• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電泳法制備TiO2納米管/納米顆粒復(fù)合薄膜的電化學(xué)阻抗譜分析

    2010-12-12 02:42:06汪文立張羅正李建保
    物理化學(xué)學(xué)報 2010年5期
    關(guān)鍵詞:張羅工程系納米管

    汪文立 林 紅 張羅正 李 鑫 崔 柏 李建保

    (清華大學(xué)材料科學(xué)與工程系,精細(xì)陶瓷與先進(jìn)工藝國家重點實驗室,北京 100084)

    Owing to its simple preparation process,low production-cost, theoretically high conversion efficiency,and short time for the energy payback,dye-sensitized solar cells(DSCs)are attracting extensiveattention[1-5].DSCs require a photoanode to provide both a large surface area to maximize dye adsorption and efficient electron transport to deliver the electrons to the collection elec-trode.Generally,a porous film consisting of nanocrystalline TiO2particles is usually used as the photoanode.Electrons that are transported through this kind of film always involve a slow trap-limited diffusion process and experience a random walk, which leads to a limit on the overall performance of the DSC. Recently,the introduction of one-dimensional(1D)nanostructures into the photoanode is becoming a trend as they may provide a faster and direct transport pathway for the electrons[6-10].Research on films consisting of 1D nanostructures is often focused on their photovoltaic performance.However,studies on how 1D nanostructures affect the photovoltaic performance have rarely been reported[11].

    Electrochemical impedance spectroscopy(EIS)is well-known as a useful technique to investigate kinetic processes in DSCs[11-14]. EIS measurements have the advantage of obtaining numerous electrochemical parameters at the same time,including the electron transport in the nanoporous photoanode film,diffusion of the redox species in the electrolyte,and charge transfer at the counter-electrode surface and at the photoanode/electrolyte interface.DSC is a type of photoelectrochemical cell,thus the electrochemical properties of the photoanode is crucial to the cell′s performance.In this study,the electrochemical properties of 1D nanostructures were studied in order to understand the influence of 1D nanostructures on DSCs.

    In this article,a composite TiO2film consisting of nanotubes and nanoparticles was prepared through electrophoretic deposition(EPD),a method often used to fabricate TiO2films[15-17].The influence of the composition of the TiO2film on the photovoltaic performance of the DSCs was studied.EIS measurements were conducted to scrutinize the electrochemical properties of these composite TiO2films.On the basis of the data derived from the EIS analysis,the contributions of titania nanotubes(TNTs)and a kind of large TiO2particle(particle size of 100 nm)were systematically investigated.The correlation between the total resistance of the DSC and the cell′s photo-to-electricity conversion efficiency was also discussed.

    1 Experimental

    1.1 Electrophoretic deposition of TiO2film

    All chemicals are of analytical grade and used without further purification.The starting powder used in this study consisted of titanate nanotubes(TNTs),P25 particles(Degussa 99.5%,Germany,mean particle size ca 25 nm,anatase 80%,rutile 20% denoted as PPs)and TiO2particles with an average particle size of 100 nm(Degussa 99.5%,Germany,labeled as LPs,namely large particles,anatase).TNTs with outer diameter and length of 9 nm and 200-400 nm,respectively,were synthesized through hydrothermal treatment[18].The total mass of the starting powder was 0.05 g.Polyvinyl butyral(PVB,99.9%,average molecular weight:19000)was used as a dispersant;a mixture of anhydrous ethanol(49 mL)and deionized water(1 mL)was used as solvent. The suspension was treated with stirring(5 min),ultrasonication (10 min),and further stirring(5 min)in order to obtain a homogeneous dispersion.

    For electrophoretic deposition(EPD),ITO-glass(25 Ω·□-1, China Building Materials Academy)served as the substrate and cathode.The anode was a plate of stainless steel.The distance between the two electrodes was 2 cm,and the deposition was performed for 5 min at a voltage of 27.5 V.After deposition,the film was carefully drawn out of the suspension,dried in air for 10 min,and then calcined at 450℃for 0.5 h.After calcination, amorphous TNTs in the composite film were transformed into anatase TNTs[18].The film thickness(L)was 9 μm.

    1.2 Assembly of DSC

    The assembly procedure of the DSC was exactly the same as that mentioned by Li et al.[19].Briefly,the TiO2films were immersed overnight in an anhydrous ethanol solution of 5 mmol· L-1ruthenium(2,2′-bipyridyl-4,4′-dicarboxylate)2(NCS)2(N719 dye,Kojima Chemicals Corporation,Japan)and then dried at room temperature to form photoanodes.One drop of an iodinebased electrolyte solution was deposited onto the surface of the dye-adsorbed TiO2films.The electrolyte solution was composed of 50 mmol·L-1iodine(I2),500 mmol·L-1lithium iodide(LiI), and 500 mmol·L-1tert-butyl pyridine dissolved in acetonitrile. Platinized ITO-glass was used as a counter-electrode.The active area of the photoanodes was 0.235 cm2.

