• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    結(jié)晶和去潤濕競爭條件下分子結(jié)構(gòu)對超薄膜表面形貌的影響

    2010-12-11 09:13:06袁偉忠張鳳波袁金穎謝續(xù)明洪嘯吟
    物理化學(xué)學(xué)報 2010年4期
    關(guān)鍵詞:工程系分子結(jié)構(gòu)潤濕

    袁偉忠 張鳳波 袁金穎 謝續(xù)明 洪嘯吟

    (1清華大學(xué)化學(xué)系,有機(jī)光電子與分子工程教育部重點實驗室,北京 100084;2同濟(jì)大學(xué)材料科學(xué)與工程學(xué)院,納米與生物高分子材料研究所,上海 200092;3清華大學(xué)化學(xué)工程系,北京 100084)

    結(jié)晶和去潤濕競爭條件下分子結(jié)構(gòu)對超薄膜表面形貌的影響

    袁偉忠1,2,§張鳳波3,§袁金穎1,*謝續(xù)明3洪嘯吟1

    (1清華大學(xué)化學(xué)系,有機(jī)光電子與分子工程教育部重點實驗室,北京 100084;2同濟(jì)大學(xué)材料科學(xué)與工程學(xué)院,納米與生物高分子材料研究所,上海 200092;3清華大學(xué)化學(xué)工程系,北京 100084)

    將星形支化結(jié)構(gòu)的聚己內(nèi)酯,包括六臂星形聚己內(nèi)酯(HPCL)和樹枝狀星形聚己內(nèi)酯(DPCL),以及線形聚己內(nèi)酯(LPCL)室溫旋涂于云母片上,通過原子力顯微鏡(AFM)觀察分子結(jié)構(gòu)對星形支化聚己內(nèi)酯超薄膜的潤濕-去潤濕性質(zhì)的影響.在旋涂過程中,薄膜的形成受去潤濕和結(jié)晶競爭的控制.差示掃描量熱(DSC)測試結(jié)果表明,當(dāng)相對分子質(zhì)量相同時,結(jié)晶性的順序是:DPCL最弱,HPCL次弱,LPCL最強(qiáng).依據(jù)分子結(jié)構(gòu)和相對分子質(zhì)量的影響,即去潤濕和結(jié)晶競爭的結(jié)果,LPCL、HPCL和DPCL的超薄膜表現(xiàn)出不同的表面形態(tài),包括尺寸不同的完整的球晶、開口的球晶、樹枝狀片、分散的顆粒.

    潤濕;分子結(jié)構(gòu);去潤濕;結(jié)晶;超薄膜

    Theultrathinfilm(less than 100 nm in thickness)morphologies of polymers have attracted increasing interest due to their scientific importance and potential applications in many fields[1-6].The morphology of polymer ultrathin films is affected by various factors,such as polymer structure,substrate surface properties, preparation conditions,and thermal history,among which the polymerstructureisoneofthemostimportantfactors[7-10].Themolecular structure of polymer also affects the wetting-dewetting behavior of polymer ultrathin film[11].A contiguous ultrathin film of polymer on a substrate will tend to minimize its free energy by exposing the lower surface energy material to environment. If the surface energy of the coating,γc,is lower than that of the underlying substrate,γs,the film is stable.However,if γcis higher than γs,the system will reduce its free energy by creating holes in the coating.This process is usually referred as dewetting.The stability of the coating is expressed in terms of a spreading coefficient,S,

    where γcsis the coating/substrate interfacial energy.If S is positive,the coating will wet the substrate and the film will be stable.If S is negative,the coating will dewet the substrate and the contact angle for the coating material on the substrate will be much greater than zero[12].In addition to the surface and interfacial energy,the film dewetting will depend on the film thickness. In films thinner than 100 nm(ultrathin film),attractive van der Waals forces dominate,causing the thin film to rapture spontaneously.Reiter et al.[13]reported the spontaneous dewetting process of thin polystyrene films on silicon substrates during thermal annealing above the glass transition temperature when their original thickness is less than 100 nm.Composto et al.[14]found that the stability of polystyrene films could be improved by blending with poly(styrene-b-methyl methacrylate)copolymer on silicon oxide substrate.For crystalline or semicrystalline polymer,the wetting-dewetting process of ultrathin film is more complicated.Namely,the morphology formation and the wettingdewetting process are ruled by two competing rate processes, crystallization of crystalline or semicrystalline polymer and dewetting.Xu et al.[15]reported the effect of substrate surface on dewetting behavior and chain orientation of symmetrical semicrystalline oxyethylene/oxybutylene block copolymer thin films and found that the silicon,modified silicon,and mica substrate surfaces showed different influence on the wetting-dewetting behavior of block copolymers.

    Poly(ε-caprolactone)(PCL)is one of the most important aliphatic polyesters and considerable interests exist in it due to its biodegradability,biocompatibility,and good drug permeability[16-20]. Furthermore,PCL belongs to semicrystalline polymer and can be considered as an alternative model for the study of polymer crystallization,with a crystal structure very close to that of polyethylene,the model semicrystalline polymer[21].Kressler et al.[22]investigated the morphology formation and dewetting of thin films of linear PCL on glass substrate.Depending on the concentration of the solutions,PCL films completely covered the substrate,open spherulites were formed,or for very dilute solutions,PCL formed dispersed droplets on the substrate. Prud′homme et al.[21]investigated linear PCL crystal growth in ultrathin films by atomic force microscopy(AFM)and found that PCL ultrathin films crystallized with lamellae oriented flat on.

    Until now,the effect of molecular structure on wettingdewetting behavior of star-branched PCL ultrathin films has not been investigated.In fact,the star-branched PCL presents different crystallization behavior from that of the linear PCL and will reveal unique wetting-dewetting behavior during the competing rate process of crystallization of star-branched PCL and dewetting.Therefore,in this work,star-branched PCL,including starshaped PCL and dendritic PCL with different relative molecular mass were prepared.As comparison,linear PCLs with differentrelativemolecularmasswereprepared,too.Thewettingdewetting processes of these PCL ultrathin films on mica substrate were investigated by atomic force microscopy(AFM).

