• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    β-環(huán)糊精與系列無(wú)機(jī)鹽分子-離子加合物的粉末X射線(xiàn)衍射分析

    2010-03-06 04:44:50宋樂(lè)新
    物理化學(xué)學(xué)報(bào) 2010年7期
    關(guān)鍵詞:加合物環(huán)糊精X射線(xiàn)

    黨 政 宋樂(lè)新

    (中國(guó)科學(xué)技術(shù)大學(xué)高分子科學(xué)與工程學(xué)系,中國(guó)科學(xué)院軟物質(zhì)化學(xué)重點(diǎn)實(shí)驗(yàn)室,合肥 230026)

    β-Cyclodextrin(β-CD)is a cyclic oligosaccharide consisting of seven glucopyranose units,in the form of a hollow truncated cone[1-3].With hydrophilic exterior and hydrophobic interior,it can form supramolecular inclusion complexes with many kinds of guests such as organic molecules,polymers,inorganic ions, and coordination compounds by weak interaction processes[4-8]. Owing to good crystallization behavior,β-CD as well as its inclusion complexes can be analyzed by X-ray diffraction(XRD) technology[9-11].

    A solid inorganic ion-CD adduct means the product formed by a CD and a certain inorganic salt,such as CaCl2[12]and CuCl2[12-13]. For small inorganic ions,they are likely to be in the form of an intercalary structure between CD molecules in their adducts with the aid of the molecule-ion encapsulation interaction[2](Fig.1).

    As a whole,even in solution,the studies concerned about the formation of the molecule-ion adducts formed by CDs and inorganic salts are quite rare[1,14-15].In crystal state,a few reports show that there is molecule-ion interaction between CD molecules and simpleinorganicions[16-17],suchasI-3,I-5,and I-7[18-21].Recent studies indicate that the existence of CD molecules can seriously affect the crystal packing modes of inorganic salts.For example,in terms of XRD data,CaCO3nanoparticles formed in water present a calcite structure[22].However,if the isolated nano-particles are grown in the aqueous solution of β-CD,they have an aragonitestructure[23].Thisworkprovidesagoodparadigmforrevealing the significance of the molecule-ion interaction between CD molecules and inorganic ions.Nevertheless,it only refers to the influenceofmolecule-ioninteractionbetween β-CDandCa2+onthe growth and packing behavior of CaCO3and does not mention the effect of this interaction on those of β-CD.

    As shown in Fig.1,the molecule-ion interaction between β-CD molecules and inorganic ions is unlike the intermolecular complexation between β-CD and water molecules as well as organic guests.As most of inorganic ions have a small size and a high polarity,the van der Waals interaction between inorganic ions and the cavities of CDs was found to be extremely weak in aqueous solution[24],possibly because inorganic ions are preferred to be outside the hydrophobic cavities of CDs.

    For example,like hydrates of β-CD,the single crystal structure of molecule-ion adduct formed by CaCl2with β-CD is just in the form of a cage packing mode[11],in which neither calcium ion nor chloride ion is embedded in the cavity of β-CD.This is why the products formed by molecule-ion interactions are regarded as adducts instead of inclusion complexes.

    Previous studies have concentrated on the confirmation of molecule-ion interaction either in aqueous solution or in single crystal state.To the best of our knowledge,there are very few reports on the spectral behavior of molecule-ion adducts in a crystal state so far though numerous papers are associated with the characterization of inclusion complexes formed through intermolecular interaction between CDs and guest molecules in solution as well as in solid state[5-10].

    Fig.1 Proposed molecule-ion interaction mode between β-CD and inorganic ions

    The absence of such studies is the more striking,since with the development of molecular biology and medical chemistry,it is suggested that many simple inorganic drugs,such as Li2CO3, NaAsO2and so on,play an important role in treating all aspects of health care[25-28].Assuredly,how to reduce their acute oral toxicity in vivo is a significant and particularly useful subject for studies concerning the link between bioinorganic chemistry and supramolecular chemistry.Possibly,this question can be solved by means of the formation of supramolecular adducts between common inorganic drugs and biomacromolecules such as CDs. Further,what is the spectral difference of similar adducts in solid state?In the present work,we attempt to prepare a series of adducts of β-CD with inorganic salts and try to analyze the spectral difference in powder X-ray diffraction(PXRD)patterns among inorganic salts,β-CD and their adducts in order to evaluatetheperformanceofmolecule-ioninteractionsinacrystalstate. We believe that the research will be very useful for pharmaceutical and biomedical analysis as well as preparation of inorganic nanoparticles[27].

    1 Experimental

    1.1 Materials

    β-CD(≥98.0%)was purchased from Shanghai Chemical Reagent Company and recrystallized twice from deionized water. Lithium chloride(LiCl,≥99.5%),ammonium chloride(NH4Cl,≥99.5%),potassium chloride(KCl,≥99.5%),sodium chloride (NaCl,≥99.5%),potassium nitrate(KNO3,≥99.5%)and lanthanum chloride(LaCl3,≥99.0%)were purchased from Shanghai Chemical Reagent and used without further purification.Calcium chloride(CaCl2,≥96%)was purchased from Sinopharm Chemical Reagent Company and used without further purification. NaAsO2(≥98.0%)is purchased from Sigma and used without further purification.All other reagents are of analytical-reagent grade,unless stated otherwise.

    1.2 Preparation of molecule-ion adducts

    The adducts of β-CD with the selected inorganic salts were prepared under a hydrothermal condition,by mixing β-CD (0.1135 g,0.1 mmol)with an inorganic salt(1∶1,molar ratio)in aqueous solution(50 mL)into an autoclave.Subsequently,the autoclave was heated at 393 K for 4 h.Then the solution was transferred to a temperature controlled water bath.After solvent was removed below 313 K under reduced pressure,the residue was dried thoroughly at 383 K in vacuo,and used without further purification.

