• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電化學(xué)置換法制備高Pt利用率的類核殼型Ni-Pt電催化劑

    2010-12-12 02:41:38何建平周建華狄志勇丁曉春
    物理化學(xué)學(xué)報(bào) 2010年5期
    關(guān)鍵詞:南京航空航天大學(xué)核殼材料科學(xué)

    孫 盾 何建平 周建華 王 濤 狄志勇 丁曉春

    (南京航空航天大學(xué)材料科學(xué)與技術(shù)學(xué)院,南京 210016)

    Fuel cells,especially proton exchange membrane fuel cells (PEMFCs)are expected to be a major energy conversion device in the hydrogen economy.But,the low catalytic activity of electrodes for the hydrogen electro-oxidation reaction and the high cost of Pt-based electrocatalysts still pose an obstacle to their commercialization[1-4].The most common solution to these problems is to employ bimetallic catalysts.Certain platinum-based alloys,PtM(M=Fe,Co,Ni,V,Cr,Mn,etc.)[5-9],exhibit somewhat enhanced catalytic activity in comparison with pure Pt metal.However,they commonly contain more than 80%(mass fraction,w)of Pt in a Pt-based alloy.Consequently,considerable effort should be spent on searching for alternative electrocatalysts with high activity and stability,as well as low Pt content.

    Core-shell bimetallic nanoparticles have earned much attention because of their unique structure[10-12].The nanoparticles with non-noble metal as core and noble metal as shell can further reduce the content of Pt metal,moreover,the activity of a Pt shellcanbeenhancedthrough structural-and electronic-effects[13]. Another advantage of core-shell structure is that only surface atoms are catalytically active.

    A number of techniques have been used to prepare Pt-based core-shell catalysts,such as electroless plating,microemulsion and polyhydric alcohol reduction[14-16].One versatile method for the bimetallic catalyst is the successive reduction technique, wherein the second metal is reduced by the preformed core seeds through adding another reducing agent.Compared to these conventional strategies,the facile replacement reaction is superior in the fabrication of core-shell structured nanoparticles[17], bearing several advantages listed as follows:(1)no additional reducing agent is needed,(2)spontaneous formation of the shells deposited on the surface of the initial cores,(3)self-nucleation of secondarily added metals can be avoided,(4)inhomogeneous growth of the shells on the surface of the initial cores can be prevented. Adzic et al.[18]first reported the synthesis of Pt-based core-shell catalyst for fuel cell reactions,combining the underpotential deposition of a Cu monolayer and subsequent displacement with Pt.However,the electrochemical method is not feasible from the viewpoint of mass production of for well-dispersed nanoparticles.

    In this paper,we present an effective and facile approach to prepare the Pt-based core-shell like catalyst to achieve high catalytic performance with a lower amount of Pt.The morphology and electrocatalytic activity of Ptshell-Nicorecatalysts are investigated.It shows that Ptshell-Nicore/XC-72 catalyst exhibited a high catalytic activity for hydrogen electro-oxidation.

    1 Experimental

    All the reagents were of analytical purity and used without further purification.Trisodium citrate,acetone,cetyltrimethyl ammonium bromide,sodium borohydride,isopropanol,Ni(Ac)2, and NaH2PO2were purchased from Sinopharm Chemical Reagent Limited Corporation.

    The carbon-supported core-shell Ni-Pt electrocatalyst was prepared through an electroless process to load the Ni-core seeds on the surface of commercial carbon black Vulcan XC-72 (Cabot),and a galvanic replacement method that made the Ptshell over the Ni-core.Trisodium citrate and cetyltrimethyl ammonium bromide were used as the stabilizer and dispersant,respectively.The theoretical total metal loadings are 20%(w)(8% (w)for Pt).

    1.1 Pretreatment of Vulcan XC-72

    1 g of carbon was suspended in 500 mL water,followed by adding 500 mg of sodium borohydride.The mixture was stirred overnight at 50℃,filtered after being sufficiently washed,and then vacuum-dried.The pretreatment was necessary for the removal of surface contaminants,especially for that of surface oxides;besides,it might be that impregnation of the high surface area carbon by small amounts of borohydride(residues of borohydride)later result in the formation of the Ni nuclei on the carbon surface when Ni acetate is added.These later grow further in size.

    1.2 Synthesis of Ni core

    Citrate-stabilized Ni-core nanoparticles(seed particles)were prepared via Ni(Ac)2being reduced by NaH2PO2.Briefly,40 mg of the pretreated carbon was mixed with 20 mL of water and 20 mL of isopropanol,then sonicated for 10 min.After the addition of 1.0 mL of 0.1 mol·L-1Ni(Ac)2aqueous solution,1.0 mL of 0.1 mol·L-1trisodium citrate aqueous solution and 0.01g of cetyltriethylammnonium bromide(CTAB),the mixture was vigorously stirred and then heated to 80℃.Finally,3.0 mL of 0.1 mol·L-1NaH2PO2was added slowly into the above-obtained solution under continuous stirring for 1 h..

    1.3 Synthesis of Pt shell by replacement of Ni core

    The suspension was filtered and washed with water and acetone to remove excess NaH2PO2,in this way the sequential galvanic replacement reaction would not be disturbed by the excess reducing agent.The product was re-dispersed in a mixture of water and isopropanol.After adjusting the pH of the suspension to 6 by addition of 0.2 mol·L-1HCl solution,0.5 mL of 0.038 mol·L-1H2PtCl6was added under vigorously stirring and heated to 60℃for 3 h.The suspension was then centrifuged to recover the solid product,which was re-dispersed and washed thoroughly with acetone,ethanol,and water for more than 6 times to remove the remnant CTAB.The final solid product was dried overnight in a vacuum oven at 60℃ and denoted as Ptshell-Nicore/XC-72.

