• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    β-環(huán)糊精與系列無(wú)機(jī)鹽分子-離子加合物的粉末X射線(xiàn)衍射分析

    2010-03-06 04:44:50宋樂(lè)新
    物理化學(xué)學(xué)報(bào) 2010年7期
    關(guān)鍵詞:加合物環(huán)糊精X射線(xiàn)

    黨 政 宋樂(lè)新

    (中國(guó)科學(xué)技術(shù)大學(xué)高分子科學(xué)與工程學(xué)系,中國(guó)科學(xué)院軟物質(zhì)化學(xué)重點(diǎn)實(shí)驗(yàn)室,合肥 230026)

    β-Cyclodextrin(β-CD)is a cyclic oligosaccharide consisting of seven glucopyranose units,in the form of a hollow truncated cone[1-3].With hydrophilic exterior and hydrophobic interior,it can form supramolecular inclusion complexes with many kinds of guests such as organic molecules,polymers,inorganic ions, and coordination compounds by weak interaction processes[4-8]. Owing to good crystallization behavior,β-CD as well as its inclusion complexes can be analyzed by X-ray diffraction(XRD) technology[9-11].

    A solid inorganic ion-CD adduct means the product formed by a CD and a certain inorganic salt,such as CaCl2[12]and CuCl2[12-13]. For small inorganic ions,they are likely to be in the form of an intercalary structure between CD molecules in their adducts with the aid of the molecule-ion encapsulation interaction[2](Fig.1).

    As a whole,even in solution,the studies concerned about the formation of the molecule-ion adducts formed by CDs and inorganic salts are quite rare[1,14-15].In crystal state,a few reports show that there is molecule-ion interaction between CD molecules and simpleinorganicions[16-17],suchasI-3,I-5,and I-7[18-21].Recent studies indicate that the existence of CD molecules can seriously affect the crystal packing modes of inorganic salts.For example,in terms of XRD data,CaCO3nanoparticles formed in water present a calcite structure[22].However,if the isolated nano-particles are grown in the aqueous solution of β-CD,they have an aragonitestructure[23].Thisworkprovidesagoodparadigmforrevealing the significance of the molecule-ion interaction between CD molecules and inorganic ions.Nevertheless,it only refers to the influenceofmolecule-ioninteractionbetween β-CDandCa2+onthe growth and packing behavior of CaCO3and does not mention the effect of this interaction on those of β-CD.

    As shown in Fig.1,the molecule-ion interaction between β-CD molecules and inorganic ions is unlike the intermolecular complexation between β-CD and water molecules as well as organic guests.As most of inorganic ions have a small size and a high polarity,the van der Waals interaction between inorganic ions and the cavities of CDs was found to be extremely weak in aqueous solution[24],possibly because inorganic ions are preferred to be outside the hydrophobic cavities of CDs.

    For example,like hydrates of β-CD,the single crystal structure of molecule-ion adduct formed by CaCl2with β-CD is just in the form of a cage packing mode[11],in which neither calcium ion nor chloride ion is embedded in the cavity of β-CD.This is why the products formed by molecule-ion interactions are regarded as adducts instead of inclusion complexes.

    Previous studies have concentrated on the confirmation of molecule-ion interaction either in aqueous solution or in single crystal state.To the best of our knowledge,there are very few reports on the spectral behavior of molecule-ion adducts in a crystal state so far though numerous papers are associated with the characterization of inclusion complexes formed through intermolecular interaction between CDs and guest molecules in solution as well as in solid state[5-10].

    Fig.1 Proposed molecule-ion interaction mode between β-CD and inorganic ions

    The absence of such studies is the more striking,since with the development of molecular biology and medical chemistry,it is suggested that many simple inorganic drugs,such as Li2CO3, NaAsO2and so on,play an important role in treating all aspects of health care[25-28].Assuredly,how to reduce their acute oral toxicity in vivo is a significant and particularly useful subject for studies concerning the link between bioinorganic chemistry and supramolecular chemistry.Possibly,this question can be solved by means of the formation of supramolecular adducts between common inorganic drugs and biomacromolecules such as CDs. Further,what is the spectral difference of similar adducts in solid state?In the present work,we attempt to prepare a series of adducts of β-CD with inorganic salts and try to analyze the spectral difference in powder X-ray diffraction(PXRD)patterns among inorganic salts,β-CD and their adducts in order to evaluatetheperformanceofmolecule-ioninteractionsinacrystalstate. We believe that the research will be very useful for pharmaceutical and biomedical analysis as well as preparation of inorganic nanoparticles[27].

    1 Experimental

    1.1 Materials

    β-CD(≥98.0%)was purchased from Shanghai Chemical Reagent Company and recrystallized twice from deionized water. Lithium chloride(LiCl,≥99.5%),ammonium chloride(NH4Cl,≥99.5%),potassium chloride(KCl,≥99.5%),sodium chloride (NaCl,≥99.5%),potassium nitrate(KNO3,≥99.5%)and lanthanum chloride(LaCl3,≥99.0%)were purchased from Shanghai Chemical Reagent and used without further purification.Calcium chloride(CaCl2,≥96%)was purchased from Sinopharm Chemical Reagent Company and used without further purification. NaAsO2(≥98.0%)is purchased from Sigma and used without further purification.All other reagents are of analytical-reagent grade,unless stated otherwise.

    1.2 Preparation of molecule-ion adducts

    The adducts of β-CD with the selected inorganic salts were prepared under a hydrothermal condition,by mixing β-CD (0.1135 g,0.1 mmol)with an inorganic salt(1∶1,molar ratio)in aqueous solution(50 mL)into an autoclave.Subsequently,the autoclave was heated at 393 K for 4 h.Then the solution was transferred to a temperature controlled water bath.After solvent was removed below 313 K under reduced pressure,the residue was dried thoroughly at 383 K in vacuo,and used without further purification.