    1 Experimental

    1.1 Materials

    ε-Caprolactone(Acros Organic,USA)was purified with CaH2by vacuum distillation.Tin 2-ethylhexanoate(Sn(Oct)2,Aldrich, USA)was distilled under reduced pressure before use.Dipentaerythritol(Aldrich,USA)was dried at 100℃in vacuum for 24 h.The dendrimer polyester(Perstorp Specialty Chemicals,Sweden)(Mn=1747)was dried at 60℃in vacuo for 24 h before use. Benzyl alcohol,methylene chloride,chloroform,hexane,and tetrahydrofuran(THF)were local commercial products and dried over CaH2and distilled before use.

    1.2 Characterization

    1H NMR spectra were obtained from JOEL JNM-ECA300 NMR spectrometer with CDCl3as solvent.The chemical shifts were relative to tetramethylsilane at δ=0 for protons.The relative molecular mass and relative molecular mass distribution were measured on a Viscotek TDA 302 gel permeation chromatography equipped with two columns(GMHHR-H,M Mixed Bed).THF was used as eluent at a flow rate of 1 mL·min-1at 30℃.Differential scanning calorimetric(DSC)analysis was carried on a DSC 2910 thermal analysis system with a heating rate of 10℃·min-1from-30℃to 150℃under nitrogen atmosphere. Wide-angle X-ray diffraction(WAXRD)patterns of powder samples were obtained at room temperature on a Cu Kαradiation source using a Bruker AXS D8 Advance X-ray diffractometer (Bruker,Germany).The supplied voltage and current were set to 40 kV and 120 mA.Samples were exposed at a scanning rate of 2θ=4(°)·min-1between 2θ values from 1.5°to 60°.The crystalline morphologies of the polymers were observed using a SPM-9500J3 atomic force microscope(Shimadzu,Japan).The ultrathin films on transparent mica substrate were obtained from spincoating of polymer solution(0.8 g·L-1)and the thickness was about 15 nm.The spin-coating temperature was 25℃,and the rotation speed was 1000 r·min-1.After that the films were annealed at the same temperature for sufficient crystallization.

    1.3 Syntheses of star-branched PCLs and linear PCL

    In this study,star-branched PCL(hexa-armed star-shaped PCL and dendritic PCL)and linear PCL were synthesized through Sn(Oct)2catalyzedring-openingpolymerization(ROP)of ε-capro-lactone(CL)monomer with corresponding multifunctional initiators(dipentaerythritol and hydroxyl-terminated dendrimer polyester)and benzyl alcohol initiator(Scheme 1).A typical polymerization procedure was shown as follows:dendrimer polyester initiator(0.176 g,0.101 mmol),CL(6.2 g,54.3 mmol),a catalytic amount Sn(Oct)2,and a dried magnetic stirring bar were added into a fire-dried polymerization tube.The tube then connected to aSchlenkline,whereexhausting-refillingprocesses were repeated three times.The tube was immersed into an oil bath at 115℃under nitrogen atmosphere with vigorous stirring for 24 h.After cooling to room temperature,the resulting polymer was dissolved in chloroform and precipitated twice with hexane to afford the purified dendritic polymer(DPCL3).The purified polymer was dried in a vacuum oven until constant mass.

    2 Results and discussion

    2.1 Preparation of well-defined star-branched PCLs

    Biodegradable aliphatic polyesters with well-defined architecture can be synthesized from ROP of lactides and/or lactones using a hydroxyl-terminated compound as initiator and Sn(Oct)2as catalyst.As shown in Table 1,Mnof the star-branched PCLs linearly increased with the monomer to the initiator,and the relative molecular mass distributions were very narrow(Mw/Mn≤1.18 for HPCL and Mw/Mn≤1.16 for DPCL);this indicated that the hydroxyl groups in dipentaerythritol and dendrimer surfaces were used as effective propagation centers.

    2.2 DSC and WAXRD analysis

    The thermal properties of the star-branched PCLs were investigated with DSC and compared with those of linear counterparts.Table 1 shows data for the melting point(Tm),enthalpy offusion(ΔH),anddegreeofcrystallinity(Xc)ofthestar-branched and linear PCLs.According to the data,the melting point and degree of crystallinity decreased with the increasing arm number of PCL,and they are in the order of DPCL<HPCL<LPCL,when the relative molecular mass of the polymers is similar to each other(suchassamplesofDPCL1,HPCL3,andLPCL2).Asshown in Table 1,Tmand Xcwere 44.8℃and 41.4%for DPCL1,55.1℃and 48.9%for HPCL3,whereas 60.8℃and 54.2%for LPCL2,although they possessed similar relative molecular mass; this was attributed to the crystalline imperfection due to the short chain length of star-branched PCL arms.Moreover,the branched structure of these polymers should make a contribution to the imperfection.With the increase in degree of branching of PCL molecule,the hindrance of chain movements increased, and the crystallizability of these polymers decreased.For PCL with similar relative molecular mass and different branches,Xcdecreased with increasing the number of arms,suggesting that the decrease of crystallinity of PCLs could be achieved by increasing the degree of branching.Moreover,Tmand Xcof starbranched PCL increased with the length of PCL arms.For example,Tmand Xcof DPCL2 were 49.1℃ and 45.0%,respectively,whereas Tmand Xcof DPCL3 were 54.8℃and 48.8%, respectively.For linear PCL,the increase of Tmand Xcwith the length of PCL was less obvious than that for the star-branched PCL;this should be attributed to the fact that the crystalline imperfection and steric hindrance of star-branched PCL were much more serious than those of linear PCL.