    1.3 Characterization

    Photovoltaic properties were measured under AM1.5 solar condition using a 500 W metal halide lamp(CMH-250,Photovoltaic Instrument Factory of Beijing Normal University,China). Photochemical behavior was investigated using a source meter (Keithley-2400,Keithley Co.Ltd.,USA).Electrochemical impedance spectroscopy(EIS)measurement was carried out by applying a forward bias at an open-circuit-voltage(OCV)under the AM1.5 solar condition,with an ac amplitude of 10 mV over a frequency range of 0.1 to 1000 Hz using a CHI660B electrochemical analyzer(CHI604A,CH Instrument Corp.USA).Specific surface area was measured using the nitrogen adsorption method(BET method)(NOVA4000,Quantachrome Instruments Corp.USA).

    2 Results and discussion

    2.1 Influence of the mass ratio of LPs to PPs

    In order to raise the deposition speed and introduce scattering centers into the photoanode,LPs were added into the suspension[20].In this section,only two kinds of particles,LPs and PPs, were used in the starting powder.The photocurrent density(J)-voltage(V)characteristic curves of the LP-PP composite DSCs are shown in Fig.1,and the corresponding efficiencies are summarized in Table 1.It can be observed that the efficiency of the composite DSC suffers little alteration when the mass fraction of the LPs(wLP)is very low,but it drops significantly with the increasing content once the content is beyond 20%.Therefore,it can be deduced that photoanodes with LP content of no more than 20%are suitable for DSCs.

    To obtain the optimum content for LPs and to examine the contribution of the LPs to the photoanodes,EIS measurements were conducted,with the Nyquist representation displayed in Fig.2.For analyzing the Nyquist diagrams,an equivalent circuit for DSCs,as illustrated in Fig.3,is employed[21-22].In this circuit, RSis the series resistance of the sheet resistance of the ITO-glass,Pt counter-electrode and the resistance of the electrolyte; RTCOand CTCOare the resistance and capacitance of the trsnsparentconductingoxide(TCO)/TiO2/electrolyteinterface,respectively;Rt(=rtL,L is the film thickness)is the electron transport resistance;Rct(=rct/L)is the charge-transfer resistance related to the recombination of electrons at the TiO2/electrolyte interface;Cμ(=cμL)is the chemical capacitance.Zdis the Warburg element showing the Nernst diffusion of I-3in the electrolyte;RPtand CPtare the charge-transfer resistance and the capacitance at the counter electrode,respectively[14].

    Fig.1 Photocurrent density(J)-voltage(V)curves of the LP-PP composite DSCs

    The charge transport properties of the LP-PP composite photoanodes derived from the Nyquist diagrams using Zview software,based on the procedure proposed by Bisquert[23],are presented in Table 1.The lifetime(τ),diffusion coefficient(Deff),and diffusion length(Ln)could be further calculated using τ=RctCμ, Deff=L2(RtCμ)-1,Ln=(Deffτ)1/2.

    Fig.2 Nyquist plots of the LP-PP composite DSCs

    Table 1 shows that the efficiency of the DSCs with LP-PP composite films increases when the mass fraction of LPs is below 20%.However,the efficiency drops rapidly when the mass fraction of LPs rises above 20%.To understand how this trend is formed,the electrochemical properties were investigated.It is widely accepted that the diffusion of an electron within the photoanode film is in competition with the recombination process at the photoanode film/electrolyte interface.When the LP content is increased,Rctstays almost the same while Rtalters.When the mass fraction of LPs is 20%,Rtreaches a minimum of 44.97 Ω. This leads to Rct/Rtobtaining the highest value for the 20%sample when the diffusion process is faster than the recombination process,as compared with the other samples.Thus,when the mass fraction of LPs is 20%,the optimum cell performance is obtained.When the LP content is further increased,the Rct/Rtvalue decreases which is in accordance with the variation of the efficiency.

    Fig.3 Equivalent circuit used for DSCs

    Table 1 Efficiencies of the LP-PP composite DSCs based on photoanodes with different mass fractions of LPs (wLP)and corresponding electron transport properties determined by impedance analysis

    To understand how the LP-PP composite films benefit the DSC,the characteristics of the composite films are considered.It can be found from Table 1 that the diffusion coefficient Deffincreases with increasing LP content.It is known that multiple trapping/detrapping events occur within the grain boundaries during electron diffusion process.Due to a smaller number of grain boundaries,the LP-PP composite films exhibit a lower resistance to the electron transport.However,the chemical capac-itance,which is related to the surface states of the nanoparticles, achieves its maximum at LP content of 20%leading to the lifetime(τ)and diffusion length(Ln)obtaining the highest values. This explains why the diffusion process is faster than the recombination process.Another issue that should be addressed is that the crystal form of the LPs is anatase,which is demonstrated to be an ideal choice for a DSC based on TiO2films[24],while that of the PPs includes anatase and rutile.In addition,the introduction of LPs into the photoanode could increase the traveling length of light within the film,thus an augmentation on the lightharvesting,which is favorable for the increase of the incidentphoton-to-current conversion efficiency(IPCE),is achieved.All of the three factors above may contribute to the optimum performance at the LP content of 20%.