    1.4 Synthesis of comparison samples

    For comparison,carbon-supported monometallic Ni samples and Pt samples(denoted as Ni/XC-72 and Pt/XC-72)with the same total metal loading(20%(w))were prepared by a similar procedures.

    In order to check whether the excess NaH2PO2was thoroughly removed and prove that the Pt-shell was formed via replacement reaction,not reduced by the remnant reducing agent,carbon supported Ptshell-Nonecoresamples (denoted as Ptshell-Nonecore/XC-72) with the same amount of Pt but without Ni was prepared by a similar procedure.

    1.5 Characterization

    X-ray diffraction patterns were recorded by a Bruker D8 ADVANCE diffractometer using Cu Kαradiation(λ=0.154056 nm). Transmission electron microscopy(TEM,FEI Tecnai G2)operating at 200 kV was applied to characterize the morphology and particle size distribution.The UV-Vis spectra were measured with a Shimadzu UV2450 spectrometer equipped with quartz cells.

    1.6 Electrochemical measurement

    An electrochemical interface(CHI 660A)and a conventional three-electrode system were employed to conduct voltammetry experiments on the catalysts.Cyclic voltammetry(CV)test in 1 mol·L-1KOH solution with a scan rate of 20 mV·s-1was used to examine the coating quality of the nanoparticles,and to check whether there are pinholes on the shell;further in 0.5 mol·L-1NaClO4to study the electrochemical properties of the core-shell sample and the monometallic samples with the same scan rate. Electrochemical hydrogen absorption/desorption tests in 0.5 mol·L-1H2SO4with a scan rate of20 mV·s-1was used to evaluate catalytic activity of the samples.

    The working electrode was prepared as follows:5 mg of the catalyst was mixed with 1 mL of ethanol and 50 μL of 5%(w) Nafion solution(Du Pont).The mixture was sonicated for 30 min to obtain inky slurry.Approximately 25 μL of the slurry was applied to the surface of the glassy carbon electrode to form a thin layer of ca 0.1256 cm2in geometrical area.A saturated calomel electrode(SCE)and a Pt foil were used as the reference electrode and the counter electrode,respectively.

    2 Results and discussion

    2.1 Physical characterization and structural studies

    The structure and phase analysis of the catalyst samples were performed by XRD.Fig.1 shows the XRD patterns of Ptshell-Nicore/XC-72,Pt/C(JM)and Ni/XC-72 catalysts with a metal loading of 20%(w).The first peak located at about 24.8°in all the XRD patterns is associated with the Vulcan XC-72 carbon support,according to the peak of XC-72.Peaks suggestive of Nicore,located at 2θ of 44.5°and 51.7°correspondingly indexed to a relatively poorly-resolved(111)-plane and a well-resolved (200)-palne,are detected in the Pt-shell/Ni-core structure,which are consistent with Ni/XC-72.

    There emerges a positive angle shift for the four characteristic peaks of Pt,which are located at 2θ of(111),(200),(220)and (311)planes,as shown in Table 1,indicating the bimetallic combination of Pt and Ni.The phenomenon can be assigned to the incorporation of Ni into the structure of Pt by the in situ galvanic replacement process.The broad diffraction peaks suggest that small Ptshell-Nicore/XC-72 and Pt/C(JM)particles are obtained with a narrow size distribution[19].The average size of the Ptshell-Nicoreand Pt particles estimated by Debye Scherrer formula[20]are 3.4 and 3.6 nm,respectively.

    Table 1 Structure and mean particle size of the Ptshell-Nicore/ XC-72,Pt/C(JM),Ni/XC-72 by XRD,and Ni(fcc)

    TEM was used to characterize the morphology of the synthesized catalysts.As shown in Fig.2,all the nanoparticles are well dispersed without agglomeration and present a narrow size distribution,as a result of the stabilizing effect of CTAB.Fig.2(a,a′) shows the images of individual Ni nanoparticles and the corresponding size histogram.The spherical particles are well-separated and monodisperse with a main size of 2.6 nm.Fig.2(b,b′) shows the same particles after replacement of Pt,leading to deposition of metallic Pt on the surface of the Ni seeds with a main size of 3.6 nm.The average particle size of Ptshell-Nicoreparticles is 3.6 nm,in good agreement with that from the above XRD measurement.The smaller average particle size and good dispersion of Ptshell-Nicore/XC-72 might be beneficial for electrocatalysis.Additionally,the presence of both Pt and Ni metals was qualitatively confirmed by energy-dispersive X-ray(EDX)spectrometric analysis.

    The formation of Pt-shell via chemical replacement and the core-shell like structure before catalyst depositing on the carbon was investigated by UV-Vis spectroscopy.A certain molar quantity of NaH2PO2,equivalent to Ni(Ac)2,was introduced to prepare Ni-seed,which insufficiently reduced Ni(Ac)2.Therefore,it ensures there is no excess reducing remaining agent before adding H2PtCl6into the Ni-seed solution,to form the Ptshell through the replacement reaction.