    Table 1 Relative molecular mass and thermal properties of star-branched and linear PCLa

    WAXD analysis was used to investigate the crystalline structure of star-branched and linear PCL.The results of LPCL2, HPCL2,and DPCL2 are shown in Fig.1.It could be seen that these polymers show intensive peaks at 21.6°,22.1°,and 23.9°, corresponding to the(110),(111),and(200)planes of the orthorhombic crystal form.As a result,the star-branched and linear PCLs presented the same crystalline structure,which suggested that the branched structure did not change the crystalline structure of PCL.

    2.3 Wetting-dewetting processes of star-branched and linear PCL

    Fig.1 WAXRD patterns of samples of(a)LPCL2,(b) HPCL2,and(c)DPCL2

    Fig.2 Schematic drawing of three kinds of surface morphology of ultrathin film(a)complete film-forming,(b)wetting-dewetting process, (c)complete dewetting process

    The wetting-dewetting processes of LPCL,HPCL,and DPCL were investigated by AFM images.Ultrathin films of PCL (about 15 nm)were prepared by spin-coating process.The morphology formation of PCL is ruled by two competing rate processes,crystallization of PCL and dewetting.The dewetting process will occur due to the inherent instability of the ultrathin films.Therefore,competition of the two rate processes offers the possibility for formation of various structures.Fig.2 shows the schematic drawing of three kinds of surface morphology of ultrathin film.If crystallization(wetting process)surpasses dewetting process,perfect ultrathin film can form(Fig.2(a));if the rate of wetting process is equal to that of dewetting process,then imperfect film with holes forms(Fig.2(b));if dewetting process exceeds wetting process,polymer film will rupture and polymer solution shrinks to“spheres”(dispersed droplets)(Fig.2(c)).Fig.3 shows samples of AFM micrographs of LPCL(LPCL1,LPCL2, and LPCL3),HPCL(HPCL1,HPCL2,and HPCL3),and DPCL (DPCL1,DPCL2,and DPCL3).These measurements were carried out in the height mode.

    To LPCL,it could be found that almost uniform“spheres”alongwithinthe image of LPCL1(Fig.3(a)).The formation of these“spheres”could be ascribed to shrinking of the ruptured polymer ultrathin film,which indicated that the dewetting process surpassed crystallization of PCL due to the low relative molecular mass of LPCL1.The size of these“spheres”was arranged from 1.8 to 3 μm.The presence of the sparse flat-on lamellae on the mica surface indicated that the crystalline growth of LPCL1 was still carried out,although the dewetting process was dominating.The formation of the almost perfect two-dimensional spherulites in LPCL2 showed that the rate of crystallization was much faster than that of dewetting(Fig.3(b)).In fact,according to the lamellae morphology,the lamellae tended to form the dendritic crystals due to the ultrathin film.However,the lamellae were enough compact due to the crystallizability of LPCL2, which led to the formation of two-dimensional spherulites.The obvious crystal boundary and the lamellae divergent growth were the evidence of the spherulites growth style.Moreover, hole nucleation process of spherulites indicated that the dewetting process still existed during the process of crystalline growth.As shown in Fig.4(a),the average thickness of lamellae was obtained from cross-section profile and about 10-12 nm, which confirmed the flat-on orientation of lamellae.However, the spherulites in LPCL3 were less perfect than those in LPCL2 and the open spherulites were formed owing to the diffusion process(Fig.3(c)),which might be attributed to the much larger relative molecular mass than that of LPCL2.The diffusion process was along with the crystalline growth of LPCL3 and the dewetting was dominating.Therefore,the density of lamellae in LPCL3 was less than that in LPCL2.

    Fig.3 AFM height images of ultrathin films(10-15 nm)of(a)LPCL1,(b)LPCL2,(c)LPCL3,(d)HPCL1, (e)HPCL2,(f)HPCL3,(g)DPCL1,(h)DPCL2,and(i)DPCL3

    Fig.4 AFM images and their cross-sectional profiles of(a)LPCL2,(b)HPCL3,and(c)DPCL2

    To HPCL,uniform small“spheres”arranged in the images of HPCL1 and HPCL2(Fig.3(d-e)).“Spheres”in HPCL2 were bigger than those in HPCL1 but less than those in LPCL1(size:100 nm in HPCL1 and 150 nm in HPCL2),which should be ascribed to the hexa-armed branched structure and low relative molecular mass of HPCL1 and HPCL2.The ultrathin films of HPCL1 and HPCL2 were more instable than that of LPCL1.The dewetting process was rapid and the films were ruptured to form polymer droplets and the crystallization process could not occur.In the image of HPCL3,open and imperfect spherulites formed(Fig.3 (f));this indicated that HPCL3 presented faster crystallization rate than dewetting,although the dewetting was still serious. Many holes could be found in the image,indicating that the dewetting led to the rupture of the ultrathin film.The lamella grew along with the zones of polymer solution.Therefore,the density of lamellae in HPCL3 was less than that in LPCL2,but the lamellae in HPCL3 were thicker than those in LPCL2.According to the cross-sectional profile(Fig.4(b)),the thickness of lamellae was about 42-45 nm,typical edge-on orientation of lamellae.As a result,the dewetting process in HPCL3 was stronger than that in LPCL2,although their relative molecular mass is almost the same,which should be attributed to the branched structure of HPCL3.