    Table 2 Specific surface area of LP-PP composite with different mass fractions of LPs(wLP)

    In a DSC,the photoanode is always required to afford an effective surface area as large as possible;however,the films with LPs have a lower surface area because of the relatively smaller specific surface area for LP itself.Table 2 shows the specific surface area(S)of the LP-PP composite with different mass fractions of LPs(wLP).As wLPincreases,the specific surface area of the composite film decreases,leading to the lowest dye absorption.Moreover,the lifetime(τ)and diffusion length(Ln)also decrease with increasing wLP.Thus,when the mass fraction of LPs is larger than 20%,the performance of the DSC tended to decrease.

    Combining the above analyses,the optimum mass fraction of LPs for an LP-PP composite DSC is around 20%.In the following sections,the ratio of LPs to PPs is fixed at a constant of 1∶4.

    2.2 Solar cells based on TNT-LP-PP composite films

    For TNT-LP-PP composite films,the mass fraction of TNTs varies from 10%to 40%.The J-V curves and the corresponding efficiencies of the TNT-LP-PP composite DSCs are shown in Fig.4 and listed in Table 3,respectively.It is observed that the efficiencies first increase with the increase in TNT content,and then flatten out with a slight decline when the content is beyond 20%.Although a rough conclusion can be drawn that the TNT content for an optimum TNT-LP-PP composite DSC is around 20%,the mechanism of the trend for the light-to-electricity efficiency needs to be elucidated.

    EIS measurements were conducted for these cells.The charge transport properties derived from the Nyquist plots shown in Fig. 5 are displayed in Table 3.It has been found that the relative value between Rctand Rtreflects the competition level of the electron diffusion through the photoanode film with respect to the recombination process.From Table 3,it can be seen that the value of Rct/Rtexhibits a similar trend to that of the conversion efficiency,implying that the incorporation of TNTs could increase the electron transport rate.Compared with the nanoparticle composite films shown in Table 1,the TNT/particle film decreases Rtremarkably at the TNT concentration of 20%.The reason for this is the high diffusion coefficient(Deff)which shows that the electrons move faster in the nanotubes.It is also found that the electron lifetime is larger in the nanotube than that in the particles(as shown in Table 1),which is due to the higher chemical capacitance(Cμ).TNTs have a high diffusion coefficient and long lifetime,thus,the diffusion length for the TNT/nanoparticle composite film achieves a maximum at the TNT concentration of 20%.Considering that the film thickness is 9 μm,the high diffusion length of 12.71 μm benefits the electron transport in the TNT/nanoparticle film which leads to better performance.

    Fig.4 Current density-voltage curves of the TNT-LP-PP composite DSCs

    Fig.5 Nyquist plots of the TNT-LP-PP composite DSCs

    Table 3 Efficiencies of TNT-LP-PP composite DSCs based on photoanodes with different mass fractions of TNTs, and the corresponding electron transport properties derived from EIS

    Table 4 Specific surface area of TNT-LP-PP composite with different mass fractions of TNTs(wTNT)

    Table 4 shows the specific surface area of the TNT-LP-PP composite with different mass fractions of TNTs(wTNT).As the mass fraction of TNTs increases,the specific surface area increases significantly as 1D nanostructures can effectively enlarge the surface area[25].However,compared with the LP-PP composites without nanotubes,the performance of the LP-PP-TNT composite deteriorates.There are other factors affecting the TNTs to improve the performance of the DSC.TNTs have been verified to show a crystal form of anatase in our previous study[18],but its crystallinity is much lower compared to those of LPs and PPs.A lower crystallinity results from a higher concentration of defects, which always acts as a trapping center in the photoanode films. The relatively smaller Deffmay be ascribed to this.The TNTs may also obstruct the diffusion of I-/I-3in the electrolyte[26].To further raise the performance of the TNT-LP-PP composite DSC,TNTs with fewer defects should be explored.

    Based on the results in Table 3,the optimum properties for the electron transport always locate around 20%of TNT content.It is found that the incorporation of TNTs can increase the diffusion length and specific surface area of the TiO2film. However,with the influence of low crystallinity,nanotube structure,and other factors,the performance of the cell is not improved which is in accordance with other research[26].Although a further exploration should be carried out,the TNT content of 20%is regarded as the optimum for the TNT-LP-PP composite DSCs here.

    3 Conclusions

    EIS measurements were conducted to analyze the properties of the dye-sensitized solar cells(DSCs)based on various TiO2composite films.It is found that large particles increase the charge diffusion and cell performance before the mass fraction of large particles reaches 20%.TNTs are found to reduce the charge transport resistance remarkably which shows the advantage of 1D nanostructures in conducting electrons in TiO2thin film.The optimum mass ratio of TNTs∶LPs∶PPs is 20∶16∶64.To improve the application of TNTs in DSCs,further research in improving their crystallinity and structures should be carried out.