    1.3 Preparation of physical mixtures

    Unground and ground physical mixtures between β-CD and inorganic salts were obtained by mixing them in 1∶1(molar ratio) with a grinding time of 0 and 20 min,respectively.

    1.4 Measurements of samples

    PXRD spectra of solid samples were performed on a Philips X′Pert Pro X-ray diffractometer.The solid samples were irradi-ated with monochromatized Cu Kαand analyzed with 5°≤2θ≤40°.The voltage and current were 40 kV and 40 mA,respectively.The sample mass was about 5.5 mg for each measurement. In order to diminish the effect of water molecules on PXRD patterns,all samples to be analyzed were kept under the same conditions,i.e.,383 K for 4 h before use.2θ angles(low angle range) of solid samples:β-CD,9.1°(moderate,m),10.8°(weak,w),12.6° (strong,s),15.6°(w),17.3°(w),19.3°(m)19.7°(w),and 22.7° (w);LiCl,30.0°(s),34.9°(s),and 50.1°(m);LiCl-β-CD,9.3° (w),10.9°(w),12.7°(s),15.8°(m),16.3°(m),17.1°(m),19.5° (m),21.3°(m),and 22.9°(m);NH4Cl,22.9°(m),32.6°(s),and 40.2°(w);NH4Cl-β-CD,9.2°(m),10.9°(w),12.8°(s),15.8°(m), 17.3°(m),19.7°(m),21.2°(m),22.8°(s),and 32.0°(m);KCl, 24.9°(w)and 35.4°(s);KCl-β-CD,9.2°(m),12.7°(s),14.8° (w),15.7°(m),17.3°(m),19.3°(m),22.8°(m),and 32.0°(m); NaCl,26.5°(w)and 32.8°(s);NaCl-β-CD,9.1°(w),10.8°(w), 12.7°(s),15.6°(m),17.9°(m),19.6°(m),21.1°(w),24.4°(m), 25.3°(w),28.8°(w),and 32°(w);LaCl3,13.7°(s),24.5°(s), 27.5°(m),31.4°(m),and 34.4°(s);LaCl3-β-CD,8.3°(w),9.1° (w),12.6°(s),12.9°(s),13.5°(s),17.0°(m),18.3°(m),19.6° (m),and 21.0°(m);CaCl2,19.8°(s),25.5°(m),29.1°(s),31.3° (m),and 38.5°(m);CaCl2-β-CD,9.0°(w),10.5°(m),12.5°(s), 15.6°(m),19.5°(m),22.9°(m),and 29.5°(w);KNO3,27.2°(s), 33.0°(m),and 39.6°(m);KNO3-β-CD,9.0°(w),10.5°(m), 12.5°(s),16.1°(m),19.2°(m),and 22.9°(m);NaAsO2,12.6° (w),18.2°(m),25.1°(m),28.4°(s)and 33.6°(m);NaAsO2-β-CD, 8.9°(w),9.7°(w),10.6°(m),12.4°(s),15.4°(m),17.8°(m), 19.5°(s),22.8°(m),28.0°(w),and 34.1°(w).The field emission scanning electron microscope(FESEM)images of solid samples wererecordedonaJEOL-JSM-6700Ffield-emittingmicroscope.

    2 Results and discussion

    2.1 Comparisons of PXRD spectra among free components,physical mixtures and adducts of β-CD with inorganic salts

    First of all,we should examine what is the difference in spectral property among free components,their ground mixture,and prepared adduct in a system.As an example,four PXRD spectra of the adduct system between β-CD and NaCl,including free NaCl,free β-CD,the ground mixture of them(1∶1,molar ratio), and the prepared adduct NaCl-β-CD under the same drying condition,are presented in Fig.2.

    In Fig.2A,the strongest characteristic peak of free NaCl occurs at 2θ of 32.9°(200).Although the peak is still observed clearly in both the mixture(Fig.2C)and the adduct(Fig.2D),its position shifts to a low 2θ angle upon mixing(2θ,32.2°)with β-CD especially after adduct(2θ,32.0°)with β-CD,and its intensity is significantly weakened from the mixture to the adduct.The left shift of this peak means that the interlayer distance(d(200))of complexed NaCl in the adduct is increased due to the molecule-ion interaction between NaCl and β-CD,indicating that the ion packing of the complexed NaCl becomes looser than that of free NaCl.

    Fig.2 Linear PXRD patterns of free NaCl(A),free β-CD(B), ground mixture(C),and prepared adduct(D)Those signals shown in bold lines come from NaCl.

    On the contrary,all major characteristic peaks in the range from 5°to 15°due to β-CD shift toward higher 2θ angles slightly from the ground mixture to the adduct.For example,the first strongest peak(P1)form 12.6°in the free or the mixed sample shifts to 12.7°in the adduct,which represents the(410)plane of crystal.This phenomenon implies that the molecular packing of complexed β-CD becomes closer than that of free β-CD.At the same time,several sharp signals belonging to β-CD,such as the second strongest peak(P2,19.3°)and the third strongest peak(P3, 9.1°),are weakened markedly after adduct with NaCl.

    These observations described above reveal that molecule-ion interactions may also appear during the process of mixing especially grinding(Supporting Information),and they have different spectral performances in different molecule-ion systems,suggesting significant effects of inorganic ions.Additionally,the PXRD spectra of either mixtures or adducts are mainly dominated by β-CD,possibly because the mass percentage of inorganic salts is much lower than that of β-CD.