    To DPCL,the morphologies were more complicated than those of LPCL and HPCL.Although the relative molecular mass of DPCL1 was similar to that of LPCL2,spherulites could not form in the ultrathin film of DPCL1(Fig.3(g)).The main reasons included the high branched structure of polymer and the comparative rapid rate of dewetting process.Therefore,the crystalline growth of polymer was seriously affected and some imperfect dendritic crystals formed.An interesting phenomenon that some curving lamellae formed along with imperfect dendritic crystals could be discovered.The growth of edge-on lamellae was relatively fast but the growing direction of lamellae was restricted.In addition,the presence of many amorphous regions in ultrathin film restricted the growing direction of edgeon lamellae.Therefore,the edge-on lamellae did not present linear but long curving structure and was as the center of the imperfect flat-on dendritic crystals.Many daughter flat-on lamellae nucleated along the edge-on lamellae sides.Another interesting phenomenon was that there were more flat-on lamellae growing outside of the curving lamellae,which should be attributed to theenough space and“materials”for the flat-on lamellae to grow. The dendritic morphologies in Fig.3(g,f)should formed via a diffusion-limited aggregation(DLA)mechanism,which is frequently observed in crystallization of PEO ultrathin film[24].Along with the increase of length of PCL arms,the crystallizability of PCL increased and dewetting process decreased.The comparatively perfect dendritic crystals formed in DPCL2(Fig.3(h)).The formation of dendritic crystals demonstrated that the growth of lamellae was restricted by the branched structure of polymer and the dewetting process.In Fig.4(c),the thickness of lamellae was about 7-8 nm,thinner than that of lamellae in LPCL2.In LPCL, the dendritic lamellae could be observed when the thickness of ultrathin film was 6 nm.When the thickness of ultrathin film increased to 15 nm,only spherulites could be observed,as reported by Prud′homme[21].All these indicated that the DPCL present poor crystallizability than linear PCL.The formation of more perfect dendritic crystals in DPCL2 than those in DPCL1 indicated that PCL chains of DPCL2 presented better crystallizability than those of DPCL1.To DPCL3,the crystallizability of PCL increased evidently though the dewetting process was still obvious(Fig.3(i)).In some regions,comparatively perfect spherulites could be discovered in DPCL3 though the degree of perfection of spherulites was poorer than that in LPCL2.Around the spherulites,many holes could be observed,which should be ascribed to the dewetting process.

    3 Conclusions

    The wetting-dewetting behaviors of ultrathin films of starbranched PCLs were investigated.During the spin-coating process,film formation is ruled by competition of dewetting and crystallization.Due to the unique structure of star-branched PCLs,ultrathin films form perfect spherulites,open spherulite, dendritic lamellae,and dispersed droplets with different sizes, which indicate that the molecular structure of star-branched PCLs has obvious effect on the wetting-dewetting behavior of ultrathin films.The investigation of the properties of ultrathin film of star-branched PCL can extend to other crystallizable biodegradable polyesters,such as polylactide(PLA),polyglycolide(PGA),and their copolymers,which is important in biomedical field.

    1 McEvoy,T.M.;Long,J.W.;Smith,T.J.;Stevenson,K.J. Langmuir,2006,22:4462

    2 Wang,L.;Hong,S.;Hu,H.;Zhao,J.;Han,C.C.Langmuir,2007, 23:2304

    3 Fredin,N.J.;Zhang,J.;Lynn,D.M.Langmuir,2007,23: 2273

    4 Serghei,A.;Tress,M.;Kremer,F.Macromolecules,2006, 39:9385

    5 Tiaw,K.S.;Teoh,S.H.;Chen,R.;Hong,M.H. Biomacromolecules,2007,8:807

    6 Bodiguel,H.;Fretigny,C.Macromolecules,2007,40: 7291

    7 Cao,T.;Wei,F.;Jiao,X.;Chen,J.;Liao,W.;Zhao,X.; Cao,W.Langmuir,2003,19:8127

    8 Zimnitsky,D.;Jiang,C.;Xu,J.;Lin,Z.;Tsukruk,V.V. Langmuir,2007,23:4509

    9 Such,G.K.;Quinn,J.F.;Quinn,A.;Tjipto,E.;Caruso,F. J.Am.Chem.Soc.,2006,128:9318

    10 Singamaneni,S.;LeMieux,M.C.;Jiang,H.;Bunning,T. J.;Tsukruk,V.V.Chem.Mater.,2007,19:129

    11 Ashley,K.M.;Raghavan,D.;Douglas,J.F.;Karim,A. Langmuir,2005,21:9518

    12 Oslanec,R.;Costa,A.C.;Composto,R.J.;Vlcek,P. Macromolecules,2000,33:5505

    13 Reiter,G.;Sharma,A.;Casoli,A.;David,M.O.;Khanna, R.;Auroy,P.Langmuir,1999,15:2551

    14 Costa,A.C.;Geoghegan,M.;Vlcek,P.;Composto,R.J. Macromolecules,2003,36:9897

    15 Xu,J.T.;Liang,G.D.;Fan,Z.Q.;Mai,S.M.;Ryan,A.J. Macromolecules,2006,39:5471

    16 Li,S.;Garreau,H.;Pauvert,B.;McGrath,J.;Toniolo,A.; Vert,M.Biomacromolecules,2002,3:525

    17 Yuan,W.Z.;Yuan,J.Y.;Zhang,F.B.;Xie,X.M. Biomacromolecules,2007,8:1101

    18 Yuan,W.Z.;Yuan,J.Y.;Zhang,F.B.;Xie,X.M.;Pan,C.Y. Macromolecules,2007,40:9094

    19 Yuan,W.Z.;Yuan,J.Y.;Zhou,M.;Pan,C.Y.J.Polym. Sci.Pol.Chem.,2008,46:2788

    20 Yan,Q.;Yuan,J.Y.;Zhang,F.B.;Sui,X.F.;Xie,X.M.; Yin,Y.W.;Wang,S.F.;Wei,Y.Biomacromolecules,2009,10: 2033

    21 Mareau,V.H.;Prud′homme,R.E.Macromolecules,2005,38: 398

    22 Kressler,J.;Wang,C.;Kammer,H.W.Langmuir,1997, 13:4407

    23 Yuan,W.Z.;Yuan,J.Y.;Zhou,M.;Sui,X.F.J.Polym. Sci.Pol.Chem.,2006,44:6575

    24 Zhai,X.M.;Wang,W.;Zhang,G.L.;He,B.L. Macromolecules,2006,39:324

    December 8,2009;Revised:February 5,2010;Published on Web:March 5,2010.