    1 O′Regan,B.;Gr?tzel,M.Nature,1991,353:737

    2 Nazeeruddin,M.K.;De Angelis,F.;Fantacci,S.;Selloni,A; Viscardi,G.;Liska,P.;Ito,S.;Takeru,B.;Gr?tzel,M.J.Am.Chem. Soc.,2005,127:16835

    3 Wei,M.D.;Konishi,Y.;Zhou,H.S.;Yanagida,M.;Sugihara,H.; Arakawa,H.J.Mater.Chem.,2006,16:1287

    4 Kroon,J.M.;Bakker,N.J.;Smit,H.J.P.;Liska,P.;Thampi,K.R.; Wang,P.;Zakeeruddin,S.M.;Gr?tzel,M.;Hinsch,A.;Hore,S.; Würfel,U.;Sastrawan,R.;Durrant,J.R.;Palomares,E.;Pettersson, H.;Gruszecki,T.;Walter,J.;Skupien,K.;Tulloch,G.E.Prog. Photovolt:Res.Appl.,2007,15:1

    5 Murakami,T.N.;Ito,S.;Wang,Q.;Nazeeruddin,M.K.;Bessho, T.;Cesar,I.;Liska,P.;Humphry-Baker,R.;Comte,P.;Pechy,P.; Gr?tzel,M.J.Electrochem.Soc.,2006,153:A2255

    6 Adachi,M.;Murata,Y.;Okada,I.;Yoshikawa,S.J.Electrochem. Soc.,2003,150:G488

    7 Ngamsinlapasathian,S.;Sakulkhaemaruethai,S.;Pavasupree,S.; Kitiyanan,A.;Sreethawong,T.;Suzuki,Y.;Yoshikawa,S. J.Photochem.Photobiol.A-Chem.,2004,164:145

    8 Tan,B.;Wu,Y.Y.J.Phys.Chem.B,2006,110:15932

    9 Law,M.;Greene,L.E.;Johnson,J.C.;Saykally,R.;Yang,P.D. Nat.Mater.,2005,4:455

    10 Baxter,J.B.;Aydil,E.S.Appl.Phys.Lett.,2005,86:053114

    11 Ku,C.H.,Wu,J.J.Appl.Phys.Lett.,2007,91:093117

    12 Kern,R.;Sastrawan,R.;Ferber,J.;Stangl,R.;Luther,J. Electrochim.Acta,2002,47:4213

    13 Hoshikawa,T.;Ikebe,T.;Kikuchi,R.;Eguchi,K.Electrochim. Acta,2006,51:5286

    14 Fabregat-Santiago,F.;Bisquert,J.;Palomares,E.;Otero,L.; Kuang,D.B.;Zakeeruddin,S.M.;Gr?tzel,M.J.Phys.Chem.C, 2007,111:6550