    2.2 Effects of inorganic anions on the PXRD spectra of adducts

    It is found that there are considerable differences in the PXRD spectra between oxysalt and chloride adducts of β-CD(Supporting Information).

    First,several main peaks belonging to β-CD shift to a lower angle slightly from chloride adducts to oxysalt adducts.For example,the peak at 2θ of about 12.7°(P1)in the spectra of the two chloride adducts occurs in a lower angle of 12.4°for NaAsO2-β-CD and 12.5°for KNO3-β-CD.

    The shift of the peaks in a low 2θ angle range toward a lower angle reflects that there is a relative lower interlayer force between β-CD molecules in an oxysalt adduct than in a chloride adduct.We hypothesize that this is associated with the size of anions because the presence of a big anion in interlayer between β-CD molecules will lead to the increase of interlayer distances.

    Next,the peak at 19.3°(P2)of free β-CD shifts to 19.5°in the two oxysalt adducts(P2),and is strengthened in the presence of NaAsO2.However,the positions of P2in the two chloride adducts appear at 23.0°for NaCl and 22.8°for KCl.

    These observations reveal the complexity of molecule-ion in-teractions between β-CD and inorganic salts.As a result,different anions have different influences on the arrangement of β-CD molecules.

    The phenomenon that the spectral difference in PXRD patterns between the adducts of β-CD with the same anion but different cations is obviously smaller than that between the adducts of β-CD with the same cation but different anions seems to imply that inorganic anions play a more important role than cations in changing the stacking behavior of β-CD molecules.For instance,in the spectra of NaAsO2-β-CD[29]and NaCl-β-CD,several main characteristic peaks corresponding to β-CD shift towards different directions relative to free β-CD.This obvious spectral difference in 2θ angles between the two adducts indicates that the presence of NaAsO2and NaCl has increased and decreased the interlayer distances(d)in the direction of corresponding crystal faces,respectively.This fact that the size of Na+, AsO-2,and Cl-is insignificant relative to that of the cavity of β-CD provides important evidence that these inorganic ions exist outside the cavities of β-CD molecules.Because if the small ions are embedded within the large cavities,then there will not exist such a difference in d values between the molecule-ion adducts. In addition,there are some new peaks after adduct,such as those at 28.0°and 34.1°in NaAsO2-β-CD and those at 21.1°,25.3°, and 28.8°in NaCl-β-CD.The occurrence of the new peaks efficiently demonstrates the presence of molecule-ion interactions in the adducts.In addition to the effect of inorganic anions,we wish to further investigate how the properties of inorganic cations affect the spectral behavior of β-CD.

    2.3 Effects of inorganic cations on the PXRD spectra of adducts

    Meanwhile,we find that upon adduct the shifts of main characteristic peaks of free components vary with different cations. The PXRD spectra of the adducts of β-CD with several monochlorides(NH4Cl,KCl,NaCl,and LiCl)are depicted in Fig.3.

    Fig.3 PXRD patterns of β-CD(A),NH4Cl-β-CD(B), KCl-β-CD(C),NaCl-β-CD(D),and LiCl-β-CD(E)

    As shown in Fig.3,all those peaks belonging to β-CD on the left side of P1,shift to a higher 2θ angle in the case of four adducts,and the extent of the shift has an increasing order of NH4Cl-β-CD<KCl-β-CD<NaCl-β-CD<LiCl-β-CD.This result indicates that there are different interlayer forces between corresponding crystal faces of the polycrystalline bodies mainly resulted from β-CD molecules.Importantly,such an order can be explained by the fact that the order of the radii of these ions is Li+<Na+<K+<NH+4.In the case of the same anion,the presence of cations brings the arrangement of β-CD molecules closer.Li+ions,due to the highly positive charge density,produce a larger effect on the molecular arrangement of β-CD.It may be because some crystal lattice water molecules are replaced by the cations, which causes the occurrence of stronger electrostatic interaction between these ions and some of the end hydroxyl groups of β-CD molecules,leading to the possibility that the smaller the cation,the stronger the hydrogen bonding interaction between β-CD molecules.Interestingly,the observation is just contrary to the situation of those analyzed anions above.These results indicate that the existence of inorganic ions located at interstitial sites of β-CD molecules can modulate the stacking behavior of β-CD to a different extent dependent on the nature of inorganic salts.This should be an important reason why β-CD as well as many organic additives is being widely applied in controlling the size and shape of inorganic nanoparticles.

    In order to estimate the possible influence of ion charges on electrostatic interaction,the PXRD data of KCl-β-CD and two polychlorides(CaCl2-β-CD and LaCl3-β-CD)are compared(Supporting Information).The strongest characteristic peak(P1,12.7°) in KCl-β-CD has shifted to a lower 2θ angle in CaCl2-β-CD(P1, 12.5°),but it shifts to a higher 2θ angle(P1,13.5°)in LaCl3-β-CD. This result is different from the situation in monochloride adducts described before because the order of the radii of the three metal ions is Ca2+<La3+<K+,implying that the shift orientation of the characteristic peak not only is affected by the radii of metal ions,but also depends on charges of metal ions in the case of the same anions.