    Effect of Molecular Structure on the Surface Morphology of Ultrathin Films by Competing Crystallization and Dewetting Processes

    YUAN Wei-Zhong1,2,§ZHANG Feng-Bo3,§YUAN Jin-Ying1,*XIE Xu-Ming3HONG Xiao-Yin1
    (1Key Laboratory of Organic Optoelectronics&Molecular Engineering of the Ministry of Education,Department of Chemistry, Tsinghua University,Beijing 100084,P.R.China;2Institute of Nano and Bio-Polymeric Materials,School of Material Science and Engineering,Tongji University,Shanghai 200092,P.R.China;3Department of Chemical Engineering,Tsinghua University, Beijing 100084,P.R.China)

    Star-branched poly(ε-caprolactone)(PCL)including hexa-armed star-shaped PCL(HPCL),dendritic PCL (DPCL),and linear PCL(LPCL)were spin-coated onto mica substrates at room temperature.The effect of molecular structureonthewetting-dewettingbehaviorofultrathinfilm(about15nm)wasinvestigatedwithatomicforcemicroscopy (AFM).During spin-coating,film formation is governed by competing dewetting and crystallization processes. According to differential scanning calorimetry(DSC),the crystallizability of DPCL is weaker than that of HPCL which is weaker than that of LPCL,when they have the same relative molecular mass.Depending on the molecular structure and the relative molecular mass of PCL,the competition between crystallization and dewetting results in ultrathin films of LPCL,HPCL,and DPCL with surface morphologies such as perfect spherulites,open spherulites,dendritic lamellae,and dispersed droplets of different sizes.

    Wetting; Molecular structure;Dewetting;Crystallization;Ultrathin film

    *Corresponding author.Email:yuanjy@mail.tsinghua.edu.cn;Tel:+86-10-62783668.

    §These authors contributed equally to this work.

    The project was supported by the National Natural Science Foundation of China(20874056,20836004,20974058)and National Key Basic Research Program of China(973)(2009CB930602).

    國家自然科學(xué)基金(20874056,20836004,20974058)和國家重點基礎(chǔ)研究發(fā)展計劃(973)(2009CB930602)資助項目

    袁金穎,2000年7月至2002年6月在北京大學(xué)化學(xué)與分子工程學(xué)院高分子科學(xué)與工程系從事博士后研究.