    As shown in Fig.3,a peak at 350 nm was assigned to the Ni(Ac)2solution,after which it was reduced by NaH2PO2,a peak at 400 nm detectable in curve(a)appears.As pure Ni is not UV-visible active[17],the peak at 400 nm is also an absorption band of the remnant Ni ions,so there is no excess reducing agent.This red shift behavior may be caused by the citrate complex of Ni(II). The curve of H2PtCl6solution shows a peak at 260 nm as a result of the ligand-to-metal charge-transfer transition in the PtCl2-6[21], and Pt is also not UV-visible active.After adding H2PtCl6to Nicore colloid,the peak at 260 nm was no longer visible from curve b(Ptshell-Nicore),suggesting that all PtCl2-6ions were completely reduced.Conclusively,a Pt-shell was formed by galvanic replacement,and then the Ni-Pt core-shell structure generated, for there is no excess reduction agent before adding the H2PtCl6.

    This galvanic replacement mechanism can summarized as follows:the process of Pt shells forming on Ni cores is driven by an in situ replacement reaction between the Ni atoms and PtCl2-6ion without any additional reducing agent.When PtCl2-6ions in a positive metal oxidation state approach the surface of Ni nanoparticles,they can be directly reduced to Pt through the sacrificial oxidation of the nickel atoms and simultaneous deposition of Pt on the surface.Meanwhile,the Ni atoms are oxidized to Ni2+and the electron transfer between the two metals results in core-shell type nanoparticles.This redox reaction can spontaneously proceed under the favorable potential generated between the two metals,this method has been regarded as an efficient route for the selective formation of bimetallic structures[22]. The reaction mechanism of the replacement process can be ex-pressed as:

    In order to examine the coating quality of the nanoparticles, CV,a surface sensitive technique,is used to further examine the core-shell structure.

    CV curves of the Ni/XC-72 and Ptshell-Nicore/XC-72 in 1 mol·L-1KOH are compared in Fig.4.As shown in Fig.4,the curve of Ni/ XC-72 exhibits two redox peaks within the potential range of 0.2-0.4 V(vs SCE),which can be considered as the following redox reaction[23]:

    No redox peaks can be seen after forming the Ptshell-Nicorestructure,suggesting the absence of large and isolated Ni or nickel oxide particles on the surface of Ptshell-Nicore.Pt was therefore presented as a shell wrapping the Ni core via a galvanic replace-ment reaction.

    CV curvesofNi/XC-72,Pt/C(JM),and Ptshell-Nicore/XC-72 in 0.1 mol·L-1NaClO4are shown in Fig.5.The CV curve of Ni/XC-72 exhibits the oxidation peak and reduction peaks at about 0.50, 0.32,and-0.40 V,respectively,and an indistinct oxidation peak at-0.25V,whichmaybe explained asfollows:-0.25 and-0.40 V are two of the redox peaks,corresponding to the oxidation process of Ni to Ni2+.Likewise 0.50 and 0.32 V are similar to the negative couple,corresponding to the redox between Ni2+and Ni3+[24].

    Compared to Ni/XC-72,the CV curve of Ptshell-Nicore/XC-72 shows only a couple of redox peaks similar to that of the Pt/C (JM),indicating that the Ptshell-Nicore/XC-72 is representative of the electrochemical properties of the pure Pt surface.The absence of redox peaks characteristic of Ni indicates that the Ni core is completely covered by the Pt shell and there are no discernible Ni sites,also in agreement with the analysis by CV in KOH electrolyte solution.However,The redox peak of Ptshell-Nicore/XC-72,shifting to the range of higher potential,still differs from that of Pt/C(JM),indicating that the Pt-shell is slightly different from that of pure Pt surface,which is likely due to the structural-and electronic-effects between Pt-shell and Ni-core. Conclusively,it′s suggested that the Pt-Ni particles have a Ptshell-Nicorestructure.

    2.2 Electrocatalytic performance of catalysts

    To learn more about the practical performance of the Ptshell-Nicore/XC-72 catalysts and to investigate the Pt utilization and activity with this core-shell structure,CV tests were performed in 0.5 mol·L-1H2SO4.From Fig.6,it can be clearly seen that Ptshell-Nicore/XC-72,Pt/C(JM),and Pt/XC-72 exhibit distinct hydrogen evolution peaks.Whereas for the Ptshell-Nonecore/XC-72,no hydrogen adsorption/desorption peaks but only a capacitance characteristic of XC-72 was seen,indicating the non-existent of Pt,this proved that the reducing agent was thoroughly removed before adding the H2PtCl6in our method,which can ensure that Pt shell was acquired via replacement reaction.For the catalysts,the hydrogen region from-0.22 to 0.20 V(vs SCE)corresponds to the reductive adsorption of protons in the cathodic scan and the subsequent oxidation of the hydrogen adatoms in the anodic scan[25]. A smaller oxidation charge in this region for Pt/C(JM),and especially for Pt/XC-72,implies a smaller electrochemical active area for these catalysts compared to Ptshell-Nicore/XC-72.