    Fig.4 SEM images of β-CD(A),NaCl-β-CD(B),KCl-β-CD (C),and NH4Cl-β-CD(D)

    Interestingly,the SEM images display that the surface structure of β-CD was seriously affected by the existence of different cations(Supporting Information).As shown in Fig.4,β-CD shows the convexity of hexagonal prism with sizes from 2 to 10 μm. However,in the presence of NaCl,KCl,and NH4Cl,the surface morphology of β-CD changes to square,tile,and bar shapes,respectively.The order of particle sizes from small to big is NH4Cl-β-CD<KCl-β-CD<NaCl-β-CD<β-CD.The changes in SEM images prove that different molecule-ion interactions induce the difference of the crystallization behavior of β-CD, which supports the results obtained from PXRD.

    3 Conclusions

    In summary,although inorganic salts cannot form stable inclusion complexes with β-CD in aqueous solution,they may influence the arrangement behavior of β-CD molecules in the process of crystallization to a different extent,resulting in structural difference of molecule-ion adducts in solid state.Also,there is a close relationship between the performance of PXRD patterns and their impact factors such as formation conditions of adducts, natures of anions or cations,ionic charges and so on.The comparison from SEM images supports the results from PXRD.The present work offers a framework that may be especially useful for the study of those systems that involve the molecule-ion interaction between sugars and salts in biophysical chemistry, molecular biology,and preparation of inorganic nanoparticles.

    Supporting Information available free of charge via the internet at http://www.whxb.pku.edu.cn.

    1 Liu,Y.;You,C.C.;Zhang,H.Y.Supramolecular chemistry. Tianjin:Nankai University Press,2001 [劉 育,尤長(zhǎng)城,張衡益.超分子化學(xué).天津:南開(kāi)大學(xué)出版社,2001]

    2 Song,L.X.;Bai,L.;Xu,X.M.;He,J.;Pan,S.Z.Coord.Chem. Rev.,2009,253:1276

    3 Tong,L.H.Chemistry of cyclodextrins.Beijing:Science Press, 2001:192 [童林薈.環(huán)糊精化學(xué).北京:科學(xué)出版社,2001:192]

    4 Cai,W.S.;Sun,T.T.;Liu,P.;Chipot,C.;Shao,X.G.J.Phys. Chem.B,2009,113:7836

    5 Yu,Y.M.;Cai,W.S.;Chipot,C.;Sun,T.T.;Shao,X.G.J.Phys. Chem.B,2008,112:5268

    6 Yu,Y.M.;Cai,W.S.;Shao,X.G.J.Incl.Phenom.Macro.,2006, 56:225

    7 Kamigauchi,M.;Kawanishi,K.;Onishi,H.;Ishida,T.Chem. Pharm.Bull.,2007,55:729

    8 Liu,Y.;Ke,C.F.;Zhang,H.Y.;Wu,W.J.;Shi,J.J.Org.Chem., 2007,72:280

    9 Wang,E.J.;Lian,Z.X.;Cai,J.W.Carbohyd.Res.,2007,342: 767

    10 Rodriquez-Llamazares,S.;Yutronic,N.;Jara,P.;Englert,U.; Noyong,M.;Simon,U.Eur.J.Org.Chem.,2007:4298

    11 Marques,J.;Anjo,L.;Marques,M.P.M.;Santos,T.M.;Paz,F.A. A.;Braga,S.S.J.Organomet.Chem.,2008,693:3021

    12 Nicolis,I.;Coleman,A.W.;Charpin,P.;deRango,C.Acta Crystallogr.Sect.B,1996,52:122

    13 Kurokawa,G.;Sekii,M.;Ishida,T.;Nogami,T.Supramol.Chem., 2004,16:381

    14 Spencer,J.N.;He,Q.;Ke,X.M.;Wu,Z.Q.;Fetter,E.J.Solution Chem.,1998,27:1009

    15 Buvari,A.;Barcza,L.J.Incl.Phenom.Macro.,1989,7:379

    16 Matsui,Y.;Ono,M.;Tokunaga,S.Bull.Chem.Soc.Jpn.,1997, 70:535

    17 Masar,M.;Bodor,R.;Kaniansky,D.J.Chromatogr.A,1999,834: 179

    18 Nimz,O.;Gessler,K.;Uson,I.;Laettig,S.;Welfle,H.;Sheldrick, G.M.;Saenger,W.Carbohydr.Res.,2003,338:977

    19 Charalampopoulos,V.G.;Papaioannou,J.C.;Karayianni,H.S. Solid State Sci.,2006,8:97

    20 Papaioannou,J.C.;Charalampopoulos,V.G.;Xynogalas,P.; Viras,K.J.Phys.Chem.Solids,2006,67:1379

    21 Charalampopoulos,V.G.;Papaioannou,J.C.Carbohydr.Res., 2007,342:2075

    22 Sonawane,S.H.;Shirsath,S.R.;Khanna,P.K.;Pawar,S.; Mahajan,C.M.;Paithankar,V.;Shinde,V.;Kapadnis,C.V.Chem. Eng.J.,2008,143:308

    23 Zhang,X.Y.;Liao,Z.J.;Yang,L.;Hu,Z.G.;Jiang,K.;Guo,Y. M.Acta Chim.Sin.,2003,61:69 [張秀英,廖照江,楊 林,胡志國(guó),蔣 凱,郭玉明.化學(xué)學(xué)報(bào),2003,61:69]

    24 Yamashoji,Y.;Fujiwara,M.;Matsushita,T.;Tanaka,M.Chem. Lett.,1993:1029

    25 Wolf,R.;D′avino,M.;De Angelis,F.;Ruocco,E.;Lombardi,M. L.J.Eur.Acad.Dermatol.Vener.,2000,14:97

    26 Manna,P.;Sinha,M.;Sil,P.C.Redox.Rep.,2008,13:67

    27 Song,L.X.;Dang,Z.J.Phys.Chem.B,2009,113:4998

    28 Song,L.X.;Bai,L.J.Phys.Chem.B,2009,113:9035

    29 Dang,Z.;Song,L.X.;Pan,S.Z.;Wang,M.Acta Phys.-Chim.Sin., 2009,25:1059 [黨 政,宋樂(lè)新,潘淑臻,王 莽.物理化學(xué)學(xué)報(bào),2009,25:1059]