    15 Lebrette,S.;Pagnoux,C.;Abélard,P.J.Eur.Ceram.Soc.,2006, 26:2727

    16 Wang,N.;Lin,H.;Li,J.B.;Yang,X.Z.;Chi,B.Thin Solid Films, 2006,496:649

    17 Tang,F.Q.;Uchikoshi,T.;Wawa,K.;Sakka,Y.J.Eur.Ceram. Soc.,2006,26:1555

    18 Zhang,L.Z.;Lin,H.;Wang,N.;Lin,C.F.;Li,J.B.J.Alloy. Compd.,2007,431:230

    19 Li,X.;Lin,H.;Li,J.B.;Wang,N.;Lin,C.F.;Zhang,L.Z. J.Photochem.Photobiol.A-Chem.,2008,195:247

    20 Miyasaka,T.;Kijitori,Y.J.Electrochem.Soc.,2004,151:A1767

    21 Fabregat-Santiago,F.;Bisquert,J.;Garcia-Belmonte,G.;Boschloo, G.;Hagfeldt,A.Sol.Energy Mater.Sol.Cells.,2005,87:117

    22 Li,X.;Lin,H.;Li,J.B.;Li,X.X.;Cui,B.;Zhang,L.Z.J.Phys. Chem.C,2008,112:13744

    23 Bisquert,J.J.Phys.Chem.B,2002,106:325

    24 Park,N.G.;van de Lagemaat,J.;Frank,A.J.J.Phys.Chem.B, 2000,104:8989

    25 Suzuki,Y.;Ngamsinlapasathian,S.;Yoshida,R.;Yoshikawa,S. Cent.Eur.J.Chem.,2006,4:476

    26 Uchida,S.;Chiba,R.;Tomiha,M.;Masaki,N.;Shirai,M. Electrochemistry,2002,70:418

    猜你喜歡
    張羅工程系納米管
    張羅姣作品
    兩種輕型汽車能耗及續(xù)駛里程試驗方法對比
    最近鄰弱交換相互作用對spin-1納米管磁化強(qiáng)度的影響
    靳局長的牽掛
    電子信息工程系
    機(jī)電工程系簡介
    穿行:服裝工程系畢業(yè)設(shè)計作品
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    西安航空學(xué)院專業(yè)介紹
    ———動力工程系
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    亚洲七黄色美女视频| 亚洲激情五月婷婷啪啪| 亚洲成人中文字幕在线播放| 我要看日韩黄色一级片| 久久久久久国产a免费观看| 草草在线视频免费看| 一区二区三区高清视频在线| 在现免费观看毛片| 亚洲国产精品成人综合色| av在线播放精品| 美女内射精品一级片tv| 毛片女人毛片| 免费观看的影片在线观看| 91久久精品国产一区二区成人| 我要搜黄色片| 91久久精品国产一区二区三区| 久久久欧美国产精品| 久久鲁丝午夜福利片| 亚洲中文字幕日韩| av在线蜜桃| 亚洲精品亚洲一区二区| 18禁黄网站禁片免费观看直播| 免费av毛片视频| 国产国拍精品亚洲av在线观看| 又粗又硬又长又爽又黄的视频 | av在线观看视频网站免费| 在线观看av片永久免费下载| 最好的美女福利视频网| 久久亚洲精品不卡| 卡戴珊不雅视频在线播放| 婷婷色av中文字幕| 色综合色国产| 国产精品av视频在线免费观看| 欧美性感艳星| 男人和女人高潮做爰伦理| 婷婷色av中文字幕| 联通29元200g的流量卡| 不卡视频在线观看欧美| 国产精品乱码一区二三区的特点| 国产成人freesex在线| 成人特级av手机在线观看| 精品久久国产蜜桃| 成年女人永久免费观看视频| 亚洲最大成人av| 午夜福利在线观看吧| 国产单亲对白刺激| 赤兔流量卡办理| www.av在线官网国产| 欧美日韩一区二区视频在线观看视频在线 | 毛片女人毛片| 日本在线视频免费播放| 中国美白少妇内射xxxbb| 在线天堂最新版资源| 国产精品久久久久久精品电影小说 | 三级国产精品欧美在线观看| 丰满乱子伦码专区| 美女高潮的动态| 欧美日韩国产亚洲二区| 黄片无遮挡物在线观看| 欧美zozozo另类| 啦啦啦啦在线视频资源| 国语自产精品视频在线第100页| 91av网一区二区| 最近中文字幕高清免费大全6| 久久精品久久久久久久性| 日日摸夜夜添夜夜添av毛片| av天堂在线播放| 青春草亚洲视频在线观看| 国产美女午夜福利| 色5月婷婷丁香| 99久久久亚洲精品蜜臀av| 少妇被粗大猛烈的视频| 麻豆国产97在线/欧美| 天美传媒精品一区二区| 搡女人真爽免费视频火全软件| 久久久久久久久久久免费av| 永久网站在线| 波多野结衣高清无吗| 