    In general,the electrochemically active surface(SA)of Pt particles is used to reflect the intrinsic electrocatalytic activity[26].SAis calculated by the formula[27]:

    where Q is the total charge,mPtis the Pt loading on glassy carbon substrate,and QHrefis assumed to be 0.21 mC·cm-2corresponding to a surface density of 1.3×105atom·cm-2of Pt,the parameters of the electrochemical performance are listed in Table 2.Obviously,the Ptshell-Nicore/XC-72 shows excellent performance with the SAvalue as high as 100.1 m2·g-1,which is 1.2 times as large as that of Pt/C(JM)(84.7 m2·g-1)and 2.5 times as large as that of Pt/XC-72(40.3 m2·g-1),even though the content of Pt (8%(w))is 40%that of Pt/C(JM,20%(w)),indicating a higher Pt utilization and activity with the Ptshell-Nicorestructure.In ourprevious work,the SAof Pt/CMK-5 reaches a value of 100-138 m2·g-1(20%(w)Pt)[28].On the premise of reducing usage of Pt, loading Pt particles on commercial carbons with this core-shell structure obtain the performance level similar to Pt/CMK-5, which also indicates a high activity of core-shell nanopaticles in the electrocatalysis field.

    Table 2 Electrochemically active surface areas(SA)of Ptshell-Nicore/XC-72,Pt/C(JM),and Pt/XC-72

    3 Conclusions

    In summary,highly active and dispersed Ptshell-Nicore/XC-72 electrocatalyst was successfully synthesized by an in situ galvanic replacement strategy.The formation of core-shell like structure has been supported by various techniques including XRD, UV-Vis,and electrochemical techniques.Cyclic voltammetry showed that the Ptshell-Nicore/XC-72 had a higher activity with lower loadings of Pt compared to Pt/C(JM),which might have resulted from the enhanced Pt utilization by the core-shell like structure.Consequently,the carbon-supported core-shell nanoparticles have a better potential for application as catalysts for fuel cells.