    O647

    猜你喜歡
    工程系分子結(jié)構(gòu)潤濕
    把握分子結(jié)構(gòu)理解物質(zhì)的性質(zhì)
    基于低場核磁共振表征的礦物孔隙潤濕規(guī)律
    三步法確定有機(jī)物的分子結(jié)構(gòu)
    電子信息工程系
    機(jī)電工程系簡介
    乙醇潤濕對2種全酸蝕粘接劑粘接性能的影響
    預(yù)潤濕對管道潤濕性的影響
    解讀分子結(jié)構(gòu)考點
    外電場中BiH分子結(jié)構(gòu)的研究
    穿行:服裝工程系畢業(yè)設(shè)計作品
    精品人妻一区二区三区麻豆| 精品人妻视频免费看| 亚洲精品乱久久久久久| 亚洲高清免费不卡视频| 在线亚洲精品国产二区图片欧美 | 中文精品一卡2卡3卡4更新| 午夜免费鲁丝| 蜜桃亚洲精品一区二区三区| 国产一区二区三区综合在线观看 | 国产精品三级大全| 在现免费观看毛片| tube8黄色片| 亚洲色图av天堂| 亚洲精品乱码久久久久久按摩| 国产欧美另类精品又又久久亚洲欧美| 久久国内精品自在自线图片| 成人美女网站在线观看视频| 你懂的网址亚洲精品在线观看| 少妇丰满av| 国产亚洲午夜精品一区二区久久 | 老师上课跳d突然被开到最大视频| 久久精品夜色国产| 一个人观看的视频www高清免费观看| 毛片一级片免费看久久久久| 免费观看的影片在线观看| 色播亚洲综合网| 日韩欧美精品免费久久| 国产精品一二三区在线看| 精品99又大又爽又粗少妇毛片| 久热久热在线精品观看| 欧美高清性xxxxhd video| 国产综合懂色| 免费黄频网站在线观看国产| 久久久欧美国产精品| 亚洲无线观看免费| 精品酒店卫生间| 99视频精品全部免费 在线| 男女啪啪激烈高潮av片| 成人国产av品久久久| 欧美老熟妇乱子伦牲交| 亚洲自拍偷在线| 嫩草影院精品99| 少妇 在线观看| 可以在线观看毛片的网站| 国产精品一区二区三区四区免费观看| 在线播放无遮挡| 啦啦啦中文免费视频观看日本| 菩萨蛮人人尽说江南好唐韦庄| 一级毛片 在线播放| 国产av国产精品国产| 99热6这里只有精品| 国产色爽女视频免费观看| www.av在线官网国产| 神马国产精品三级电影在线观看| xxx大片免费视频| 一个人观看的视频www高清免费观看| 成人鲁丝片一二三区免费| 80岁老熟妇乱子伦牲交| 色综合色国产| 国产一区二区三区av在线| 搡老乐熟女国产| 男人爽女人下面视频在线观看| 女的被弄到高潮叫床怎么办| 中文欧美无线码| 99热网站在线观看| 观看美女的网站| 国产美女午夜福利| 国产色爽女视频免费观看| av在线老鸭窝| 可以在线观看毛片的网站| 日韩国内少妇激情av| 岛国毛片在线播放| 国产成人精品久久久久久| 亚洲精品,欧美精品| 日本wwww免费看| 国产精品三级大全| 欧美激情在线99| 欧美成人一区二区免费高清观看| 一本久久精品| 一级黄片播放器| 亚洲人成网站在线播| 美女被艹到高潮喷水动态| a级一级毛片免费在线观看| 纵有疾风起免费观看全集完整版| 男女边吃奶边做爰视频| 日本黄色片子视频| 特级一级黄色大片| 国产成人91sexporn| 国模一区二区三区四区视频| 男女无遮挡免费网站观看| 亚洲精品aⅴ在线观看| 亚洲内射少妇av| 国产中年淑女户外野战色| 亚洲精华国产精华液的使用体验| 久久久久精品久久久久真实原创| 最近中文字幕高清免费大全6| 香蕉精品网在线| 岛国毛片在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av免费在线观看| 亚洲,一卡二卡三卡| 成年av动漫网址| 老司机影院毛片| 七月丁香在线播放| 国产中年淑女户外野战色| 国产成人一区二区在线| 五月伊人婷婷丁香| 欧美xxxx黑人xx丫x性爽| 尤物成人国产欧美一区二区三区| 日本黄大片高清| 欧美精品国产亚洲| 亚洲精品中文字幕在线视频 | 亚洲久久久久久中文字幕| 黄色日韩在线| 国产精品三级大全| 国产69精品久久久久777片| 99re6热这里在线精品视频| 亚洲成人中文字幕在线播放| av国产久精品久网站免费入址| 亚洲av成人精品一区久久| 国产女主播在线喷水免费视频网站| 夫妻午夜视频| 中文字幕制服av| 欧美最新免费一区二区三区| 国产黄a三级三级三级人| 少妇人妻精品综合一区二区| 少妇高潮的动态图| 亚洲自偷自拍三级| 美女视频免费永久观看网站| 国产老妇女一区| 2018国产大陆天天弄谢| 色视频www国产| 不卡视频在线观看欧美| 久久久久精品久久久久真实原创| 18禁裸乳无遮挡动漫免费视频 | 欧美最新免费一区二区三区| 欧美最新免费一区二区三区| 一区二区三区精品91| 亚洲精品乱久久久久久| 一区二区三区四区激情视频| 18禁在线无遮挡免费观看视频| 国产成人aa在线观看| 亚洲av在线观看美女高潮| 秋霞伦理黄片| 网址你懂的国产日韩在线| 亚洲精品自拍成人| 最近最新中文字幕免费大全7| 嫩草影院新地址| 在线 av 中文字幕| 精品99又大又爽又粗少妇毛片| 国产精品99久久久久久久久| 日韩人妻高清精品专区| 69av精品久久久久久| 中文在线观看免费www的网站| 国产女主播在线喷水免费视频网站| av在线天堂中文字幕| 如何舔出高潮| 成人毛片a级毛片在线播放| 在线观看国产h片| 欧美高清性xxxxhd video| 成人毛片60女人毛片免费| 噜噜噜噜噜久久久久久91| 熟妇人妻不卡中文字幕| 永久网站在线| 最近中文字幕高清免费大全6| 国产大屁股一区二区在线视频| 边亲边吃奶的免费视频| 国产免费视频播放在线视频| 国产精品国产av在线观看| 五月伊人婷婷丁香| 亚洲人与动物交配视频| .