97人妻精品一区二区三区麻豆| 亚洲成人精品中文字幕电影| 五月玫瑰六月丁香| 91在线精品国自产拍蜜月| 亚洲av免费高清在线观看| 狂野欧美激情性xxxx在线观看| 综合色av麻豆| 给我免费播放毛片高清在线观看| 秋霞在线观看毛片| 亚洲欧美日韩高清在线视频| 国产老妇女一区| 国产午夜精品久久久久久一区二区三区| 国产成人福利小说| 中国美女看黄片| 热99re8久久精品国产| 日本三级黄在线观看| 亚洲欧美日韩东京热| 国产极品天堂在线| 国产成人精品婷婷| 亚洲va在线va天堂va国产| 亚洲欧美精品综合久久99| 国产成人午夜福利电影在线观看| 亚洲第一区二区三区不卡| 午夜福利在线在线| 久久久久久伊人网av| 少妇裸体淫交视频免费看高清| av女优亚洲男人天堂| 高清毛片免费看| 欧美日韩国产亚洲二区| 两个人的视频大全免费| eeuss影院久久| 99久久精品热视频| 亚洲最大成人中文| 麻豆成人av视频| 麻豆久久精品国产亚洲av| 国产av在哪里看| 久久精品久久久久久噜噜老黄 | 国产视频首页在线观看| 精品一区二区三区视频在线| 一级毛片aaaaaa免费看小| 寂寞人妻少妇视频99o| 亚洲18禁久久av| 午夜福利在线观看吧| 国产中年淑女户外野战色| 在线播放国产精品三级| 国产精品国产高清国产av| 国产极品天堂在线| 久久久久久久午夜电影| 男人和女人高潮做爰伦理| 如何舔出高潮| 内射极品少妇av片p| 国产午夜精品久久久久久一区二区三区| 噜噜噜噜噜久久久久久91| 国产老妇伦熟女老妇高清| 男女那种视频在线观看| 变态另类成人亚洲欧美熟女| 国内揄拍国产精品人妻在线| 卡戴珊不雅视频在线播放| 在线免费观看不下载黄p国产| 黄色欧美视频在线观看| 在线观看66精品国产| 久久99精品国语久久久| 又粗又硬又长又爽又黄的视频 | 非洲黑人性xxxx精品又粗又长| 成年av动漫网址| 国产激情偷乱视频一区二区| .国产精品久久| 久久婷婷人人爽人人干人人爱| 亚洲av第一区精品v没综合| 夜夜夜夜夜久久久久| 亚洲成av人片在线播放无| 男女啪啪激烈高潮av片| a级毛片免费高清观看在线播放| 日韩一区二区三区影片| 少妇的逼水好多| 在线观看av片永久免费下载| 亚洲国产欧美人成| 国产黄色视频一区二区在线观看 | 色5月婷婷丁香| 天天躁夜夜躁狠狠久久av| 国产精品爽爽va在线观看网站| 日韩 亚洲 欧美在线| 欧美潮喷喷水| 国产极品精品免费视频能看的| 欧美精品国产亚洲| 简卡轻食公司| 免费一级毛片在线播放高清视频| 亚洲精品自拍成人| 国产精品日韩av在线免费观看| 国产真实乱freesex| 一本精品99久久精品77| 少妇高潮的动态图| 2021天堂中文幕一二区在线观| 亚洲熟妇中文字幕五十中出| 日本一二三区视频观看| 久久人妻av系列| 成人亚洲欧美一区二区av| 亚洲综合色惰| 午夜老司机福利剧场| 老司机福利观看| 欧美日韩国产亚洲二区| 国产乱人视频| 久久99热这里只有精品18| 亚洲三级黄色毛片| 国产成人aa在线观看| 亚洲av免费高清在线观看| 中文字幕免费在线视频6| 日韩一区二区视频免费看| 日本成人三级电影网站| 3wmmmm亚洲av在线观看| 免费看美女性在线毛片视频| 中文字幕精品亚洲无线码一区| 亚洲成人久久爱视频| av卡一久久| 熟女人妻精品中文字幕| av在线老鸭窝| 精品熟女少妇av免费看| 最近中文字幕高清免费大全6| av在线老鸭窝| 成人国产麻豆网| 麻豆国产av国片精品| 搞女人的毛片| 欧美性猛交黑人性爽| 成人亚洲精品av一区二区| 日本黄大片高清| 日本爱情动作片www.在线观看| 亚洲av成人精品一区久久| 国产午夜精品久久久久久一区二区三区| 午夜老司机福利剧场| 亚洲欧美成人精品一区二区| 美女黄网站色视频| 蜜桃亚洲精品一区二区三区| 精品人妻偷拍中文字幕| 18禁在线无遮挡免费观看视频| av专区在线播放| 国产一区二区在线观看日韩| 久久精品国产亚洲网站| 国产一级毛片七仙女欲春2| 九九热线精品视视频播放| 性欧美人与动物交配| 久久久久久久久久成人| 国产三级在线视频| 亚洲av第一区精品v没综合| 麻豆乱淫一区二区| 亚洲精华国产精华液的使用体验 | 噜噜噜噜噜久久久久久91| 少妇熟女欧美另类| 日日摸夜夜添夜夜添av毛片| 我的女老师完整版在线观看| 99久久精品国产国产毛片| 欧美最黄视频在线播放免费| 日韩一本色道免费dvd| 久久人人爽人人爽人人片va| 99久国产av精品国产电影| 亚洲精华国产精华液的使用体验 | 欧美变态另类bdsm刘玥| 日韩中字成人| 在线观看午夜福利视频| 国产精品蜜桃在线观看 | 给我免费播放毛片高清在线观看| 男女下面进入的视频免费午夜| а√天堂www在线а√下载| 日本三级黄在线观看| 免费av不卡在线播放| 丰满的人妻完整版| 美女内射精品一级片tv| 校园春色视频在线观看| 精品少妇黑人巨大在线播放 | 亚洲成人av在线免费| www日本黄色视频网| 青春草亚洲视频在线观看| 日本撒尿小便嘘嘘汇集6| 赤兔流量卡办理| 男人舔奶头视频| 丰满乱子伦码专区| 韩国av在线不卡| 熟妇人妻久久中文字幕3abv| 国国产精品蜜臀av免费| 天堂网av新在线| 