• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single Molecule Fluorescence Resonance Energy Transfer and Ensemble Biophysical Characterization of a G-quadruplex Formed in the Promoter of Human Myocyte Enhancer Factor 2D

    2010-03-06 04:44:24ZHOUWenHuaYINGLiMing
    物理化學學報 2010年4期

    ZHOU Wen-Hua YING Li-Ming,2,*

    (1Molecular Medicine,National Heart and Lung Institute,Imperial College London,London SW7 2AZ,United Kingdom; 2Chemical Biology Centre,Imperial College London,London SW7 2AZ,United Kingdom)

    Since the discovery of the iconic DNA double helical structure(B-form DNA)by Watson and Crick more than 50 years ago[1],other non B-form DNA secondary structures within certain sequences have been identified,such as left-handed DNA(ZDNA),triplexes(H-DNA,and sticky DNA),cruciforms,slipped hairpins,G-quadruplexes(also called G-tetraplexes,or G4 DNA), and i-motifs(i-tetraplexes)[2-4].It is believed that the majority of genome DNA is in the B-form,however,other secondary structures as mentioned above may also transiently form in many regions of the genome.These dynamic forms of structures are determined by DNA sequences,topology,DNA binding proteins, and other modifications of DNA[5].Increasingly,evidence indicates that these transient secondary structures relate to certain biological functions.This is plausible,as around 98%of human genomic DNA are non-coding sequences that would have certain biological functions in the view of evolution.Since the discovery that G4 can form in the G-rich regions of telomeric oligonucleotides in late 1980s[6],there have been a growing number of studies focusing on the structures and possible biological functions of these fascinating DNA motifs.

    G4s are multiple vertically stacked guanine tetrads.Four guanines occupy each corner and form a G-tetrad plane,which is maintained by the Hoogsteen hydrogen bonds between N1,N7, O6,and N2 of each guanine base[7].As shown in Fig.1,G4s can be formed by four DNA strands(tetramolecular G4),two DNA strands(bimolecular G4),or single DNA strand(intramolecular G4).The side loop has three different types:lateral(L),external (E),and diagonal(D).2,3,or 4 planes stack together and form two,three or four-tetrad G4s.Monovalent cations,especially K+, can effectively bind to the core of G4s and further stabilize their structures,suggesting that the physiological conditions are more favorable for the formation of G4s[8].Although the core structure of G4 is very simple,the actual structures of G4 may vary and are difficult to predict.At the same time,the conformation of deoxyribose(C2′-endo orC3′-endo conformation)on the back bone and glycosidic bond angle also determine the overall structure of G4s(parallel or antiparallel).The structures of G4 are often heterogenous depending on the salt condition,for example,the same telomeric G4 motif can adopt several G4 conformations in dynamic equilibrium[9].

    Fig.1 Schematic representation of G4 structures[8]

    Although the majority of published work about the existence, structure,and biological relevance of G4 was carried out in vitro,more and more evidence has shown that G4s have special biological relevance and functions in living cells[10-13].The identification of G4 binding ligands and interacting proteins,such as TMPyP4(5,10,15,20-tetra(N-methyl-4-pyridyl)porphin),myogenic differentiation factor MyoD,the tetrahymena G4 binding protein,some telomeric proteins and the recently discovered G4R1(G4 resolvase)[14-15]suggest G4s provide a functional role in living cells.Furthermore,recent bioinformatics studies have demonstrate that the high density of putative G4-forming motifs in the transcriptional regulatory region(TRR-500 to+500)of genes across the human genome is associated with gene expression[16].Extensive studies carried out by Hurley′s group and others in the past decade have established the inhibitory roles of G4 sequences in promoter regions of many human genes,including the important proto-oncogenes c-myc and c-kit,HIF-1a,KRAS, Bcl-2,and growth factors PDGF-A and VEGF[17].There is therefore interest in G4s and their binding proteins are regarded as potential targets for anti-cancer drug design[18-19].G-rich motifs in mRNA were also found to be involved in regulation of gene translation[20],and specifically in tissue-specific alternative splicing by interacting with the hnRNP H protein subfamily[21-22].