国产精品久久| 麻豆国产97在线/欧美| 美女高潮的动态| 色综合色国产| 久久影院123| 久久精品国产鲁丝片午夜精品| 大话2 男鬼变身卡| 国产成人a∨麻豆精品| 精品久久久噜噜| 国产午夜精品久久久久久一区二区三区| 成人无遮挡网站| 国产欧美日韩精品一区二区| 日韩中字成人| 国内精品宾馆在线| 免费大片黄手机在线观看| 黑人高潮一二区| 日本黄色片子视频| 成人毛片a级毛片在线播放| 69人妻影院| 国产高清三级在线| av国产免费在线观看| 一本一本综合久久| 亚洲国产精品专区欧美| 日韩强制内射视频| 亚洲av不卡在线观看| 成年版毛片免费区| 婷婷色综合大香蕉| 五月天丁香电影| 欧美激情国产日韩精品一区| 久久久国产一区二区| 成人鲁丝片一二三区免费| 夜夜看夜夜爽夜夜摸| 97超视频在线观看视频| 少妇熟女欧美另类| 欧美xxⅹ黑人| 18禁在线无遮挡免费观看视频| 国产在线男女| 中国三级夫妇交换| 亚洲av不卡在线观看| 日韩欧美 国产精品| 99九九线精品视频在线观看视频| av线在线观看网站| 国产精品偷伦视频观看了| videossex国产| 在线播放无遮挡| 99久久中文字幕三级久久日本| 亚洲精品成人av观看孕妇| 黄色日韩在线| 久久精品久久精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 亚洲精品成人久久久久久| 日本欧美国产在线视频| 三级经典国产精品| 国产精品女同一区二区软件| 一级毛片aaaaaa免费看小| 欧美日韩在线观看h| 国产综合精华液| 国产亚洲精品久久久com| av免费观看日本| 啦啦啦中文免费视频观看日本| 亚洲精品国产av蜜桃| 国产毛片在线视频| 国产成人精品久久久久久| 一级毛片电影观看| 黄色视频在线播放观看不卡| 亚洲精华国产精华液的使用体验| 只有这里有精品99| 欧美国产精品一级二级三级 | 三级国产精品欧美在线观看| 国产精品三级大全| 久久精品久久久久久久性| 国产黄片美女视频| 草草在线视频免费看| 六月丁香七月| videos熟女内射| h日本视频在线播放| 一边亲一边摸免费视频| 国产亚洲av嫩草精品影院| videos熟女内射| 日韩欧美一区视频在线观看 | 欧美97在线视频| 免费av不卡在线播放| 视频区图区小说| 69av精品久久久久久| 日本三级黄在线观看| 岛国毛片在线播放| 色吧在线观看| 性插视频无遮挡在线免费观看| 别揉我奶头 嗯啊视频| 国产精品.久久久| 中文精品一卡2卡3卡4更新| 午夜老司机福利剧场| 国产成人午夜福利电影在线观看| 男女啪啪激烈高潮av片| 青青草视频在线视频观看| 狂野欧美激情性bbbbbb| 国产精品99久久久久久久久| 精品国产三级普通话版| 偷拍熟女少妇极品色| 一级黄片播放器| 18+在线观看网站| 男女边摸边吃奶| 毛片一级片免费看久久久久| 天堂网av新在线| 日韩人妻高清精品专区| 亚洲精品国产成人久久av| 国产69精品久久久久777片| 国产精品麻豆人妻色哟哟久久| 欧美xxxx黑人xx丫x性爽| 99热全是精品| 成人午夜精彩视频在线观看| 国产老妇伦熟女老妇高清| 少妇的逼水好多| 国内精品美女久久久久久| 夫妻午夜视频| 久久人人爽人人片av| 高清视频免费观看一区二区| www.色视频.com| 久久久色成人| kizo精华| 亚洲欧美日韩无卡精品| 亚洲高清免费不卡视频| 丝瓜视频免费看黄片| 亚洲成人av在线免费| 久久久久久伊人网av| 亚洲欧美中文字幕日韩二区| 欧美极品一区二区三区四区| 精品国产一区二区三区久久久樱花 | 日韩中字成人| 国产成人免费无遮挡视频| 中文字幕免费在线视频6| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 国产高清有码在线观看视频| 久久精品国产a三级三级三级| 国产午夜福利久久久久久| 国产欧美另类精品又又久久亚洲欧美| 国产人妻一区二区三区在| 另类亚洲欧美激情| 2021天堂中文幕一二区在线观| 日本av手机在线免费观看| 国产爽快片一区二区三区| 高清午夜精品一区二区三区| 欧美激情在线99| 欧美激情国产日韩精品一区| 色视频在线一区二区三区| 日韩在线高清观看一区二区三区| 男女国产视频网站| 看黄色毛片网站| 啦啦啦在线观看免费高清www| 久久久久久久久久久丰满| 国产一区二区在线观看日韩| 午夜精品国产一区二区电影 | 国产片特级美女逼逼视频| 99精国产麻豆久久婷婷| 一本久久精品| av天堂中文字幕网| 18禁裸乳无遮挡免费网站照片| 国产黄片美女视频| 欧美性感艳星| 在线精品无人区一区二区三 | 成人二区视频| 日本午夜av视频| 婷婷色av中文字幕| 国产真实伦视频高清在线观看| 久久久久国产精品人妻一区二区| 久久精品人妻少妇| 狂野欧美白嫩少妇大欣赏| 永久免费av网站大全| 国精品久久久久久国模美| 一个人看视频在线观看www免费| 成人漫画全彩无遮挡| 秋霞伦理黄片| 日韩强制内射视频| 国产成人一区二区在线| 嫩草影院新地址| 欧美激情国产日韩精品一区| 久久精品久久精品一区二区三区| 亚洲无线观看免费| 黄色怎么调成土黄色| 人妻一区二区av| 噜噜噜噜噜久久久久久91| 另类亚洲欧美激情| 深爱激情五月婷婷| 日韩,欧美,国产一区二区三区| 日本av手机在线免费观看| 在线精品无人区一区二区三 | 中文字幕亚洲精品专区| 少妇被粗大猛烈的视频| 国产欧美日韩一区二区三区在线 | 亚洲人成网站高清观看| 亚洲自偷自拍三级| 可以在线观看毛片的网站| 麻豆国产97在线/欧美| 成年女人在线观看亚洲视频 | 人妻制服诱惑在线中文字幕| 久久6这里有精品| 国产毛片a区久久久久| 久久久久久久精品精品| 黄色配什么色好看| 少妇猛男粗大的猛烈进出视频 | 下体分泌物呈黄色| 国产黄色免费在线视频| 女人被狂操c到高潮| 久久国产乱子免费精品| 中文字幕制服av| 久久精品久久久久久噜噜老黄| 18禁动态无遮挡网站| 精华霜和精华液先用哪个| 亚洲av不卡在线观看| 少妇丰满av| 高清毛片免费看| 菩萨蛮人人尽说江南好唐韦庄| 又爽又黄a免费视频| 精品一区二区免费观看| 观看免费一级毛片| 一级a做视频免费观看| 欧美潮喷喷水| 我要看日韩黄色一级片| 国产精品99久久久久久久久| 久久韩国三级中文字幕| 色网站视频免费| 能在线免费看毛片的网站| 你懂的网址亚洲精品在线观看| 国语对白做爰xxxⅹ性视频网站| 精品熟女少妇av免费看| 亚洲四区av| 欧美精品一区二区大全| 国产视频内射| 精华霜和精华液先用哪个| 国产91av在线免费观看| 日韩大片免费观看网站| 大又大粗又爽又黄少妇毛片口| 