    1 Arico,A.S.;Srinivasan,S.;Antonucci,V.Fuel Cells,2001,1:133

    2 Ye,J.S.;Cui,H.F.;Wen,Y.;Zhang,W.D.;Xu,G.Q.;Sheu,F.S. Microchim.Acta,2006,152:267

    3 Ralph,T.R.;Hogarth,M.P.Platinum.Met.Rev.,2002,46:3

    4 Gottesfeld,S.;Raistrick,I.D.;Srinivasan,S.J.Electrochem.Soc., 1987,134:1455

    5 Jalan,V.;Taylor,E.J.J.Electrochem.Soc.,1983,130:2299

    6 Mukerjee,S.;Srinivasan,S.;Soriaga,M.P.;McBreen,J.J.Phys. Chem.B,1995,99:4577

    7 Min,M.K.;Cho,J.;Cho,K.;Kim,H.Electrochim.Acta,2000, 45:4211

    8 Drillet,J.F.;Ee,A.;Friedemnan,J.;Kotz,R.;Schnyder,B.; Schmidt,V.M.Electrochim.Acta,2002,47:1983

    9 Paffet,M.T.;Beery,J.G.;Gottesfeld,S.J.Electrochem.Soc., 1988,135:1431

    10 Scott,R.W.J.;Wilson,O.M.;Oh,S.K.;Kenik,E.A.;Crooks,R. M.J.Am.Chem.Soc.,2004,126:15583

    11 Toshima,N.;Yonezawa,T.New J.Chem.,1998,22:1179

    12 Schmid,G.;West,H.;Mehles,H.;Lehnert,A.Inorg.Chem.,1997, 36:891

    13 Rolison,D.R.Science,2003,299:1698

    14 Ji,M.;Chen,X.Y.;Wai,C.M.;Fulton,J.L.J.Am.Chem.Soc., 1999,121:2631

    15 Liu,C.;Wu,X.W.;Klemmer,T.;Shukla,N.;Yang,X.M.;Weller, D.;Roy,A.G.;Tanase,M.;Laughlin,D.J.Phys.Chem.B,2004, 108:6121

    16 Liu,Z.;Guo,B.;Hong,L.;Lim,T.H.Electrochem.Commun., 2006,8:83

    17 Chen,D.;Li,J.;Shi,C.;Du,X.;Zhao,N.;Sheng,J.;Liu,S.Chem. Mater.,2007,19:3399

    18 Zhang,J.;Lima,F.H.B.;Shao,M.H.;Sasaki,K.;Wang,J.X.; Hanson,J.;Adzic,R.R.J.Phys.Chem.B,2005,109:22701

    19 Antolini,E.;Salgado,J.R.C.;Gonzalez,E.R.J.Electroanal. Chem.,2005,580:145

    20 Antolini,E.;Cardellini,F.J.Alloy.Compd.,2001,315:118

    21 Teranishi,T.;Hosoe,M.;Tanaka,T.;Miyake,M.J.Phys.Chem.B, 1999,103:3818

    22 Bosnich,B.Inorg.Chem.,1999,38:2554

    23 Wang,Y,G.;Xia,Y.Y.Electrochim.Acta,2006,51:3223

    24 Bao,F.;Li,J.F.;Ren,B.;Yao,J.L.;Gu,R.A.;Tian,Z.Q.J.Phys. Chem.C,2008,112:345

    25 Papageorgopoulos,D.C.;Keijzer,M.;Veldhuis,J.B.J.;de Bruijn, F.A.J.Electrochem.Soc.,2002,149:A140

    26 Wang,L.;Zhao,Y.;Lin,K.;Zhao,X.;Shan,Z.;Di,Y.;Sun,Z.; Cao,X.;Zou,Y.;Jiang,D.;Jiang,L.;Xiao,F.S.Carbon,2006, 44:1336

    27 Kim,H.J.;Kim,D.Y.;Han,H.;Shul,Y.G.J.Power Sources, 2006,159:484

    28 Zhou,J.H.;He,J.P.;Dang,W.J.;Zhao,G.W.;Zhang,C.X. Electrochemical and Solid-State Letters,2007,10:B191

    猜你喜歡
    南京航空航天大學(xué)核殼材料科學(xué)
    中海油化工與新材料科學(xué)研究院
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)機(jī)電學(xué)院
    材料科學(xué)與工程學(xué)科
    南京航空航天大學(xué)
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實(shí)驗(yàn)室
    核殼型量子點(diǎn)(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    核殼型含氟硅丙烯酸酯無(wú)皂拒水劑的合成及應(yīng)用