    1.3 Preparation of physical mixtures

    Unground and ground physical mixtures between β-CD and inorganic salts were obtained by mixing them in 1∶1(molar ratio) with a grinding time of 0 and 20 min,respectively.

    1.4 Measurements of samples

    PXRD spectra of solid samples were performed on a Philips X′Pert Pro X-ray diffractometer.The solid samples were irradi-ated with monochromatized Cu Kαand analyzed with 5°≤2θ≤40°.The voltage and current were 40 kV and 40 mA,respectively.The sample mass was about 5.5 mg for each measurement. In order to diminish the effect of water molecules on PXRD patterns,all samples to be analyzed were kept under the same conditions,i.e.,383 K for 4 h before use.2θ angles(low angle range) of solid samples:β-CD,9.1°(moderate,m),10.8°(weak,w),12.6° (strong,s),15.6°(w),17.3°(w),19.3°(m)19.7°(w),and 22.7° (w);LiCl,30.0°(s),34.9°(s),and 50.1°(m);LiCl-β-CD,9.3° (w),10.9°(w),12.7°(s),15.8°(m),16.3°(m),17.1°(m),19.5° (m),21.3°(m),and 22.9°(m);NH4Cl,22.9°(m),32.6°(s),and 40.2°(w);NH4Cl-β-CD,9.2°(m),10.9°(w),12.8°(s),15.8°(m), 17.3°(m),19.7°(m),21.2°(m),22.8°(s),and 32.0°(m);KCl, 24.9°(w)and 35.4°(s);KCl-β-CD,9.2°(m),12.7°(s),14.8° (w),15.7°(m),17.3°(m),19.3°(m),22.8°(m),and 32.0°(m); NaCl,26.5°(w)and 32.8°(s);NaCl-β-CD,9.1°(w),10.8°(w), 12.7°(s),15.6°(m),17.9°(m),19.6°(m),21.1°(w),24.4°(m), 25.3°(w),28.8°(w),and 32°(w);LaCl3,13.7°(s),24.5°(s), 27.5°(m),31.4°(m),and 34.4°(s);LaCl3-β-CD,8.3°(w),9.1° (w),12.6°(s),12.9°(s),13.5°(s),17.0°(m),18.3°(m),19.6° (m),and 21.0°(m);CaCl2,19.8°(s),25.5°(m),29.1°(s),31.3° (m),and 38.5°(m);CaCl2-β-CD,9.0°(w),10.5°(m),12.5°(s), 15.6°(m),19.5°(m),22.9°(m),and 29.5°(w);KNO3,27.2°(s), 33.0°(m),and 39.6°(m);KNO3-β-CD,9.0°(w),10.5°(m), 12.5°(s),16.1°(m),19.2°(m),and 22.9°(m);NaAsO2,12.6° (w),18.2°(m),25.1°(m),28.4°(s)and 33.6°(m);NaAsO2-β-CD, 8.9°(w),9.7°(w),10.6°(m),12.4°(s),15.4°(m),17.8°(m), 19.5°(s),22.8°(m),28.0°(w),and 34.1°(w).The field emission scanning electron microscope(FESEM)images of solid samples wererecordedonaJEOL-JSM-6700Ffield-emittingmicroscope.

    2 Results and discussion

    2.1 Comparisons of PXRD spectra among free components,physical mixtures and adducts of β-CD with inorganic salts

    First of all,we should examine what is the difference in spectral property among free components,their ground mixture,and prepared adduct in a system.As an example,four PXRD spectra of the adduct system between β-CD and NaCl,including free NaCl,free β-CD,the ground mixture of them(1∶1,molar ratio), and the prepared adduct NaCl-β-CD under the same drying condition,are presented in Fig.2.

    In Fig.2A,the strongest characteristic peak of free NaCl occurs at 2θ of 32.9°(200).Although the peak is still observed clearly in both the mixture(Fig.2C)and the adduct(Fig.2D),its position shifts to a low 2θ angle upon mixing(2θ,32.2°)with β-CD especially after adduct(2θ,32.0°)with β-CD,and its intensity is significantly weakened from the mixture to the adduct.The left shift of this peak means that the interlayer distance(d(200))of complexed NaCl in the adduct is increased due to the molecule-ion interaction between NaCl and β-CD,indicating that the ion packing of the complexed NaCl becomes looser than that of free NaCl.

    Fig.2 Linear PXRD patterns of free NaCl(A),free β-CD(B), ground mixture(C),and prepared adduct(D)Those signals shown in bold lines come from NaCl.

    On the contrary,all major characteristic peaks in the range from 5°to 15°due to β-CD shift toward higher 2θ angles slightly from the ground mixture to the adduct.For example,the first strongest peak(P1)form 12.6°in the free or the mixed sample shifts to 12.7°in the adduct,which represents the(410)plane of crystal.This phenomenon implies that the molecular packing of complexed β-CD becomes closer than that of free β-CD.At the same time,several sharp signals belonging to β-CD,such as the second strongest peak(P2,19.3°)and the third strongest peak(P3, 9.1°),are weakened markedly after adduct with NaCl.

    These observations described above reveal that molecule-ion interactions may also appear during the process of mixing especially grinding(Supporting Information),and they have different spectral performances in different molecule-ion systems,suggesting significant effects of inorganic ions.Additionally,the PXRD spectra of either mixtures or adducts are mainly dominated by β-CD,possibly because the mass percentage of inorganic salts is much lower than that of β-CD.