    猜你喜歡
    加合物環(huán)糊精X射線(xiàn)
    硫芥與活性硫醇化合物加合特性的分析研究
    “X射線(xiàn)”的那些事兒
    實(shí)驗(yàn)室X射線(xiàn)管安全改造
    半胱氨酸消減丙烯酰胺的機(jī)理及消減工藝在薯?xiàng)l中的應(yīng)用
    DNA加合物組的預(yù)處理及檢測(cè)方法研究進(jìn)展
    虛擬古生物學(xué):當(dāng)化石遇到X射線(xiàn)成像
    科學(xué)(2020年1期)2020-01-06 12:21:34
    鴉膽子油β-環(huán)糊精包合物的制備
    中成藥(2018年8期)2018-08-29 01:28:08
    β-環(huán)糊精對(duì)決明子的輔助提取作用
    中成藥(2018年4期)2018-04-26 07:12:43
    食品致癌物雜環(huán)胺的生物標(biāo)記物的研究進(jìn)展
    基于DirectShow的便攜式X射線(xiàn)數(shù)字圖像采集的實(shí)現(xiàn)
    欧美丝袜亚洲另类| 国产精品一区二区性色av| 免费观看的影片在线观看| 18禁在线播放成人免费| 欧美激情久久久久久爽电影| 如何舔出高潮| 亚洲综合精品二区| 男女国产视频网站| 欧美bdsm另类| 你懂的网址亚洲精品在线观看| 久久精品夜色国产| 中国国产av一级| www.av在线官网国产| 免费看av在线观看网站| 最近中文字幕高清免费大全6| 国产成人91sexporn| 夜夜看夜夜爽夜夜摸| 国产在线男女| 麻豆精品久久久久久蜜桃| 超碰av人人做人人爽久久| 26uuu在线亚洲综合色| 国产精品一区二区在线观看99| 成年av动漫网址| 男女边摸边吃奶| 99久久精品一区二区三区| 亚洲人与动物交配视频| 自拍欧美九色日韩亚洲蝌蚪91 | 婷婷色综合大香蕉| 国产又色又爽无遮挡免| 国产亚洲av片在线观看秒播厂| 99久久精品国产国产毛片| 国产亚洲最大av| 日韩制服骚丝袜av| 黄片wwwwww| 欧美变态另类bdsm刘玥| 色吧在线观看| 国产毛片在线视频| 国产免费又黄又爽又色| 国产大屁股一区二区在线视频| 热re99久久精品国产66热6| 亚洲精品自拍成人| 成人高潮视频无遮挡免费网站| av线在线观看网站| 国产成人免费无遮挡视频| 搡老乐熟女国产| 青青草视频在线视频观看| 精品国产乱码久久久久久小说| 日韩成人伦理影院| 伊人久久国产一区二区| 一本久久精品| 久久97久久精品| 黄色怎么调成土黄色| 日本午夜av视频| 色视频www国产| 亚洲精品国产色婷婷电影| 最新中文字幕久久久久| 国产亚洲av片在线观看秒播厂| 好男人在线观看高清免费视频| 一区二区三区乱码不卡18| 亚洲av二区三区四区| 亚洲丝袜综合中文字幕| 别揉我奶头 嗯啊视频| 国产69精品久久久久777片| 亚洲人与动物交配视频| 国产精品国产三级国产av玫瑰| 制服丝袜香蕉在线| 免费av观看视频| 中文字幕免费在线视频6| 在现免费观看毛片| 女人十人毛片免费观看3o分钟| 久久久国产一区二区| 日韩不卡一区二区三区视频在线| 天天躁夜夜躁狠狠久久av| 国产精品.久久久| 小蜜桃在线观看免费完整版高清| 亚洲不卡免费看| 久久精品夜色国产| 性色avwww在线观看| 欧美最新免费一区二区三区| 男女那种视频在线观看| 亚洲av在线观看美女高潮| 女人被狂操c到高潮| 久久精品久久精品一区二区三区| 最近最新中文字幕免费大全7| 男女啪啪激烈高潮av片| 久久久久久九九精品二区国产| 国产有黄有色有爽视频| 老女人水多毛片| 亚洲精品456在线播放app| 免费看av在线观看网站| 亚洲精品中文字幕在线视频 | 中文欧美无线码| 国产白丝娇喘喷水9色精品| 久久精品国产亚洲av涩爱| 如何舔出高潮| 国产一区二区亚洲精品在线观看| 草草在线视频免费看| 男女啪啪激烈高潮av片| 欧美+日韩+精品| 欧美+日韩+精品| 伦理电影大哥的女人| 久久久久久久亚洲中文字幕| 超碰97精品在线观看| 亚洲最大成人手机在线| 久久99热这里只频精品6学生| 欧美性感艳星| 色播亚洲综合网| 丰满少妇做爰视频| 日韩强制内射视频| 赤兔流量卡办理| av黄色大香蕉| 亚洲av成人精品一二三区| 久久久久久国产a免费观看| 亚洲真实伦在线观看| 在线观看av片永久免费下载| 亚洲成色77777| 欧美+日韩+精品| 久久精品熟女亚洲av麻豆精品| 国产亚洲一区二区精品| 久久久久九九精品影院| 国产老妇伦熟女老妇高清| 久久久国产一区二区| 国产精品国产三级国产av玫瑰| 在线观看一区二区三区| 