    国产av码专区亚洲av| 只有这里有精品99| 大码成人一级视频| 久久久久久久精品精品| 国产中年淑女户外野战色| 日日啪夜夜爽| 国产精品.久久久| 亚洲欧美精品专区久久| 日本av手机在线免费观看| 免费黄色在线免费观看| a级一级毛片免费在线观看| 制服丝袜香蕉在线| 亚洲av福利一区| 一级毛片我不卡| 久久久久久人妻| 蜜桃在线观看..| 日本黄大片高清| 最近最新中文字幕免费大全7| 18禁在线无遮挡免费观看视频| 精品人妻熟女av久视频| 一本久久精品| 国产女主播在线喷水免费视频网站| 国产精品久久久久久久电影| 美女脱内裤让男人舔精品视频| 久久女婷五月综合色啪小说| 熟女电影av网| av网站免费在线观看视频| 国产亚洲5aaaaa淫片| 69精品国产乱码久久久| 精品久久久久久久久亚洲| 搡女人真爽免费视频火全软件| 少妇人妻久久综合中文| 日韩中文字幕视频在线看片| 91久久精品国产一区二区三区| 成人漫画全彩无遮挡| 人人妻人人添人人爽欧美一区卜| av国产久精品久网站免费入址| 熟女人妻精品中文字幕| 成年女人在线观看亚洲视频| 国产亚洲5aaaaa淫片| 日韩强制内射视频| 国产一级毛片在线| h日本视频在线播放| 国产欧美日韩综合在线一区二区 | 91精品国产九色| 国产伦在线观看视频一区| 日本与韩国留学比较| 91久久精品国产一区二区三区| 狂野欧美白嫩少妇大欣赏| h视频一区二区三区| 边亲边吃奶的免费视频| 多毛熟女@视频| 男人爽女人下面视频在线观看| 成人美女网站在线观看视频| 天天操日日干夜夜撸| 免费不卡的大黄色大毛片视频在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲精品一区蜜桃| 国产精品一区二区性色av| 亚洲av男天堂| 老司机亚洲免费影院| 男人添女人高潮全过程视频| 国产极品天堂在线| 国产黄片视频在线免费观看| 高清在线视频一区二区三区| 亚洲国产精品一区二区三区在线| 亚洲欧洲精品一区二区精品久久久 | 国产伦精品一区二区三区四那| 日韩成人伦理影院| 大码成人一级视频| 国国产精品蜜臀av免费| 在线观看美女被高潮喷水网站| 一本大道久久a久久精品| av卡一久久| 亚洲综合色惰| 久久久国产一区二区| 国产高清国产精品国产三级| 男男h啪啪无遮挡| 午夜老司机福利剧场| 99热6这里只有精品| 国产免费又黄又爽又色| 黄色日韩在线| 亚洲欧美精品专区久久| 国产高清国产精品国产三级| 日韩 亚洲 欧美在线| 久久精品国产鲁丝片午夜精品| 人人妻人人爽人人添夜夜欢视频 | av在线观看视频网站免费| 97在线视频观看| 男人爽女人下面视频在线观看| 免费少妇av软件| 国产av码专区亚洲av| 99热网站在线观看| 午夜福利视频精品| 熟女人妻精品中文字幕| 黄色欧美视频在线观看| 国产探花极品一区二区| 欧美xxⅹ黑人| 夜夜看夜夜爽夜夜摸| 亚洲欧美精品专区久久| 亚洲情色 制服丝袜| 国产淫片久久久久久久久| 国产日韩欧美亚洲二区| 人妻制服诱惑在线中文字幕| 久久久午夜欧美精品| 搡女人真爽免费视频火全软件| 国产日韩一区二区三区精品不卡 | 亚洲色图综合在线观看| 日韩一区二区三区影片| 在线观看人妻少妇| 伦理电影大哥的女人| 成人黄色视频免费在线看| 青春草亚洲视频在线观看| 亚洲国产精品成人久久小说| av线在线观看网站| 国产伦在线观看视频一区| 亚洲国产精品一区二区三区在线| 欧美日韩视频精品一区| 国产男人的电影天堂91| 最近中文字幕高清免费大全6| 麻豆乱淫一区二区| 免费人成在线观看视频色| 欧美日韩综合久久久久久| 国产永久视频网站| 丰满人妻一区二区三区视频av| 国产视频首页在线观看| 亚洲婷婷狠狠爱综合网| 麻豆精品久久久久久蜜桃| 成年av动漫网址| 国产乱人偷精品视频| 秋霞伦理黄片| 国产av码专区亚洲av| 人体艺术视频欧美日本| 国产成人精品久久久久久| 亚洲av成人精品一二三区| 久久99热这里只频精品6学生| 老司机亚洲免费影院| 久久99热6这里只有精品| 久久久久久人妻| 秋霞伦理黄片| 亚洲成色77777| 久久热精品热| 日本vs欧美在线观看视频 | 亚洲国产毛片av蜜桃av| 熟女电影av网| 黑人高潮一二区| 99久国产av精品国产电影| 国产日韩欧美亚洲二区| 中文字幕人妻丝袜制服| av免费在线看不卡| 日韩免费高清中文字幕av| videos熟女内射| 久久久久久久久久人人人人人人| 桃花免费在线播放| 最近手机中文字幕大全| 自线自在国产av| 午夜福利,免费看| 免费高清在线观看视频在线观看| 免费av中文字幕在线| 国产精品国产三级国产专区5o| 两个人免费观看高清视频 | 成年人午夜在线观看视频| 久久久国产欧美日韩av| 精品国产一区二区三区久久久樱花| 日韩制服骚丝袜av| 9色porny在线观看| 精品国产国语对白av| 妹子高潮喷水视频| 精品久久久噜噜| 亚洲欧美日韩东京热| 亚洲精品久久久久久婷婷小说| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人精品福利久久| 亚洲欧美精品自产自拍| 亚洲精品久久久久久婷婷小说| 一边亲一边摸免费视频| 一区二区三区乱码不卡18| 麻豆精品久久久久久蜜桃| 午夜免费观看性视频| 久久久久久久久久成人| 在线观看av片永久免费下载| 日韩三级伦理在线观看| 日本欧美国产在线视频| 看免费成人av毛片| 一级毛片电影观看| 免费观看无遮挡的男女| 久久精品国产亚洲av天美| 亚洲国产精品一区二区三区在线| 卡戴珊不雅视频在线播放| 中文字幕久久专区| 亚洲欧洲国产日韩| 天堂俺去俺来也www色官网| 欧美最新免费一区二区三区| 亚洲情色 制服丝袜| 国产在线一区二区三区精| 成年美女黄网站色视频大全免费 | 麻豆精品久久久久久蜜桃| 黑丝袜美女国产一区| 黑人猛操日本美女一级片| 香蕉精品网在线| 免费观看在线日韩| 免费观看无遮挡的男女| 