    2.2 Effects of inorganic anions on the PXRD spectra of adducts

    It is found that there are considerable differences in the PXRD spectra between oxysalt and chloride adducts of β-CD(Supporting Information).

    First,several main peaks belonging to β-CD shift to a lower angle slightly from chloride adducts to oxysalt adducts.For example,the peak at 2θ of about 12.7°(P1)in the spectra of the two chloride adducts occurs in a lower angle of 12.4°for NaAsO2-β-CD and 12.5°for KNO3-β-CD.

    The shift of the peaks in a low 2θ angle range toward a lower angle reflects that there is a relative lower interlayer force between β-CD molecules in an oxysalt adduct than in a chloride adduct.We hypothesize that this is associated with the size of anions because the presence of a big anion in interlayer between β-CD molecules will lead to the increase of interlayer distances.

    Next,the peak at 19.3°(P2)of free β-CD shifts to 19.5°in the two oxysalt adducts(P2),and is strengthened in the presence of NaAsO2.However,the positions of P2in the two chloride adducts appear at 23.0°for NaCl and 22.8°for KCl.

    These observations reveal the complexity of molecule-ion in-teractions between β-CD and inorganic salts.As a result,different anions have different influences on the arrangement of β-CD molecules.

    The phenomenon that the spectral difference in PXRD patterns between the adducts of β-CD with the same anion but different cations is obviously smaller than that between the adducts of β-CD with the same cation but different anions seems to imply that inorganic anions play a more important role than cations in changing the stacking behavior of β-CD molecules.For instance,in the spectra of NaAsO2-β-CD[29]and NaCl-β-CD,several main characteristic peaks corresponding to β-CD shift towards different directions relative to free β-CD.This obvious spectral difference in 2θ angles between the two adducts indicates that the presence of NaAsO2and NaCl has increased and decreased the interlayer distances(d)in the direction of corresponding crystal faces,respectively.This fact that the size of Na+, AsO-2,and Cl-is insignificant relative to that of the cavity of β-CD provides important evidence that these inorganic ions exist outside the cavities of β-CD molecules.Because if the small ions are embedded within the large cavities,then there will not exist such a difference in d values between the molecule-ion adducts. In addition,there are some new peaks after adduct,such as those at 28.0°and 34.1°in NaAsO2-β-CD and those at 21.1°,25.3°, and 28.8°in NaCl-β-CD.The occurrence of the new peaks efficiently demonstrates the presence of molecule-ion interactions in the adducts.In addition to the effect of inorganic anions,we wish to further investigate how the properties of inorganic cations affect the spectral behavior of β-CD.

    2.3 Effects of inorganic cations on the PXRD spectra of adducts

    Meanwhile,we find that upon adduct the shifts of main characteristic peaks of free components vary with different cations. The PXRD spectra of the adducts of β-CD with several monochlorides(NH4Cl,KCl,NaCl,and LiCl)are depicted in Fig.3.

    Fig.3 PXRD patterns of β-CD(A),NH4Cl-β-CD(B), KCl-β-CD(C),NaCl-β-CD(D),and LiCl-β-CD(E)

    As shown in Fig.3,all those peaks belonging to β-CD on the left side of P1,shift to a higher 2θ angle in the case of four adducts,and the extent of the shift has an increasing order of NH4Cl-β-CD<KCl-β-CD<NaCl-β-CD<LiCl-β-CD.This result indicates that there are different interlayer forces between corresponding crystal faces of the polycrystalline bodies mainly resulted from β-CD molecules.Importantly,such an order can be explained by the fact that the order of the radii of these ions is Li+<Na+<K+<NH+4.In the case of the same anion,the presence of cations brings the arrangement of β-CD molecules closer.Li+ions,due to the highly positive charge density,produce a larger effect on the molecular arrangement of β-CD.It may be because some crystal lattice water molecules are replaced by the cations, which causes the occurrence of stronger electrostatic interaction between these ions and some of the end hydroxyl groups of β-CD molecules,leading to the possibility that the smaller the cation,the stronger the hydrogen bonding interaction between β-CD molecules.Interestingly,the observation is just contrary to the situation of those analyzed anions above.These results indicate that the existence of inorganic ions located at interstitial sites of β-CD molecules can modulate the stacking behavior of β-CD to a different extent dependent on the nature of inorganic salts.This should be an important reason why β-CD as well as many organic additives is being widely applied in controlling the size and shape of inorganic nanoparticles.

    In order to estimate the possible influence of ion charges on electrostatic interaction,the PXRD data of KCl-β-CD and two polychlorides(CaCl2-β-CD and LaCl3-β-CD)are compared(Supporting Information).The strongest characteristic peak(P1,12.7°) in KCl-β-CD has shifted to a lower 2θ angle in CaCl2-β-CD(P1, 12.5°),but it shifts to a higher 2θ angle(P1,13.5°)in LaCl3-β-CD. This result is different from the situation in monochloride adducts described before because the order of the radii of the three metal ions is Ca2+<La3+<K+,implying that the shift orientation of the characteristic peak not only is affected by the radii of metal ions,but also depends on charges of metal ions in the case of the same anions.

    Fig.4 SEM images of β-CD(A),NaCl-β-CD(B),KCl-β-CD (C),and NH4Cl-β-CD(D)

    Interestingly,the SEM images display that the surface structure of β-CD was seriously affected by the existence of different cations(Supporting Information).As shown in Fig.4,β-CD shows the convexity of hexagonal prism with sizes from 2 to 10 μm. However,in the presence of NaCl,KCl,and NH4Cl,the surface morphology of β-CD changes to square,tile,and bar shapes,respectively.The order of particle sizes from small to big is NH4Cl-β-CD<KCl-β-CD<NaCl-β-CD<β-CD.The changes in SEM images prove that different molecule-ion interactions induce the difference of the crystallization behavior of β-CD, which supports the results obtained from PXRD.

