁香六月天网| 欧美日韩视频高清一区二区三区二| 欧美日韩综合久久久久久| 一边摸一边做爽爽视频免费| 亚洲国产av影院在线观看| 另类亚洲欧美激情| 欧美日韩国产mv在线观看视频| 这个男人来自地球电影免费观看 | 丰满乱子伦码专区| 亚洲av日韩精品久久久久久密 | 九九爱精品视频在线观看| 男女边吃奶边做爰视频| 午夜福利在线免费观看网站| 99热全是精品| 成人国语在线视频| 久久av网站| 欧美人与性动交α欧美软件| 日本色播在线视频| 国产淫语在线视频| 国产成人免费无遮挡视频| 电影成人av| 老熟女久久久| 成人18禁高潮啪啪吃奶动态图| 国产有黄有色有爽视频| 国产精品久久久久久精品古装| 亚洲国产欧美在线一区| 欧美激情极品国产一区二区三区| 777久久人妻少妇嫩草av网站| 日韩不卡一区二区三区视频在线| 亚洲人成网站在线观看播放| 日韩欧美精品免费久久| 青草久久国产| 国产精品麻豆人妻色哟哟久久| 校园人妻丝袜中文字幕| 天天操日日干夜夜撸| 自线自在国产av| 黑人猛操日本美女一级片| 久久国产精品大桥未久av| 国产精品一二三区在线看| 可以免费在线观看a视频的电影网站 | 国产成人免费观看mmmm| 欧美人与善性xxx| 亚洲精品日本国产第一区| 日本一区二区免费在线视频| 国产又色又爽无遮挡免| 欧美乱码精品一区二区三区| 日本av免费视频播放| 美女中出高潮动态图| 热re99久久国产66热| 超色免费av| 国产日韩欧美在线精品| 一二三四中文在线观看免费高清| 亚洲av中文av极速乱| 一个人免费看片子| av在线播放精品| 天天躁夜夜躁狠狠久久av| 女人高潮潮喷娇喘18禁视频| 我的亚洲天堂| 永久免费av网站大全| 老熟女久久久| 91老司机精品| 母亲3免费完整高清在线观看| 日日啪夜夜爽| 黄色怎么调成土黄色| 纵有疾风起免费观看全集完整版| 99久久人妻综合| 天堂8中文在线网| 亚洲av欧美aⅴ国产| 女人高潮潮喷娇喘18禁视频| 日本av手机在线免费观看| 亚洲国产欧美一区二区综合| 久久精品国产a三级三级三级| 黑人欧美特级aaaaaa片| 人成视频在线观看免费观看| 国产乱人偷精品视频| 精品一区二区三区av网在线观看 | 日本欧美国产在线视频| 视频区图区小说| 久久天堂一区二区三区四区| 99久国产av精品国产电影| 亚洲欧美成人综合另类久久久| 久久av网站| 国产 精品1| 国产成人91sexporn| 亚洲精品美女久久av网站| 亚洲欧美日韩另类电影网站| 久久久久国产一级毛片高清牌|