免费人成在线观看视频色| av福利片在线| 久久久久国产精品人妻一区二区| 插逼视频在线观看| 黄色毛片三级朝国网站 | 视频中文字幕在线观看| 国产日韩欧美在线精品| 亚洲美女视频黄频| 国产69精品久久久久777片| 美女脱内裤让男人舔精品视频| 日韩强制内射视频| 黄色欧美视频在线观看| 日本vs欧美在线观看视频 | 日韩制服骚丝袜av| 久热久热在线精品观看| 亚洲精品乱码久久久久久按摩| 亚洲精品久久午夜乱码| 久久久欧美国产精品| 久久久久久久久大av| a级毛色黄片| 精品国产一区二区三区久久久樱花| 久久ye,这里只有精品| 高清在线视频一区二区三区| 五月伊人婷婷丁香| 乱系列少妇在线播放| 国产黄片美女视频| 美女xxoo啪啪120秒动态图| 丁香六月天网| 精品国产乱码久久久久久小说| 熟女人妻精品中文字幕| 久久人妻熟女aⅴ| 视频中文字幕在线观看| 免费看不卡的av| 国产成人免费观看mmmm| 啦啦啦啦在线视频资源| 国产免费一级a男人的天堂| 日日摸夜夜添夜夜爱| 国产欧美日韩精品一区二区| 国产精品国产三级国产av玫瑰| 婷婷色av中文字幕| 午夜日本视频在线| 日韩亚洲欧美综合| 欧美区成人在线视频| 黑人猛操日本美女一级片| 妹子高潮喷水视频| 久久久久久久久久久免费av| 欧美日韩精品成人综合77777| 色视频在线一区二区三区| 国产欧美日韩一区二区三区在线 | 国产精品一区二区三区四区免费观看| 久久久久精品久久久久真实原创| 亚洲av电影在线观看一区二区三区| av女优亚洲男人天堂| 亚洲国产毛片av蜜桃av| 99精国产麻豆久久婷婷| 亚洲av福利一区| 午夜激情福利司机影院| 亚洲第一av免费看| 欧美日韩一区二区视频在线观看视频在线| 一本—道久久a久久精品蜜桃钙片| 国产在视频线精品| 美女中出高潮动态图| 自拍偷自拍亚洲精品老妇| 免费av中文字幕在线| 久久久久国产精品人妻一区二区| 国产在线男女| 欧美亚洲 丝袜 人妻 在线| 人人妻人人添人人爽欧美一区卜| 麻豆乱淫一区二区| tube8黄色片| 亚洲经典国产精华液单| 国产亚洲5aaaaa淫片| 2018国产大陆天天弄谢| 少妇人妻精品综合一区二区| 韩国高清视频一区二区三区| 国产成人精品一,二区| 亚洲欧美精品自产自拍| 免费不卡的大黄色大毛片视频在线观看| 嫩草影院新地址| 99热这里只有精品一区| 免费高清在线观看视频在线观看| 热99国产精品久久久久久7| av有码第一页| 中文字幕av电影在线播放| a级片在线免费高清观看视频| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲成国产av| 亚洲欧洲国产日韩| 成年av动漫网址| 亚洲美女黄色视频免费看| 国产精品久久久久久精品电影小说| 九草在线视频观看| 18禁在线播放成人免费| 国产伦理片在线播放av一区| 亚洲精品国产色婷婷电影| 国产免费又黄又爽又色| 大码成人一级视频| 亚洲第一av免费看| 大码成人一级视频| 日本欧美视频一区| 在线观看三级黄色| 亚洲国产毛片av蜜桃av| 日韩三级伦理在线观看| 丁香六月天网| 丰满人妻一区二区三区视频av| 免费黄网站久久成人精品| 欧美精品一区二区免费开放| 建设人人有责人人尽责人人享有的| 欧美精品人与动牲交sv欧美| 在线 av 中文字幕| 两个人的视频大全免费| 国产精品久久久久久精品电影小说| 国产有黄有色有爽视频| 一本久久精品| 一级毛片黄色毛片免费观看视频| 一级毛片我不卡| 久久久久久久久久久免费av| 精品少妇内射三级| .国产精品久久| 国产高清有码在线观看视频| 久久久久国产网址| 少妇裸体淫交视频免费看高清| 久久久欧美国产精品| 免费久久久久久久精品成人欧美视频 | 亚洲精品aⅴ在线观看| 国产亚洲精品久久久com| 黑丝袜美女国产一区| 男男h啪啪无遮挡| 岛国毛片在线播放| 热re99久久国产66热| 大香蕉久久网| 少妇猛男粗大的猛烈进出视频| 亚洲欧美日韩东京热| 人人澡人人妻人| 人人妻人人看人人澡| 亚洲欧洲日产国产| 人人妻人人看人人澡| 丰满乱子伦码专区| 欧美高清成人免费视频www| 有码 亚洲区| 日韩电影二区| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 欧美变态另类bdsm刘玥| 中国国产av一级| 少妇被粗大的猛进出69影院 | 亚洲av欧美aⅴ国产| 我要看黄色一级片免费的| 熟女电影av网| 一本一本综合久久| 成人毛片a级毛片在线播放| 女性被躁到高潮视频| av天堂中文字幕网| 久久久国产一区二区| 久久久久久人妻| 亚洲真实伦在线观看| 国产片特级美女逼逼视频| 成人免费观看视频高清| 国产综合精华液| 中国美白少妇内射xxxbb| 伦理电影免费视频| 亚洲无线观看免费| 少妇的逼好多水| 亚洲图色成人| 亚洲精品自拍成人| 99久久综合免费| 在线播放无遮挡| 大码成人一级视频| 亚洲精品乱码久久久v下载方式| 纵有疾风起免费观看全集完整版| 久久 成人 亚洲| 91精品一卡2卡3卡4卡| 色婷婷av一区二区三区视频| 色视频www国产| 九草在线视频观看| 亚洲精品国产成人久久av| 内地一区二区视频在线| 我的老师免费观看完整版| 久久青草综合色| 日韩视频在线欧美| 69精品国产乱码久久久| 丝袜脚勾引网站| av天堂中文字幕网| 综合色丁香网| 久久狼人影院| 国产伦精品一区二区三区视频9| 2021少妇久久久久久久久久久| 80岁老熟妇乱子伦牲交| 少妇丰满av| 精品久久久精品久久久| tube8黄色片| 日本与韩国留学比较| 精品久久久精品久久久| 欧美老熟妇乱子伦牲交| 国产一区二区在线观看av| 日韩一区二区三区影片| 女人久久www免费人成看片| www.