    3 Conclusions

    In summary,although inorganic salts cannot form stable inclusion complexes with β-CD in aqueous solution,they may influence the arrangement behavior of β-CD molecules in the process of crystallization to a different extent,resulting in structural difference of molecule-ion adducts in solid state.Also,there is a close relationship between the performance of PXRD patterns and their impact factors such as formation conditions of adducts, natures of anions or cations,ionic charges and so on.The comparison from SEM images supports the results from PXRD.The present work offers a framework that may be especially useful for the study of those systems that involve the molecule-ion interaction between sugars and salts in biophysical chemistry, molecular biology,and preparation of inorganic nanoparticles.

    Supporting Information available free of charge via the internet at http://www.whxb.pku.edu.cn.

    1 Liu,Y.;You,C.C.;Zhang,H.Y.Supramolecular chemistry. Tianjin:Nankai University Press,2001 [劉 育,尤長(zhǎng)城,張衡益.超分子化學(xué).天津:南開(kāi)大學(xué)出版社,2001]

    2 Song,L.X.;Bai,L.;Xu,X.M.;He,J.;Pan,S.Z.Coord.Chem. Rev.,2009,253:1276

    3 Tong,L.H.Chemistry of cyclodextrins.Beijing:Science Press, 2001:192 [童林薈.環(huán)糊精化學(xué).北京:科學(xué)出版社,2001:192]

    4 Cai,W.S.;Sun,T.T.;Liu,P.;Chipot,C.;Shao,X.G.J.Phys. Chem.B,2009,113:7836

    5 Yu,Y.M.;Cai,W.S.;Chipot,C.;Sun,T.T.;Shao,X.G.J.Phys. Chem.B,2008,112:5268

    6 Yu,Y.M.;Cai,W.S.;Shao,X.G.J.Incl.Phenom.Macro.,2006, 56:225

    7 Kamigauchi,M.;Kawanishi,K.;Onishi,H.;Ishida,T.Chem. Pharm.Bull.,2007,55:729

    8 Liu,Y.;Ke,C.F.;Zhang,H.Y.;Wu,W.J.;Shi,J.J.Org.Chem., 2007,72:280

    9 Wang,E.J.;Lian,Z.X.;Cai,J.W.Carbohyd.Res.,2007,342: 767

    10 Rodriquez-Llamazares,S.;Yutronic,N.;Jara,P.;Englert,U.; Noyong,M.;Simon,U.Eur.J.Org.Chem.,2007:4298

    11 Marques,J.;Anjo,L.;Marques,M.P.M.;Santos,T.M.;Paz,F.A. A.;Braga,S.S.J.Organomet.Chem.,2008,693:3021

    12 Nicolis,I.;Coleman,A.W.;Charpin,P.;deRango,C.Acta Crystallogr.Sect.B,1996,52:122

    13 Kurokawa,G.;Sekii,M.;Ishida,T.;Nogami,T.Supramol.Chem., 2004,16:381

    14 Spencer,J.N.;He,Q.;Ke,X.M.;Wu,Z.Q.;Fetter,E.J.Solution Chem.,1998,27:1009

    15 Buvari,A.;Barcza,L.J.Incl.Phenom.Macro.,1989,7:379

    16 Matsui,Y.;Ono,M.;Tokunaga,S.Bull.Chem.Soc.Jpn.,1997, 70:535

    17 Masar,M.;Bodor,R.;Kaniansky,D.J.Chromatogr.A,1999,834: 179

    18 Nimz,O.;Gessler,K.;Uson,I.;Laettig,S.;Welfle,H.;Sheldrick, G.M.;Saenger,W.Carbohydr.Res.,2003,338:977

    19 Charalampopoulos,V.G.;Papaioannou,J.C.;Karayianni,H.S. Solid State Sci.,2006,8:97

    20 Papaioannou,J.C.;Charalampopoulos,V.G.;Xynogalas,P.; Viras,K.J.Phys.Chem.Solids,2006,67:1379

    21 Charalampopoulos,V.G.;Papaioannou,J.C.Carbohydr.Res., 2007,342:2075

    22 Sonawane,S.H.;Shirsath,S.R.;Khanna,P.K.;Pawar,S.; Mahajan,C.M.;Paithankar,V.;Shinde,V.;Kapadnis,C.V.Chem. Eng.J.,2008,143:308

    23 Zhang,X.Y.;Liao,Z.J.;Yang,L.;Hu,Z.G.;Jiang,K.;Guo,Y. M.Acta Chim.Sin.,2003,61:69 [張秀英,廖照江,楊 林,胡志國(guó),蔣 凱,郭玉明.化學(xué)學(xué)報(bào),2003,61:69]

    24 Yamashoji,Y.;Fujiwara,M.;Matsushita,T.;Tanaka,M.Chem. Lett.,1993:1029

    25 Wolf,R.;D′avino,M.;De Angelis,F.;Ruocco,E.;Lombardi,M. L.J.Eur.Acad.Dermatol.Vener.,2000,14:97

    26 Manna,P.;Sinha,M.;Sil,P.C.Redox.Rep.,2008,13:67

    27 Song,L.X.;Dang,Z.J.Phys.Chem.B,2009,113:4998

    28 Song,L.X.;Bai,L.J.Phys.Chem.B,2009,113:9035

    29 Dang,Z.;Song,L.X.;Pan,S.Z.;Wang,M.Acta Phys.-Chim.Sin., 2009,25:1059 [黨 政,宋樂(lè)新,潘淑臻,王 莽.物理化學(xué)學(xué)報(bào),2009,25:1059]