2021天堂中文幕一二区在线观| av福利片在线观看| 日韩国内少妇激情av| 小蜜桃在线观看免费完整版高清| 国产成人a区在线观看| 亚洲精品一区蜜桃| 成人亚洲精品av一区二区| 啦啦啦啦在线视频资源| 亚洲精品第二区| 久久久久国产精品人妻一区二区| 少妇人妻 视频| 国产精品福利在线免费观看| 黄片wwwwww| 各种免费的搞黄视频| 精品久久久久久久久亚洲| 亚洲欧美精品自产自拍| 久久女婷五月综合色啪小说 | 国内少妇人妻偷人精品xxx网站| 男女边摸边吃奶| 成人亚洲精品一区在线观看 | 婷婷色综合www| 色播亚洲综合网| 大片免费播放器 马上看| 美女cb高潮喷水在线观看| 日韩av免费高清视频| 一级毛片黄色毛片免费观看视频| 免费看光身美女| 国产精品不卡视频一区二区| 亚洲经典国产精华液单| 91午夜精品亚洲一区二区三区| 永久免费av网站大全| 国产精品人妻久久久久久| 成年女人在线观看亚洲视频 | 欧美bdsm另类| 国产极品天堂在线| 日日撸夜夜添| 我要看日韩黄色一级片| 美女xxoo啪啪120秒动态图| 激情五月婷婷亚洲| 18禁在线播放成人免费| 成人特级av手机在线观看| 99九九线精品视频在线观看视频| 午夜免费鲁丝| 色婷婷久久久亚洲欧美| 香蕉精品网在线| 涩涩av久久男人的天堂| 欧美3d第一页| 性插视频无遮挡在线免费观看| 日韩欧美精品免费久久| 一级黄片播放器| 中文在线观看免费www的网站| 亚洲最大成人手机在线| 亚洲精品国产色婷婷电影| 国产高清国产精品国产三级 | 大码成人一级视频| 国产亚洲最大av| 我要看日韩黄色一级片| 亚洲最大成人av| 最近中文字幕高清免费大全6| 亚洲,一卡二卡三卡| 国产综合精华液| 欧美zozozo另类| 大片免费播放器 马上看| 丝袜美腿在线中文| 一区二区三区免费毛片| 日本一二三区视频观看| 久久精品久久精品一区二区三区| 国产黄片视频在线免费观看| 男男h啪啪无遮挡| 男人和女人高潮做爰伦理| 在线观看美女被高潮喷水网站| 国产一区亚洲一区在线观看| 少妇丰满av| 我要看日韩黄色一级片| 亚洲精品日本国产第一区| 蜜桃久久精品国产亚洲av| 中文字幕人妻熟人妻熟丝袜美| 在线观看人妻少妇| 午夜视频国产福利| 亚洲国产日韩一区二区| 国内少妇人妻偷人精品xxx网站| 精品亚洲乱码少妇综合久久| av.在线天堂| 夫妻性生交免费视频一级片| 国内精品美女久久久久久| 搡女人真爽免费视频火全软件| 国产精品女同一区二区软件| 国产在视频线精品| 国产亚洲精品久久久com| 中文乱码字字幕精品一区二区三区| 在线免费观看不下载黄p国产| 黄色视频在线播放观看不卡| 国产精品熟女久久久久浪| 蜜桃久久精品国产亚洲av| 日韩成人伦理影院| 国产午夜福利久久久久久| 亚洲成人精品中文字幕电影| 黄片wwwwww| 亚洲国产av新网站| 亚洲国产欧美在线一区| 又粗又硬又长又爽又黄的视频| 久久6这里有精品| 秋霞在线观看毛片| 极品少妇高潮喷水抽搐| 高清视频免费观看一区二区| 国产一区二区三区综合在线观看 | 国内揄拍国产精品人妻在线| 国产成人福利小说| 五月玫瑰六月丁香| 精品久久国产蜜桃| 国产黄片视频在线免费观看| 男人和女人高潮做爰伦理| 国产精品伦人一区二区| 成人综合一区亚洲| 免费看光身美女| 久久精品熟女亚洲av麻豆精品| 久久久久国产网址| 自拍偷自拍亚洲精品老妇| 一边亲一边摸免费视频| 欧美xxⅹ黑人| 日本黄大片高清| 欧美人与善性xxx| 肉色欧美久久久久久久蜜桃 | 天天躁日日操中文字幕| 午夜爱爱视频在线播放| 一级av片app| 免费少妇av软件| 国产探花极品一区二区| 身体一侧抽搐| 哪个播放器可以免费观看大片| 免费不卡的大黄色大毛片视频在线观看| 搡老乐熟女国产| 最后的刺客免费高清国语| 久久久久性生活片| 97在线人人人人妻| 国国产精品蜜臀av免费| 国产免费一级a男人的天堂| 九九在线视频观看精品| 国产精品偷伦视频观看了| 亚州av有码| 国产精品女同一区二区软件| 国模一区二区三区四区视频| 国产乱来视频区| 亚洲人成网站高清观看| 高清视频免费观看一区二区| 大话2 男鬼变身卡| 搡女人真爽免费视频火全软件| 色视频在线一区二区三区| 超碰av人人做人人爽久久| 性色avwww在线观看| 亚洲人成网站在线播| 日日摸夜夜添夜夜添av毛片| 在线a可以看的网站| 亚洲欧美精品自产自拍| 亚洲成人精品中文字幕电影| 国产精品无大码| 国产男人的电影天堂91| 国产av国产精品国产| 黄色视频在线播放观看不卡| 直男gayav资源| 欧美高清成人免费视频www| 国产男女超爽视频在线观看| 蜜臀久久99精品久久宅男| 色吧在线观看| 