色视频.com| 亚洲人与动物交配视频| 伦理电影大哥的女人| 啦啦啦在线观看免费高清www| 一级黄片播放器| 全区人妻精品视频| 日韩成人av中文字幕在线观看| 内地一区二区视频在线| 午夜日本视频在线| 亚洲精品国产av成人精品| 亚洲无线观看免费| 亚洲欧洲国产日韩| 99久久精品国产国产毛片| 成人综合一区亚洲| 精华霜和精华液先用哪个| 在线 av 中文字幕| 黄色配什么色好看| 久久影院123| 亚洲丝袜综合中文字幕| 欧美国产精品一级二级三级 | 97在线视频观看| 中文资源天堂在线| 久久97久久精品| av天堂中文字幕网| 精品一区二区三区视频在线| 最新的欧美精品一区二区| 妹子高潮喷水视频| 国产精品秋霞免费鲁丝片| 中文在线观看免费www的网站| 精品午夜福利在线看| 久久婷婷青草| 少妇裸体淫交视频免费看高清| 国产成人精品福利久久| 亚洲欧美清纯卡通| 亚洲精品亚洲一区二区| 亚洲国产欧美日韩在线播放 | 日韩欧美一区视频在线观看 | 黄色日韩在线| 国产老妇伦熟女老妇高清| 日韩av不卡免费在线播放| 建设人人有责人人尽责人人享有的| 精华霜和精华液先用哪个| 国产在线一区二区三区精| 大码成人一级视频| 欧美老熟妇乱子伦牲交| 国产成人a∨麻豆精品| 99视频精品全部免费 在线| 成年人午夜在线观看视频| freevideosex欧美| 国产爽快片一区二区三区| 一本—道久久a久久精品蜜桃钙片| 成年女人在线观看亚洲视频| 综合色丁香网| 99视频精品全部免费 在线| 国产精品久久久久久精品电影小说| 欧美亚洲 丝袜 人妻 在线| 中文字幕亚洲精品专区| 中国三级夫妇交换| 中文资源天堂在线| 黄色毛片三级朝国网站 | 人妻系列 视频| 哪个播放器可以免费观看大片| 亚洲图色成人| 精品久久久久久久久av| 免费看光身美女| av国产久精品久网站免费入址| 两个人的视频大全免费| 婷婷色av中文字幕| 我的女老师完整版在线观看| 另类亚洲欧美激情| 少妇猛男粗大的猛烈进出视频| 亚洲第一区二区三区不卡| 狂野欧美白嫩少妇大欣赏| 日本色播在线视频| 少妇精品久久久久久久| 国产精品一区二区在线不卡| 少妇高潮的动态图| 亚洲av免费高清在线观看| 2022亚洲国产成人精品| 亚洲图色成人| 亚洲欧洲日产国产| www.av在线官网国产| 最近手机中文字幕大全| 国产极品天堂在线| av线在线观看网站| 免费av中文字幕在线| 人妻制服诱惑在线中文字幕| 日本欧美国产在线视频| 国产午夜精品久久久久久一区二区三区| 99久久人妻综合| 精品久久久久久久久av| 国产探花极品一区二区| 夜夜骑夜夜射夜夜干| 久久久午夜欧美精品| 超碰97精品在线观看| 免费人妻精品一区二区三区视频| 日韩一区二区三区影片| 亚洲国产精品专区欧美| h视频一区二区三区| 免费久久久久久久精品成人欧美视频 | 中文精品一卡2卡3卡4更新| 欧美老熟妇乱子伦牲交| 丰满少妇做爰视频| 最新的欧美精品一区二区| 丝瓜视频免费看黄片| 欧美精品国产亚洲| 99国产精品免费福利视频| 国产在视频线精品| 一区二区三区精品91| av黄色大香蕉| 久久久久人妻精品一区果冻| 波野结衣二区三区在线| 免费黄色在线免费观看| 精品久久久久久电影网| 久久久欧美国产精品| 亚洲婷婷狠狠爱综合网| 午夜日本视频在线| 精品亚洲乱码少妇综合久久| 国产亚洲最大av| 波野结衣二区三区在线| 免费黄色在线免费观看| 精品一区二区免费观看| 欧美变态另类bdsm刘玥| 好男人视频免费观看在线| 日韩av不卡免费在线播放| 九九爱精品视频在线观看| 国产精品免费大片| 国产白丝娇喘喷水9色精品| 曰老女人黄片| 欧美日韩精品成人综合77777| 黄色欧美视频在线观看| 伊人久久精品亚洲午夜| 亚洲欧美清纯卡通| 欧美日韩在线观看h| 午夜影院在线不卡| 久久99热这里只频精品6学生| 国产成人精品久久久久久| 国产精品伦人一区二区| av又黄又爽大尺度在线免费看| 在线精品无人区一区二区三| 99久久精品国产国产毛片| 欧美日韩在线观看h| 一级爰片在线观看| av国产精品久久久久影院| 午夜福利网站1000一区二区三区| 纯流量卡能插随身wifi吗| 午夜久久久在线观看| 精品酒店卫生间| 亚洲欧美清纯卡通| 街头女战士在线观看网站| 观看免费一级毛片| 黄色怎么调成土黄色| 人妻夜夜爽99麻豆av| 在线亚洲精品国产二区图片欧美 | 最近2019中文字幕mv第一页| 国产一区二区在线观看av| 亚洲欧美成人精品一区二区| 春色校园在线视频观看| 免费观看a级毛片全部| 久久狼人影院| 热re99久久国产66热| 婷婷色麻豆天堂久久| 国产亚洲av片在线观看秒播厂| 一级毛片久久久久久久久女| 制服丝袜香蕉在线| 国产精品一二三区在线看| 丰满人妻一区二区三区视频av| 欧美激情国产日韩精品一区| 国产淫片久久久久久久久| 视频区图区小说| 欧美变态另类bdsm刘玥| 国语对白做爰xxxⅹ性视频网站| 欧美精品一区二区免费开放| 亚洲三级黄色毛片| 久久 成人 亚洲| 亚洲一区二区三区欧美精品| 久久久国产欧美日韩av| 久久青草综合色| 久久热精品热| 极品少妇高潮喷水抽搐| 少妇裸体淫交视频免费看高清| 人妻夜夜爽99麻豆av| 九九爱精品视频在线观看| 久久影院123| 男女免费视频国产| 欧美成人午夜免费资源| 成人漫画全彩无遮挡| 三级国产精品欧美在线观看| 亚洲不卡免费看| 青春草亚洲视频在线观看| 国产免费福利视频在线观看| 成年av动漫网址| 亚洲av电影在线观看一区二区三区| 午夜福利在线观看免费完整高清在| 亚洲av不卡在线观看| 亚洲欧洲精品一区二区精品久久久 | 99国产精品免费福利视频| 久久久久精品性色| 亚洲国产精品专区欧美| 十八禁网站网址无遮挡 | 欧美bdsm另类| 国产av一区二区精品久久| 久久 成人 亚洲| av在线观看视频网站免费| 成人综合一区亚洲| 王馨瑶露胸无遮挡在线观看| 中文欧美无线码| 久久婷婷青草| 一本久久精品| 欧美bdsm另类| 欧美老熟妇乱子伦牲交| 麻豆成人午夜福利视频| 美女国产视频在线观看| 不卡视频在线观看欧美| 欧美精品亚洲一区二区| 亚洲精品乱久久久久久|