    猜你喜歡
    加合物環(huán)糊精X射線(xiàn)
    硫芥與活性硫醇化合物加合特性的分析研究
    “X射線(xiàn)”的那些事兒
    實(shí)驗(yàn)室X射線(xiàn)管安全改造
    半胱氨酸消減丙烯酰胺的機(jī)理及消減工藝在薯?xiàng)l中的應(yīng)用
    DNA加合物組的預(yù)處理及檢測(cè)方法研究進(jìn)展
    虛擬古生物學(xué):當(dāng)化石遇到X射線(xiàn)成像
    科學(xué)(2020年1期)2020-01-06 12:21:34
    鴉膽子油β-環(huán)糊精包合物的制備
    中成藥(2018年8期)2018-08-29 01:28:08
    β-環(huán)糊精對(duì)決明子的輔助提取作用
    中成藥(2018年4期)2018-04-26 07:12:43
    食品致癌物雜環(huán)胺的生物標(biāo)記物的研究進(jìn)展
    基于DirectShow的便攜式X射線(xiàn)數(shù)字圖像采集的實(shí)現(xiàn)
    日日摸夜夜添夜夜爱| 亚洲欧美日韩东京热| 亚洲不卡免费看| 成年免费大片在线观看| 国产麻豆成人av免费视频| 日日干狠狠操夜夜爽| 国产一区二区在线观看日韩| 午夜福利网站1000一区二区三区| 国产精品乱码一区二三区的特点| 国产色婷婷99| 国产又黄又爽又无遮挡在线| 99久国产av精品| 中文字幕精品亚洲无线码一区| 最近的中文字幕免费完整| 久久久久性生活片| 嘟嘟电影网在线观看| 欧美成人精品欧美一级黄| videos熟女内射| 欧美成人精品欧美一级黄| 欧美高清性xxxxhd video| 欧美成人免费av一区二区三区| 1024手机看黄色片| 丰满乱子伦码专区| 亚洲精品成人久久久久久| 色视频www国产| 视频中文字幕在线观看| 亚洲av福利一区| 日韩精品有码人妻一区| 日本免费一区二区三区高清不卡| 大香蕉久久网| 成人午夜精彩视频在线观看| 亚洲国产成人一精品久久久| 国产精品久久久久久av不卡| 亚洲精品国产成人久久av| h日本视频在线播放| 日韩在线高清观看一区二区三区| 午夜精品国产一区二区电影 | 性插视频无遮挡在线免费观看| 麻豆久久精品国产亚洲av| 啦啦啦韩国在线观看视频| 成年免费大片在线观看| 国产日韩欧美在线精品| 欧美丝袜亚洲另类| 你懂的网址亚洲精品在线观看 | www日本黄色视频网| 最近2019中文字幕mv第一页| 最近中文字幕2019免费版| 老司机影院成人| 国产亚洲最大av| 汤姆久久久久久久影院中文字幕 | 日日摸夜夜添夜夜爱| 久久久亚洲精品成人影院| 午夜福利在线观看免费完整高清在| 亚洲欧美日韩东京热| 国产探花在线观看一区二区| 国产亚洲一区二区精品| 91久久精品国产一区二区三区| 欧美bdsm另类| 人人妻人人澡人人爽人人夜夜 | 免费av毛片视频| 久久精品人妻少妇| 三级经典国产精品| 免费av观看视频| 女人被狂操c到高潮| 精品久久国产蜜桃| 色噜噜av男人的天堂激情| av国产免费在线观看| 国内精品美女久久久久久| 国产国拍精品亚洲av在线观看| 欧美激情久久久久久爽电影| 在线播放国产精品三级| 一级二级三级毛片免费看| 免费看a级黄色片| 日本三级黄在线观看| 女人十人毛片免费观看3o分钟| 亚洲中文字幕一区二区三区有码在线看| 国产69精品久久久久777片| 一个人看视频在线观看www免费| 亚洲av成人av| 伦精品一区二区三区| 国产视频内射| 欧美成人a在线观看| 日韩欧美三级三区| 亚洲无线观看免费| 一级av片app| 六月丁香七月| 日本与韩国留学比较| 国产精品99久久久久久久久| 别揉我奶头 嗯啊视频| 麻豆成人午夜福利视频| 一个人免费在线观看电影| 国产真实伦视频高清在线观看| 婷婷色综合大香蕉| 建设人人有责人人尽责人人享有的 | 一级爰片在线观看| 一边摸一边抽搐一进一小说| 汤姆久久久久久久影院中文字幕 | 国产精品乱码一区二三区的特点| 韩国av在线不卡| 国产一区二区在线观看日韩| 欧美bdsm另类| 国产人妻一区二区三区在| 国产精品电影一区二区三区| 国产精品国产三级国产专区5o | 一级av片app| 婷婷六月久久综合丁香| 亚洲人成网站高清观看| 国产中年淑女户外野战色| 欧美又色又爽又黄视频| 亚洲无线观看免费| 成人亚洲精品av一区二区| 韩国高清视频一区二区三区| 一个人免费在线观看电影| 免费av毛片视频| 国产一区二区三区av在线| 少妇熟女aⅴ在线视频| 18禁动态无遮挡网站| 人妻少妇偷人精品九色| 久久99蜜桃精品久久| 人人妻人人澡人人爽人人夜夜 | 婷婷色综合大香蕉| 婷婷色麻豆天堂久久 | 精品熟女少妇av免费看| 亚洲在久久综合| 老女人水多毛片| 