国产一区二区在线观看日韩| 干丝袜人妻中文字幕| 一区二区三区高清视频在线| 国内精品宾馆在线| 插逼视频在线观看| 国产成人a∨麻豆精品| 久久亚洲国产成人精品v| 亚洲国产欧美在线一区| 免费黄网站久久成人精品| 久久久午夜欧美精品| 一本久久精品| 一级黄色大片毛片| 国产精品久久久久久av不卡| www.av在线官网国产| 狂野欧美激情性xxxx在线观看| 男女那种视频在线观看| 高清日韩中文字幕在线| 午夜精品国产一区二区电影 | 18禁裸乳无遮挡免费网站照片| 日日摸夜夜添夜夜添av毛片| 久久久久久大精品| av专区在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人妻夜夜爽99麻豆av| 欧美zozozo另类| 中国美白少妇内射xxxbb| 久久精品影院6| 国产久久久一区二区三区| 亚洲自拍偷在线| 一进一出抽搐动态| 一进一出抽搐gif免费好疼| 一级毛片我不卡| 黄色一级大片看看| av在线播放精品| 91精品一卡2卡3卡4卡| 久久精品影院6| 中文字幕制服av| 国产一级毛片七仙女欲春2| 欧美一区二区国产精品久久精品| 欧美xxxx性猛交bbbb| 欧美人与善性xxx| av专区在线播放| 成人美女网站在线观看视频| 欧美精品一区二区大全| 一级二级三级毛片免费看| 久久精品国产99精品国产亚洲性色| 亚洲在久久综合| 亚洲成人中文字幕在线播放| 黄色视频,在线免费观看| 久久久国产成人精品二区| 少妇熟女aⅴ在线视频| 热99在线观看视频| 亚洲va在线va天堂va国产| 欧美最黄视频在线播放免费| 久久久午夜欧美精品| 91久久精品国产一区二区成人| 精品久久久久久久久久免费视频| 亚洲精品日韩在线中文字幕 | 精品久久久久久久久久免费视频| 亚洲电影在线观看av| 欧美在线一区亚洲| 中文字幕av在线有码专区| 五月伊人婷婷丁香| 精品久久国产蜜桃| 丰满乱子伦码专区| 秋霞在线观看毛片| 熟妇人妻久久中文字幕3abv| 午夜a级毛片| 午夜爱爱视频在线播放| 人妻制服诱惑在线中文字幕| 日日撸夜夜添| 国产真实乱freesex| 久久精品国产亚洲av涩爱 | 亚洲av不卡在线观看| 天堂中文最新版在线下载 | 欧美激情久久久久久爽电影| 欧美zozozo另类| 久久精品国产亚洲av涩爱 | 99视频精品全部免费 在线| 69av精品久久久久久| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 成人午夜精彩视频在线观看| a级毛片a级免费在线| 国产成人a区在线观看| av国产免费在线观看| 日韩亚洲欧美综合| 天天一区二区日本电影三级| 亚洲一级一片aⅴ在线观看| 久久精品久久久久久久性| 岛国毛片在线播放| 亚洲av免费在线观看| 麻豆精品久久久久久蜜桃| 99久久九九国产精品国产免费| 亚洲熟妇中文字幕五十中出| 国产亚洲欧美98| 成人特级黄色片久久久久久久| 夜夜爽天天搞| 人体艺术视频欧美日本| 国产亚洲av嫩草精品影院| 熟女电影av网| 美女cb高潮喷水在线观看| 熟女电影av网| 最近手机中文字幕大全| 寂寞人妻少妇视频99o| 亚洲av免费高清在线观看| 国产一级毛片七仙女欲春2| 99久久精品国产国产毛片| av.在线天堂| 日韩高清综合在线| 日本黄大片高清| 老司机影院成人| 成人毛片60女人毛片免费| 亚洲欧美日韩高清专用| 大型黄色视频在线免费观看| a级毛色黄片| 国产三级在线视频| 免费看av在线观看网站| 免费观看a级毛片全部| 久久久国产成人精品二区| 深夜a级毛片| 91精品国产九色| 91av网一区二区| 老司机福利观看| 男女下面进入的视频免费午夜| 又爽又黄无遮挡网站| 一进一出抽搐gif免费好疼| 久久午夜福利片| 国产伦在线观看视频一区| 久久精品国产清高在天天线| 日韩一区二区三区影片| 成人特级黄色片久久久久久久| 岛国在线免费视频观看| 97超碰精品成人国产| 欧美精品国产亚洲| 国产精品永久免费网站| 此物有八面人人有两片| 成人无遮挡网站| 免费一级毛片在线播放高清视频| 久久人人精品亚洲av| 最近手机中文字幕大全| 熟妇人妻久久中文字幕3abv| 国产av不卡久久| 免费黄网站久久成人精品| 亚洲精品久久久久久婷婷小说 | 18禁裸乳无遮挡免费网站照片| 国产精品久久久久久久电影| 亚洲国产色片| 久久99精品国语久久久| 午夜福利成人在线免费观看| 久久人人精品亚洲av| 精品人妻熟女av久视频| 精品熟女少妇av免费看| 久久综合国产亚洲精品| 六月丁香七月| 国产色婷婷99| 亚州av有码| 天堂影院成人在线观看| av国产免费在线观看| 美女高潮的动态| 国产极品天堂在线| 秋霞在线观看毛片| 国产精品久久久久久亚洲av鲁大| 熟女人妻精品中文字幕| 1000部很黄的大片| 日本一二三区视频观看| 在线观看免费视频日本深夜| 性插视频无遮挡在线免费观看| 在线国产一区二区在线| 精品午夜福利在线看| 国产亚洲av片在线观看秒播厂 | 自拍偷自拍亚洲精品老妇| 可以在线观看的亚洲视频| 欧美一区二区精品小视频在线| 午夜爱爱视频在线播放| 一区二区三区高清视频在线| 亚洲国产精品成人久久小说 | 