国产高清有码在线观看视频| 午夜爱爱视频在线播放| 久久精品国产a三级三级三级| 亚洲人成网站在线观看播放| 色网站视频免费| 日韩欧美精品v在线| 大片电影免费在线观看免费| 日韩强制内射视频| 免费观看无遮挡的男女| 国产一级毛片在线| 亚洲在久久综合| 欧美日韩精品成人综合77777| 91在线精品国自产拍蜜月| 中文乱码字字幕精品一区二区三区| 日本三级黄在线观看| 国产老妇女一区| 哪个播放器可以免费观看大片| 精品久久久久久久久av| 久久久久久久精品精品| 成年免费大片在线观看| 欧美高清成人免费视频www| 久久久午夜欧美精品| 深爱激情五月婷婷| 建设人人有责人人尽责人人享有的 | 最近2019中文字幕mv第一页| 成人欧美大片| 亚洲精品日韩在线中文字幕| 日本猛色少妇xxxxx猛交久久| 亚洲国产最新在线播放| 国产精品久久久久久精品电影小说 | 亚洲精品乱久久久久久| 精品久久久精品久久久| 又黄又爽又刺激的免费视频.| 永久免费av网站大全| 男女边吃奶边做爰视频| 69av精品久久久久久| 久久久久网色| 成人一区二区视频在线观看| 欧美精品人与动牲交sv欧美| 免费av毛片视频| 精品久久久久久久末码| 熟妇人妻不卡中文字幕| 国产精品99久久久久久久久| 3wmmmm亚洲av在线观看| 男男h啪啪无遮挡| 国产综合懂色| 久久女婷五月综合色啪小说 | 国产亚洲最大av| 97精品久久久久久久久久精品| 亚洲av成人精品一区久久| 人体艺术视频欧美日本| 国产精品一及| 五月天丁香电影| 国产午夜精品一二区理论片| freevideosex欧美| 欧美性感艳星| 国产免费一区二区三区四区乱码| 在线亚洲精品国产二区图片欧美 | 亚洲av二区三区四区| 国产极品天堂在线| 一级二级三级毛片免费看| 国产精品国产三级国产专区5o| 亚洲人成网站在线观看播放| 中文天堂在线官网| 精品久久久久久久久av| 黄色视频在线播放观看不卡| 99久久精品一区二区三区| 在线观看av片永久免费下载| 一级毛片电影观看| 久久久久国产精品人妻一区二区| 日韩欧美一区视频在线观看 | 国产精品久久久久久av不卡| 亚洲精品第二区| 成人欧美大片| 交换朋友夫妻互换小说| 一级片'在线观看视频| 国内精品宾馆在线| 又黄又爽又刺激的免费视频.| 日本免费在线观看一区| 亚洲激情五月婷婷啪啪| 国产成人福利小说| 日本黄色片子视频| 久久精品国产亚洲av涩爱| 看免费成人av毛片| 国产黄频视频在线观看| 精品久久久精品久久久| 99热这里只有是精品50| 久久99精品国语久久久| 色婷婷久久久亚洲欧美| 国产精品一区二区三区四区免费观看| 国产精品一区二区性色av| 日韩av免费高清视频| av女优亚洲男人天堂| 久久久精品免费免费高清| 久久国产乱子免费精品| 久久午夜福利片| 男女无遮挡免费网站观看| av播播在线观看一区| 精品久久久久久久末码| 免费少妇av软件| 婷婷色麻豆天堂久久| 久久97久久精品| 又黄又爽又刺激的免费视频.| 日韩av在线免费看完整版不卡| 嫩草影院新地址| 成年av动漫网址| 亚洲欧美一区二区三区黑人 | 国产久久久一区二区三区| 欧美三级亚洲精品| 欧美性猛交╳xxx乱大交人| 亚洲久久久久久中文字幕| 国产av码专区亚洲av| 国产成年人精品一区二区| av女优亚洲男人天堂| 日韩成人伦理影院| 边亲边吃奶的免费视频| 欧美日韩视频高清一区二区三区二| 特大巨黑吊av在线直播| 天堂中文最新版在线下载 | 韩国高清视频一区二区三区| 人体艺术视频欧美日本| 91久久精品国产一区二区三区| 免费看日本二区| 波野结衣二区三区在线| 欧美少妇被猛烈插入视频| 亚洲精品乱码久久久v下载方式| 午夜福利网站1000一区二区三区| 狂野欧美激情性xxxx在线观看| 亚洲成人一二三区av| 一级毛片黄色毛片免费观看视频| 久久影院123| 性色av一级| 特级一级黄色大片| 亚洲精品色激情综合| 麻豆精品久久久久久蜜桃| 久久久久久久久久人人人人人人| 狂野欧美激情性xxxx在线观看| 日本黄色片子视频| 熟女电影av网| 自拍欧美九色日韩亚洲蝌蚪91 | 美女脱内裤让男人舔精品视频| a级毛片免费高清观看在线播放| 成年av动漫网址| 天堂中文最新版在线下载 | 能在线免费看毛片的网站| 久热这里只有精品99| 婷婷色综合大香蕉| 2021少妇久久久久久久久久久| 国产午夜精品一二区理论片| 欧美bdsm另类| 老司机影院成人| 搞女人的毛片| 成人国产av品久久久| 五月天丁香电影| 日韩电影二区| 欧美日韩视频精品一区| 精品久久久精品久久久| a级一级毛片免费在线观看| 国产午夜精品久久久久久一区二区三区| 国产成人免费无遮挡视频| 