久久韩国三级中文字幕| 激情 狠狠 欧美| 永久免费av网站大全| 插逼视频在线观看| 啦啦啦韩国在线观看视频| 特大巨黑吊av在线直播| av免费在线看不卡| 国产三级在线视频| 人人妻人人看人人澡| 亚洲三级黄色毛片| 午夜精品国产一区二区电影 | 国产白丝娇喘喷水9色精品| 日日摸夜夜添夜夜添av毛片| 99热精品在线国产| 十八禁国产超污无遮挡网站| 精品欧美国产一区二区三| 国产高清有码在线观看视频| 一级毛片久久久久久久久女| av国产免费在线观看| 22中文网久久字幕| 日韩欧美在线乱码| 国产成人a区在线观看| 99久国产av精品| 精品久久久久久电影网 | av在线播放精品| 国产黄片视频在线免费观看| 色哟哟·www| 少妇被粗大猛烈的视频| 亚洲精品自拍成人| 伦精品一区二区三区| 黄色欧美视频在线观看| 天堂影院成人在线观看| 久久草成人影院| 日本一二三区视频观看| 日本三级黄在线观看| 三级毛片av免费| 韩国av在线不卡| 亚洲精品456在线播放app| 国产精品久久久久久精品电影小说 | 干丝袜人妻中文字幕| 亚洲综合色惰| 麻豆久久精品国产亚洲av| 欧美色视频一区免费| 成人鲁丝片一二三区免费| 成年免费大片在线观看| 啦啦啦啦在线视频资源| 好男人在线观看高清免费视频| 国产成人aa在线观看| 非洲黑人性xxxx精品又粗又长| 99热全是精品| 成人性生交大片免费视频hd| 午夜老司机福利剧场| 免费观看的影片在线观看| 丰满人妻一区二区三区视频av| 国产av在哪里看| 亚洲精品,欧美精品| 91午夜精品亚洲一区二区三区| 国产在视频线在精品| 久久人人爽人人片av| 丰满少妇做爰视频| 亚洲国产精品成人综合色| 色哟哟·www| 国产三级在线视频| 赤兔流量卡办理| 久久久久久久久久久丰满| 中文字幕免费在线视频6| 欧美高清性xxxxhd video| 日韩av在线大香蕉| 亚洲欧洲国产日韩| 99热这里只有是精品50| 国产精品av视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 中文资源天堂在线| 特大巨黑吊av在线直播| 中文字幕人妻熟人妻熟丝袜美| 蜜桃久久精品国产亚洲av| 成人综合一区亚洲| 国产又色又爽无遮挡免| 熟妇人妻久久中文字幕3abv| 99久久九九国产精品国产免费| 国产免费男女视频| 欧美人与善性xxx| 久久久久久久亚洲中文字幕| 一本一本综合久久| 麻豆成人午夜福利视频| 好男人在线观看高清免费视频| 欧美zozozo另类| 精品免费久久久久久久清纯| 亚洲高清免费不卡视频| 欧美色视频一区免费| a级毛色黄片| 欧美成人午夜免费资源| 国产在线一区二区三区精 | 五月玫瑰六月丁香| 有码 亚洲区| 精品不卡国产一区二区三区| 国产黄片美女视频| 看十八女毛片水多多多| 久久久欧美国产精品| 国产精品麻豆人妻色哟哟久久 | 亚洲精品日韩在线中文字幕| 亚洲精品亚洲一区二区| 男女啪啪激烈高潮av片| 欧美又色又爽又黄视频| 欧美日本视频| 日韩在线高清观看一区二区三区| av在线天堂中文字幕| 久久精品久久精品一区二区三区| 综合色av麻豆| 99久久中文字幕三级久久日本| 边亲边吃奶的免费视频| 国产黄片视频在线免费观看| 免费看美女性在线毛片视频| 午夜福利在线观看免费完整高清在| 亚洲精品日韩在线中文字幕| 午夜福利在线在线| 菩萨蛮人人尽说江南好唐韦庄 | 色哟哟·www| 高清毛片免费看| videos熟女内射| 国产毛片a区久久久久| 国产 一区精品| 97在线视频观看| 免费观看的影片在线观看| 人人妻人人看人人澡| 日日啪夜夜撸| 最近视频中文字幕2019在线8| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色噜噜av男人的天堂激情| 少妇的逼好多水| 国产精品熟女久久久久浪| 国产淫语在线视频| 永久网站在线| 在线观看av片永久免费下载| 国产一区二区在线av高清观看| 最近手机中文字幕大全| 又爽又黄a免费视频| 精品久久久久久久人妻蜜臀av| 三级国产精品欧美在线观看| 中文精品一卡2卡3卡4更新| 亚洲最大成人手机在线| 联通29元200g的流量卡| 国产欧美日韩精品一区二区| 亚洲人成网站在线播| 亚洲欧美日韩东京热| 男人舔女人下体高潮全视频| 亚洲国产精品成人综合色| 久久精品国产鲁丝片午夜精品| 精品久久久久久久人妻蜜臀av| 人人妻人人澡人人爽人人夜夜 | 婷婷色综合大香蕉| or卡值多少钱| 国产乱来视频区| 亚洲人成网站高清观看| 中文字幕av成人在线电影| 嫩草影院精品99| 熟女人妻精品中文字幕| 欧美日韩国产亚洲二区| 久久久久久久久久成人| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 午夜免费激情av| 