    In acute or chronic injury to the adult hearts,pathological responses,such as cardiomyocytes hypertrophy,and ventricular wall thinning,have been observed associated with development of pathological hypertrophy,which may result in heart failure and death[23-24].These pathological responses are actually caused by the activation of a complex signaling pathways that activate various transcription factors,including myocyte enhancer factor-2(MEF2),nuclear factor of activated T cells(NFAT),and GATA-4[25],leading to additional sarcomere assembly and expression of genes typical of the fetal cardiac gene program.There are four members(MEF2A-D)of the MEF2 family of MADS(MCM1, agamous,deficiency,serum response factor)box transcription factor family,which function as stress-dependent regulators of gene expression involved in pathological cardiac remodeling and multiple aspects of striated muscle development and disease.Recent studies about MEF2D in transgenic mice lacking the MEF2D gene found that the mice with a Mef2d loss-of-function mutation are viable,but display impaired response to stress signals that are normally associated with the development of cardiac hypertrophy,fibrosis,and fetal gene activation.However, the forced overexpression of MEF2D in mice can cause severe cardiomyopathy.These results suggest that Mef2d is possibly a key factor in regulating stress-dependent gene in adult heart, raising expectation that MEF2D might provide new target in developing“transcriptional”therapies for enhancing heart functions[26].Interestingly,in the TRR of MEF2D,we found four G4-forming motifs,which are at 232,169,85,and 18 bases upstream to the transcription start site(TSS;+1)of MEF2D from human(ID of transcript:NM005920).In particular,the motif starting at-169 contains four consecutive CCCC and its complementary strand would possibly form a stable 4-tetrad G4.In light of the previous studies about G4-forming motifs in the upstream TRR of c-myc,VEGF,HIF-1a,Ret,KRAS,Bcl-2,c-Kit, PDGF-A,and c-Myb[17],we suspect that this 4-tetrad G4 might play certain roles in regulating the expression of MEF2D in respect to the stress-dependent signaling,and therefore could be a target for the development of drugs to counter heart failure.

    An understanding of G4 structures and dynamics is crucial to the further interrogation of their corresponding biological functions.The single molecule fluorescent resonance energy transfer (smFRET)technique has been proved to be a unique approach to resolving structure heterogeneity of DNA secondary structures such as G4[27-31].FRET is the non-radiative dipole-dipole energy transfer from a donor fluorophore to an acceptor fluorophore when they come within 1-10 nm of each other,and the FRET efficiency depends on the fluorophores′spectral overlap, separation and orientation[32].smFRET makes it possible to measure the conformational distribution of biomolecules under different conditions and to follow their folding/unfolding process in realtime[27].Herein we report our work using mainly smFRET as well as other ensemble biophysical methods to probe the existence,structures,and unfolding kinetics of a G4-forming motif found in the promoter of the human MEF2D gene.

    1 Experimental

    1.1 Materials

    All labeled and unlabeled DNA oligos I-VI used in this study were purchased from IBA Biotechnology(G?ttingen,Germany)and HPLC purified(double HPLC purification for labeled oligos).The sequences of these oligos are listed in Table 1.Oligos I and II,with Cy3 labeled at A47 and G60 respectively via a NHS ester,are the non-template strand fragment(-175 to-115, relative to the transcription start site of MEF2D)containing G4-forming sequence of human MEF2D promoter.Oligo III,with Cy5 labeled at T6 via a NHS ester,is complementary to the 30-nucleotide overhang of I and II.Oligo IV,with Cy5 labeled at T36 via a NHS ester,is complementary to I and II.Oligo V is complementary to the 30-nucleotide G4-forming region.VI is the unlabeled G4-forming sequence.The absorbance at 260 nm for DNA,550 nm for Cy3 and 650 nm for Cy5 was used to determine the concentration and the labeling ratio of all purchased DNA oligos.All labeled oligos have>95%purity.

    Table 1 Details of oligos used in this study

    1.2 Electrophoretic mobility shift assay

    G4-forming and non-G4-forming DNA oligos were first dissolved in 10 mmol·L-1Tris-HCl buffer(pH 7.4)containing 100 mmol·L-1KCl to a strand concentration of 1 μmol·L-1.Prior to electrophoretic mobility shift assay(EMSA),the samples were heated to 95℃for 15 min and then slowly cooled down to room temperature over 4 h.Afterwards the oligos were loaded to a 12%native polyacrylamide gel(PAGE)in 1×Tris-borate-EDTA (TBE,pH 8.3)buffer for EMSA.Both the native PAGE and TBE buffer contained 100 mmol·L-1KCl.Control samples were heated to 95℃for 15 min,and then put on ice before being loaded onto the gel.Control experiments were carried out by loading the same samples onto 7 mol·L-1urea denaturing PAGE in 1×TBE buffer without KCl.All EMSAs were conducted at 120 V at room temperature.