国产成人精品一,二区| 日日啪夜夜撸| 亚洲国产精品成人综合色| 亚洲av免费在线观看| 黄片wwwwww| 国产 精品1| 三级男女做爰猛烈吃奶摸视频| 有码 亚洲区| 亚洲图色成人| 蜜臀久久99精品久久宅男| 午夜福利视频精品| 免费少妇av软件| 亚洲欧美日韩无卡精品| 日本一二三区视频观看| 国产一区二区三区综合在线观看 | 日韩视频在线欧美| 国内精品美女久久久久久| 精品少妇久久久久久888优播| tube8黄色片| 亚洲欧美精品专区久久| 国内精品宾馆在线| 大香蕉久久网| 一级a做视频免费观看| 精品99又大又爽又粗少妇毛片| 久久久久久九九精品二区国产| 国产免费一区二区三区四区乱码| 伦精品一区二区三区| 2018国产大陆天天弄谢| 国产精品蜜桃在线观看| 身体一侧抽搐| av在线播放精品| 国产成人福利小说| 亚洲美女搞黄在线观看| 亚洲av中文av极速乱| 一区二区三区免费毛片| 人人妻人人看人人澡| 丰满人妻一区二区三区视频av| 成人二区视频| 欧美精品人与动牲交sv欧美| 欧美成人a在线观看| 特级一级黄色大片| 一级片'在线观看视频| 老师上课跳d突然被开到最大视频| 制服丝袜香蕉在线| 久久影院123| av黄色大香蕉| 身体一侧抽搐| 91在线精品国自产拍蜜月| 久久久欧美国产精品| 啦啦啦在线观看免费高清www| 人妻系列 视频| 亚洲电影在线观看av| 日日摸夜夜添夜夜爱| kizo精华| 亚洲精品色激情综合| 蜜桃久久精品国产亚洲av| 日产精品乱码卡一卡2卡三| 亚洲国产精品成人久久小说| 三级男女做爰猛烈吃奶摸视频| 国产高清国产精品国产三级 | 亚洲精品日本国产第一区| 久久鲁丝午夜福利片| 青春草亚洲视频在线观看| 久久这里有精品视频免费| 中文精品一卡2卡3卡4更新| 亚洲精品乱码久久久v下载方式| 午夜福利高清视频| 午夜福利视频精品| 欧美老熟妇乱子伦牲交| 日韩三级伦理在线观看| 99热这里只有精品一区| 日日啪夜夜撸| 国产老妇伦熟女老妇高清| 色综合色国产| 嫩草影院精品99| 中文字幕久久专区| 美女国产视频在线观看| 欧美成人精品欧美一级黄| 精品酒店卫生间| 精品少妇久久久久久888优播| 成年女人在线观看亚洲视频 | 久热久热在线精品观看| 午夜日本视频在线| 亚洲婷婷狠狠爱综合网| 内射极品少妇av片p| 日本猛色少妇xxxxx猛交久久| 丝瓜视频免费看黄片| 岛国毛片在线播放| 舔av片在线| 久久久精品免费免费高清| 国产男人的电影天堂91| av在线老鸭窝| 亚州av有码| 九九爱精品视频在线观看| 精品久久久久久久久亚洲| 狠狠精品人妻久久久久久综合| 国产精品无大码| 人妻系列 视频| 在线观看av片永久免费下载| 国产在视频线精品| 欧美人与善性xxx| 成人特级av手机在线观看| 久热这里只有精品99| 日韩av免费高清视频| 日韩电影二区| 国产男女内射视频| 黄色欧美视频在线观看| 爱豆传媒免费全集在线观看| 亚洲精品一区蜜桃| 永久免费av网站大全| 亚洲色图综合在线观看| 人妻一区二区av| 国产亚洲最大av| 国产色婷婷99| 又粗又硬又长又爽又黄的视频| 黄色欧美视频在线观看| 久久久国产一区二区| 可以在线观看毛片的网站| 日本猛色少妇xxxxx猛交久久| 中文字幕久久专区| 少妇的逼好多水| 极品少妇高潮喷水抽搐| 搡女人真爽免费视频火全软件| 晚上一个人看的免费电影| 欧美日韩视频精品一区| 国产精品伦人一区二区| av播播在线观看一区| 久热久热在线精品观看| 欧美日韩在线观看h| 又爽又黄无遮挡网站| 国产精品无大码| 中文字幕制服av| 久久精品国产自在天天线| 久久久久久久国产电影| 国产精品秋霞免费鲁丝片| 国产日韩欧美亚洲二区| 一级毛片 在线播放| 免费黄频网站在线观看国产| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av在线观看美女高潮| 久久久久久久久大av| videos熟女内射| 日韩三级伦理在线观看| 欧美一级a爱片免费观看看| 黑人高潮一二区| 联通29元200g的流量卡| 国产黄a三级三级三级人| 久热这里只有精品99| 国产亚洲最大av| 亚洲,欧美,日韩| 最近中文字幕高清免费大全6| 少妇高潮的动态图| videossex国产| 日本免费在线观看一区| 亚洲av免费高清在线观看| 中文天堂在线官网| 久久精品夜色国产| 免费高清在线观看视频在线观看| 成年免费大片在线观看| eeuss影院久久| 97在线人人人人妻| 国产亚洲91精品色在线| 亚洲av中文字字幕乱码综合| 久久影院123| 成人高潮视频无遮挡免费网站| 美女内射精品一级片tv| 欧美最新免费一区二区三区|