精品久久国产蜜桃| 国产伦在线观看视频一区| 国产黄片视频在线免费观看| 国产男女超爽视频在线观看| 高清欧美精品videossex| 国产免费一级a男人的天堂| 精品人妻熟女av久视频| 免费高清在线观看视频在线观看| 一级av片app| 美女主播在线视频| 久久久久久久久久久丰满| 中国三级夫妇交换| 久久久精品免费免费高清| 成人漫画全彩无遮挡| 免费看光身美女| 69av精品久久久久久| 国产老妇女一区| 99久国产av精品国产电影| av在线蜜桃| 国产成人aa在线观看| 免费看a级黄色片| 18禁动态无遮挡网站| 精品一区二区免费观看| 联通29元200g的流量卡| 亚洲最大成人av| 国产成人freesex在线| 一二三四中文在线观看免费高清| 亚洲国产高清在线一区二区三| 国产精品熟女久久久久浪| 日韩一本色道免费dvd| 成年免费大片在线观看| 日韩伦理黄色片| videos熟女内射| 高清av免费在线| 亚洲精华国产精华液的使用体验| 久久6这里有精品| 黄色日韩在线| 久久精品久久精品一区二区三区| 18+在线观看网站| 男的添女的下面高潮视频| 黄片无遮挡物在线观看| 国产成人a∨麻豆精品| 欧美高清成人免费视频www| 99久久中文字幕三级久久日本| 狠狠精品人妻久久久久久综合| 亚洲av国产av综合av卡| 国产精品熟女久久久久浪| 黄色日韩在线| 国产黄片视频在线免费观看| 日日摸夜夜添夜夜添av毛片| 亚洲av福利一区| 免费黄频网站在线观看国产| 国产精品av视频在线免费观看| 如何舔出高潮| 亚洲自拍偷在线| 麻豆精品久久久久久蜜桃| 中文字幕av成人在线电影| 在线 av 中文字幕| 午夜福利在线观看免费完整高清在| 久久韩国三级中文字幕| 亚洲国产日韩一区二区| 青青草视频在线视频观看| 80岁老熟妇乱子伦牲交| 男人狂女人下面高潮的视频| 日韩中字成人| 天堂网av新在线| 嫩草影院精品99| 国产精品.久久久| 日本欧美国产在线视频| 2021天堂中文幕一二区在线观| 九九爱精品视频在线观看| 在线观看三级黄色| 国产午夜精品一二区理论片| 在线观看免费高清a一片| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美一区二区三区国产| 精品久久久久久久久亚洲| 又爽又黄a免费视频| 国产精品三级大全| 九草在线视频观看| 老司机影院成人| 国产极品天堂在线| 亚洲美女搞黄在线观看| 午夜激情久久久久久久| 国产成人一区二区在线| 插阴视频在线观看视频| 男人舔奶头视频| 欧美日韩亚洲高清精品| 我的女老师完整版在线观看| 欧美变态另类bdsm刘玥| 免费观看无遮挡的男女| 制服丝袜香蕉在线| 亚洲精品中文字幕在线视频 | 国产成人精品久久久久久| 国产视频内射| 国产成人免费观看mmmm| 国产午夜精品一二区理论片| 91精品伊人久久大香线蕉| 午夜福利网站1000一区二区三区| 嘟嘟电影网在线观看| 免费不卡的大黄色大毛片视频在线观看| 18+在线观看网站| 六月丁香七月| 亚洲一区二区三区欧美精品 | 色哟哟·www| 黄色配什么色好看| av女优亚洲男人天堂| av免费观看日本| 成人美女网站在线观看视频| 亚州av有码| 人人妻人人爽人人添夜夜欢视频 | 国产成人91sexporn| 国产在线男女| 国产免费一区二区三区四区乱码| 久久热精品热| 日本三级黄在线观看| 久久精品综合一区二区三区| 一个人看的www免费观看视频| 精品一区二区三区视频在线| 3wmmmm亚洲av在线观看| 欧美潮喷喷水| 一个人观看的视频www高清免费观看| 交换朋友夫妻互换小说| 国产爽快片一区二区三区| 有码 亚洲区| 大香蕉久久网| 国产黄色视频一区二区在线观看| 日韩伦理黄色片| 国产欧美日韩精品一区二区| 91精品伊人久久大香线蕉| 久久热精品热| 国产在线一区二区三区精| 综合色av麻豆| 国产av码专区亚洲av| 秋霞在线观看毛片| 亚洲伊人久久精品综合| 国产精品人妻久久久久久| 亚洲国产最新在线播放| 国产精品福利在线免费观看| 久久精品国产a三级三级三级| 亚洲精品国产色婷婷电影| 成人亚洲欧美一区二区av| 99热全是精品| 97超视频在线观看视频| 国产成人freesex在线| 精品一区二区三区视频在线| 最新中文字幕久久久久| 少妇的逼水好多| 97热精品久久久久久| 一区二区三区精品91| 国产精品麻豆人妻色哟哟久久| 校园人妻丝袜中文字幕| 大话2 男鬼变身卡| 国产91av在线免费观看| 国产精品爽爽va在线观看网站| 最近中文字幕2019免费版| 美女高潮的动态| 在线观看三级黄色| 五月开心婷婷网| 亚洲精品第二区| 亚洲伊人久久精品综合| 国产成人一区二区在线| 亚洲精品日本国产第一区| 又大又黄又爽视频免费| 欧美高清成人免费视频www| 亚洲精品国产av成人精品| 亚洲精品日韩av片在线观看| 亚洲丝袜综合中文字幕| 久久韩国三级中文字幕| 蜜臀久久99精品久久宅男| 久久久久久久亚洲中文字幕| 日韩成人av中文字幕在线观看| 你懂的网址亚洲精品在线观看| 免费看日本二区| 男女边吃奶边做爰视频| 大陆偷拍与自拍| 国产亚洲一区二区精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美日韩东京热| 狂野欧美激情性bbbbbb| 99久久中文字幕三级久久日本| 十八禁网站网址无遮挡 | 国产亚洲精品久久久com| 日韩中字成人| 国产成人午夜福利电影在线观看| 国产亚洲av嫩草精品影院| 精品国产乱码久久久久久小说| 午夜免费男女啪啪视频观看| 免费观看的影片在线观看| 日韩伦理黄色片| 在线播放无遮挡| 国产精品嫩草影院av在线观看| 黄片wwwwww| 波多野结衣巨乳人妻| 久久久久九九精品影院| 精品久久久久久久久亚洲| 人人妻人人看人人澡| 国产亚洲精品久久久com| 久久久久精品久久久久真实原创| 国产精品不卡视频一区二区| 日韩亚洲欧美综合| 国内揄拍国产精品人妻在线| 亚洲国产精品999| 久久久色成人| 亚洲国产精品专区欧美| 不卡视频在线观看欧美| 午夜激情福利司机影院| 国产一区亚洲一区在线观看| 亚洲av二区三区四区| 99热这里只有是精品在线观看| 少妇的逼好多水|