可以在线观看的亚洲视频| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线| 亚洲电影在线观看av| 日韩高清综合在线| 天天躁日日操中文字幕| 九色成人免费人妻av| 国产乱人偷精品视频| 在线观看一区二区三区| 日韩一区二区三区影片| 国产免费一级a男人的天堂| 校园人妻丝袜中文字幕| 国产av麻豆久久久久久久| 国产精品国产三级国产av玫瑰| 国产精品永久免费网站| 国产不卡一卡二| 秋霞在线观看毛片| 国内精品美女久久久久久| 午夜老司机福利剧场| 九草在线视频观看| 日韩强制内射视频| 99热这里只有是精品50| 亚洲美女视频黄频| 日本撒尿小便嘘嘘汇集6| 1000部很黄的大片| 日本一二三区视频观看| h日本视频在线播放| 亚洲av熟女| 亚洲欧美成人精品一区二区| а√天堂www在线а√下载| 一级黄色大片毛片| 国产黄色视频一区二区在线观看 | 婷婷亚洲欧美| 国产成人精品久久久久久| 夜夜爽天天搞| 九草在线视频观看| 乱人视频在线观看| 午夜视频国产福利| 亚洲国产欧美人成| 99精品在免费线老司机午夜| 国产成年人精品一区二区| 国产91av在线免费观看| 久久久午夜欧美精品| 精品一区二区三区视频在线| 人体艺术视频欧美日本| 亚洲七黄色美女视频| 欧美激情国产日韩精品一区| 欧美性感艳星| 精品久久久噜噜| 亚洲av.av天堂| 久久精品国产亚洲av天美| 亚洲欧美日韩无卡精品| 狂野欧美白嫩少妇大欣赏| 熟妇人妻久久中文字幕3abv| 中国国产av一级| 亚洲人成网站在线观看播放| 国产一区二区在线av高清观看| 晚上一个人看的免费电影| av.在线天堂| 美女内射精品一级片tv| 99久久九九国产精品国产免费| 日韩成人av中文字幕在线观看| 亚洲成av人片在线播放无| 日韩强制内射视频| 中国美白少妇内射xxxbb| 久久久久久大精品| 国产在线男女| 欧美一区二区国产精品久久精品| 赤兔流量卡办理| 激情 狠狠 欧美| 97超碰精品成人国产| 我要看日韩黄色一级片| 中文字幕av在线有码专区| 亚洲精品粉嫩美女一区| 国产av一区在线观看免费| 2021天堂中文幕一二区在线观| 国产精华一区二区三区| 变态另类成人亚洲欧美熟女| 亚洲av一区综合| 亚洲精华国产精华液的使用体验 | 一进一出抽搐动态| 日本免费一区二区三区高清不卡| 国产精华一区二区三区| 日本成人三级电影网站| 午夜福利在线观看吧| 三级经典国产精品| 69人妻影院| 天天一区二区日本电影三级| 亚洲欧美日韩卡通动漫| av天堂中文字幕网| 禁无遮挡网站| 女同久久另类99精品国产91| 97热精品久久久久久| 伦理电影大哥的女人| 好男人视频免费观看在线| 午夜福利在线观看免费完整高清在 | 免费人成在线观看视频色| 丰满乱子伦码专区| 国产午夜精品论理片| 亚洲精品国产成人久久av| 观看免费一级毛片| 国产蜜桃级精品一区二区三区| 又爽又黄无遮挡网站| 国产三级在线视频| 人妻少妇偷人精品九色| 亚洲中文字幕一区二区三区有码在线看| videossex国产| 在线a可以看的网站| 性插视频无遮挡在线免费观看| 色综合色国产| 国产黄色小视频在线观看| 日本熟妇午夜| 久久6这里有精品| 国产黄片美女视频| 国产精华一区二区三区| 国产精品无大码| 成人美女网站在线观看视频| 日日干狠狠操夜夜爽| 欧美精品一区二区大全| 国产精品久久电影中文字幕| 色综合站精品国产| 在线观看免费视频日本深夜| 美女高潮的动态| 亚洲18禁久久av| 亚洲国产精品合色在线| 狂野欧美白嫩少妇大欣赏| 深夜a级毛片| 亚洲精品乱码久久久v下载方式| 丰满人妻一区二区三区视频av| 亚洲av成人精品一区久久| 99在线人妻在线中文字幕| 国产av麻豆久久久久久久| 成人漫画全彩无遮挡| 日韩国内少妇激情av| av卡一久久| 色哟哟哟哟哟哟| 久久精品夜色国产| 国产午夜精品久久久久久一区二区三区| 99久国产av精品| 亚洲av男天堂| 国产午夜精品论理片| 日韩亚洲欧美综合| 成人国产麻豆网| 国产亚洲精品av在线| 亚洲最大成人手机在线| 少妇被粗大猛烈的视频| 久久久久久久久中文| 日本一二三区视频观看| 精品久久久久久久久亚洲| 午夜视频国产福利| 亚洲va在线va天堂va国产| 亚洲精品日韩av片在线观看| 美女被艹到高潮喷水动态| 97热精品久久久久久| 欧美日韩在线观看h| 成人一区二区视频在线观看| 99国产精品一区二区蜜桃av| 亚洲av中文av极速乱| 国产精品麻豆人妻色哟哟久久 | 亚洲精品色激情综合| 国产毛片a区久久久久| 99热6这里只有精品| 日韩三级伦理在线观看| 黄色一级大片看看| 久久精品国产亚洲网站| 精品午夜福利在线看| 国产黄片美女视频| 亚洲一区高清亚洲精品| 变态另类丝袜制服| 日本成人三级电影网站| 中出人妻视频一区二区| 男女边吃奶边做爰视频| 午夜精品一区二区三区免费看| 毛片一级片免费看久久久久| 2022亚洲国产成人精品| 国产在线精品亚洲第一网站| 日韩av在线大香蕉| 午夜福利在线在线| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久av不卡| 村上凉子中文字幕在线|