大又大粗又爽又黄少妇毛片口| 国产成人精品一,二区| av在线播放精品| 国产私拍福利视频在线观看| 国产亚洲5aaaaa淫片| 欧美3d第一页| 午夜亚洲福利在线播放| 搡老妇女老女人老熟妇| 一个人观看的视频www高清免费观看| 好男人视频免费观看在线| 久久久精品欧美日韩精品| 欧美激情在线99| 国语对白做爰xxxⅹ性视频网站| 亚洲aⅴ乱码一区二区在线播放| 嫩草影院精品99| 校园人妻丝袜中文字幕| 免费大片18禁| 国产大屁股一区二区在线视频| 国产精品综合久久久久久久免费| 美女xxoo啪啪120秒动态图| 69人妻影院| 99热这里只有精品一区| 日本黄大片高清| 亚洲自偷自拍三级| 蜜桃亚洲精品一区二区三区| 国产免费福利视频在线观看| 国产成人精品婷婷| 午夜精品国产一区二区电影 | 99热6这里只有精品| 午夜精品在线福利| 十八禁国产超污无遮挡网站| 亚洲欧美精品专区久久| 国产av不卡久久| a级毛色黄片| 欧美不卡视频在线免费观看| 蜜臀久久99精品久久宅男| 听说在线观看完整版免费高清| 国产亚洲av嫩草精品影院| 在线观看av片永久免费下载| 久久精品影院6| 久久精品国产鲁丝片午夜精品| 亚洲自拍偷在线| 成人漫画全彩无遮挡| 日韩高清综合在线| 国产一区有黄有色的免费视频 | 高清在线视频一区二区三区 | 一级黄色大片毛片| 村上凉子中文字幕在线| 激情 狠狠 欧美| 国产大屁股一区二区在线视频| 国产av在哪里看| 搡老妇女老女人老熟妇| 国产中年淑女户外野战色| 亚洲经典国产精华液单| 男女边吃奶边做爰视频| 一本一本综合久久| 精品久久久久久久久久久久久| 日韩欧美 国产精品| 亚洲av电影在线观看一区二区三区 | 亚洲天堂国产精品一区在线| 久久欧美精品欧美久久欧美| 亚洲一级一片aⅴ在线观看| 欧美xxxx性猛交bbbb| h日本视频在线播放| 亚洲内射少妇av| 晚上一个人看的免费电影| 国产国拍精品亚洲av在线观看| 精品午夜福利在线看| 成人av在线播放网站| 国语自产精品视频在线第100页| 国产视频首页在线观看| 韩国高清视频一区二区三区| 国产老妇女一区| 青春草亚洲视频在线观看| 国产视频内射| 一个人看的www免费观看视频| av免费在线看不卡| 熟女人妻精品中文字幕| 一级黄色大片毛片| 最后的刺客免费高清国语| 97超碰精品成人国产| av在线观看视频网站免费| 最近2019中文字幕mv第一页| 欧美不卡视频在线免费观看| 99久久中文字幕三级久久日本| 禁无遮挡网站| 高清视频免费观看一区二区 | www.av在线官网国产| 国产精品av视频在线免费观看| 精品一区二区三区视频在线| 看十八女毛片水多多多| 久久久久久久午夜电影| 汤姆久久久久久久影院中文字幕 | 我的女老师完整版在线观看| 免费大片18禁| 天堂影院成人在线观看| 亚洲av成人精品一二三区| 神马国产精品三级电影在线观看| 春色校园在线视频观看| 麻豆一二三区av精品| 免费不卡的大黄色大毛片视频在线观看 | ponron亚洲| 我的老师免费观看完整版| 久久精品久久精品一区二区三区| 成人二区视频| 久久久色成人| 久久久久久久久久久免费av| 热99re8久久精品国产| 欧美日韩在线观看h| 日韩欧美三级三区| 七月丁香在线播放| 少妇丰满av| 国产高清有码在线观看视频| 亚洲av一区综合| 亚洲va在线va天堂va国产| 非洲黑人性xxxx精品又粗又长| 免费av观看视频| 91久久精品电影网| 成人毛片60女人毛片免费| 九色成人免费人妻av| 男插女下体视频免费在线播放| 国产亚洲av片在线观看秒播厂 | 99视频精品全部免费 在线| 中文字幕熟女人妻在线| 又爽又黄a免费视频| 深夜a级毛片| 男人的好看免费观看在线视频| 大香蕉久久网| 搡老妇女老女人老熟妇| 中文资源天堂在线| 少妇的逼好多水| 欧美潮喷喷水| 国产一区亚洲一区在线观看| 国产免费又黄又爽又色| 国产 一区精品| 秋霞在线观看毛片| 最近中文字幕2019免费版| 日日摸夜夜添夜夜爱| 国产精品精品国产色婷婷| 赤兔流量卡办理| 国产白丝娇喘喷水9色精品| 欧美一区二区亚洲| 精品国内亚洲2022精品成人| 免费电影在线观看免费观看| 极品教师在线视频| 国产真实伦视频高清在线观看| 亚洲欧美日韩卡通动漫| 色综合色国产| 寂寞人妻少妇视频99o| 毛片一级片免费看久久久久| 人妻少妇偷人精品九色| 国产极品精品免费视频能看的| 久久精品国产自在天天线| 婷婷色av中文字幕| 日韩精品青青久久久久久| 插逼视频在线观看| 淫秽高清视频在线观看| 只有这里有精品99| 一区二区三区免费毛片| 两性午夜刺激爽爽歪歪视频在线观看| 日本wwww免费看| 国产精品国产三级国产专区5o | 国产成人福利小说| 久久久精品94久久精品| 国产免费又黄又爽又色| 欧美日韩精品成人综合77777| 热99re8久久精品国产| 国产黄片美女视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲精华国产精华液的使用体验| 一级毛片电影观看 | 久久久国产成人精品二区| 亚洲精品,欧美精品| 亚洲人与动物交配视频| 久久久亚洲精品成人影院| 美女内射精品一级片tv| 欧美日韩国产亚洲二区| 天美传媒精品一区二区| 一级二级三级毛片免费看| 国产欧美日韩精品一区二区| 亚洲欧美成人综合另类久久久 | 久久精品国产自在天天线| 国产精品国产三级国产专区5o | 激情 狠狠 欧美| 丝袜喷水一区| 男人舔奶头视频| 日韩亚洲欧美综合| av在线观看视频网站免费| 亚洲国产精品成人综合色| 国产高清三级在线| 精品午夜福利在线看| 午夜老司机福利剧场| 欧美最新免费一区二区三区| 草草在线视频免费看| 老司机福利观看| 国内精品美女久久久久久| 国产精品嫩草影院av在线观看| 亚洲性久久影院| 搡老妇女老女人老熟妇| 亚洲在线观看片| 国产一区亚洲一区在线观看| 精品无人区乱码1区二区| 欧美精品一区二区大全| 听说在线观看完整版免费高清| 97超碰精品成人国产| 最近最新中文字幕免费大全7| 亚洲国产精品国产精品| 久久精品夜夜夜夜夜久久蜜豆| 成人午夜高清在线视频| 大香蕉久久网| 国产成人免费观看mmmm| 精品久久久久久久久久久久久| 久久99精品国语久久久| 干丝袜人妻中文字幕| 日本熟妇午夜| 日本爱情动作片www.在线观看| 国产精品不卡视频一区二区| 嫩草影院精品99| 99久久人妻综合| 国产精品乱码一区二三区的特点| 久久精品国产亚洲av涩爱| 一本久久精品| 亚洲人成网站在线观看播放| 精品国产三级普通话版| 亚洲国产精品成人综合色| 三级国产精品片| 国产伦在线观看视频一区| 亚洲精品aⅴ在线观看| 3wmmmm亚洲av在线观看| 国产成人a∨麻豆精品| 国产精品麻豆人妻色哟哟久久 | 日韩av在线大香蕉| 久久久久久久久久久丰满| av在线观看视频网站免费| 欧美zozozo另类| 日韩一区二区视频免费看| 欧美bdsm另类| 久久精品夜夜夜夜夜久久蜜豆| 一区二区三区四区激情视频| 十八禁国产超污无遮挡网站| 国产三级中文精品| 只有这里有精品99| 男插女下体视频免费在线播放| 啦啦啦观看免费观看视频高清| 色吧在线观看| 99热全是精品| 婷婷色综合大香蕉| 国产精品久久久久久久久免| 91aial.com中文字幕在线观看| 级片在线观看| 色综合亚洲欧美另类图片| 99热这里只有是精品在线观看| 欧美激情久久久久久爽电影| 久久久色成人| 91久久精品电影网| 最近2019中文字幕mv第一页| 国产高清不卡午夜福利| 最近2019中文字幕mv第一页| 亚洲av中文av极速乱| 国产精品美女特级片免费视频播放器| 在线观看av片永久免费下载| 亚洲国产精品久久男人天堂| 国产精品av视频在线免费观看| 欧美成人午夜免费资源| 精品久久久久久久久亚洲| 国产黄色视频一区二区在线观看 | 狠狠狠狠99中文字幕| 欧美日韩国产亚洲二区| 欧美一区二区亚洲| 亚洲av成人av| 日韩视频在线欧美| 天美传媒精品一区二区| 国产精品99久久久久久久久| 日本一二三区视频观看| 免费观看a级毛片全部| 中文字幕亚洲精品专区| 国产av不卡久久| a级一级毛片免费在线观看| 亚洲精品久久久久久婷婷小说 | 亚洲经典国产精华液单| 国产黄色小视频在线观看| 亚洲欧美精品自产自拍| 亚洲四区av| www日本黄色视频网| 国产精品一二三区在线看| 日韩一本色道免费dvd| 欧美高清性xxxxhd video| 亚洲欧洲国产日韩| 日韩一区二区视频免费看| 淫秽高清视频在线观看| 啦啦啦韩国在线观看视频| 国产高清国产精品国产三级 | 国产色婷婷99| 一边亲一边摸免费视频| 午夜精品国产一区二区电影 | 一级黄片播放器| 日产精品乱码卡一卡2卡三| 热99re8久久精品国产| 免费电影在线观看免费观看| 精品久久久久久成人av| 男人舔女人下体高潮全视频| 亚洲图色成人| 26uuu在线亚洲综合色| 美女高潮的动态| 久久精品影院6| 欧美潮喷喷水| 国产一区亚洲一区在线观看| 波多野结衣巨乳人妻| 国产精品女同一区二区软件| 97超碰精品成人国产| 国产精品女同一区二区软件| 亚洲国产日韩欧美精品在线观看| 国产黄色小视频在线观看| 伦理电影大哥的女人| 美女内射精品一级片tv| 伦理电影大哥的女人| 麻豆乱淫一区二区| 国产午夜精品久久久久久一区二区三区| 男人的好看免费观看在线视频| 国产女主播在线喷水免费视频网站 | 免费观看在线日韩| 人妻少妇偷人精品九色| 亚洲精品日韩在线中文字幕| 国产一区有黄有色的免费视频 | 18禁动态无遮挡网站| 少妇被粗大猛烈的视频| 亚洲人成网站在线播| 亚洲怡红院男人天堂|