    1.3 CD characterization

    Circular dichroism(CD)spectra were recorded on a J-810 CD spectrometer(JASCO,Essex,UK)at 20℃,using a 1 mm optical path length quartz cell and with a scan rate of 200 nm·min-1. All DNA samples were dissolved in 10 mmol·L-1Tris-HCl buffer(pH 7.4)containing 100 mmol·L-1KCl to a strand concentration of 12.5 μmol·L-1.The CD spectra were baseline corrected using blank buffer stated above.CD melting measurements were carried out with a temperature sweep rate of 1℃· min-1.Measured results were in milli-degrees and were converted into molar ellipticity((°)·cm2·dmol-1).

    1.4 Single molecule FRET

    A home-built dual-channel confocal fluorescence microscope was used to detect the conformational heterogeneity of G4 in buffer solutions[33-34].G4 samples were prepared by annealing of 100 nmol·L-1Cy3 labeled G4-forming DNA oligos with 150 nmol·L-1Cy5 labeled complementary strands in 10 mmol·L-1Tris-HCl buffer(pH 7.4)containing 100 mmol·L-1salts(LiCl, NaCl or KCl).Before single molecule measurements,samples were further diluted to 50 pmol·L-1in 10 mmol·L-1This-HCl buffer(pH 7.4)in the presence of 200 μmol·L-1Vitamin C,and 0.05%(φ,volume fraction)Tween 20 to reduce photobleaching and surface adsorption of DNA molecules.The donor,Cy3,was exited by a 150 μW collimated laser beam at 514 nm(argon ion, model 35LAP321-230,Melles Griot,Carlsbad,CA,USA).Fluorescent signals from donor and acceptor were collected by an oil-immersion objective(Apochromat 60×,NA 1.45,Nikon, Surrey,UK),detected by two single photon avalanche detectors (SPCM-ARQ-14,Perkin Elmer Optoelectronics,Salem,MA, USA)and recorded by two multichannel scalar cards(MCS-PCI, EG&G,ORTEC,Oak Ridge,TN,USA).FRET signals were identified from the background when the sum of photon bursts in the donor and acceptor channels exceeded a threshold of 40 photons per millisecond.Apparent FRET efficiency E of each FRET burst was calculated by the formula E=nA/(nA+γnD),where nA,nDare the acceptor and donor counts respectively,and γ is a constant used to compensate the differences that are due to quantum yields and optical detection efficiencies.γ was measured to be 1 for the Cy3/Cy5 pair.Cross-talk between Cy3 and Cy5 were determined to be 13%.FRET efficiency histograms were fitted by a 4-peak-Gaussian distribution model in Origin 7.0 (OriginLab Corporation,Northampton,MA,USA).Histograms obtained from six independent measurements were subject to global fitting to obtain the optimal sets of parameters for the four subpopulations observed.

    1.5 G4 unfolding kinetics measurement

    G4 unfolding kinetic of the end dual-labeled G4 system were measured at bulk level using the same instrument for smFRET as stated above.100 nmol·L-1G4 samples in 100 mmol·L-1K+solution(10 mmol·L-1Tris-HCl,pH7.4,200 μmol·L-1Vitamin C,and 0.05%(φ)Tween 20)were prepared as stated previously. Kinetics measurement were carried out by mixing Cy3 labeled G4 oligo II with its Cy5 labeled complementary strand oligo IV to a final concentration of 30 nmol·L-1for both.The mixing was carried out in a 4-well chambered coverglass(4 Chamber Borosilicate Coverglass System,Lab-Tek,Kamstrupvej,Denmark).The excitation laser power was reduced to 35 μW to avoid fluorescence signal saturation.Cy3/Cy5 signals were collected at 1 s interval for 12000 s.Solution background,cross talk between Cy3/Cy5 detection channels,and direct excitation of Cy5 were determined by blank buffer solution,Cy3 and Cy5 labeled samples,and were subtracted in the kinetics traces.All kinetics measurements were carried out at 25℃in a 1 mL volume of solution.

    2 Results and discussion

    2.1 Formation of G4 observed by EMSA

    We first used a biochemical method,EMSA,to seek the evidence of G4 formation within oligo I in solution.For the native EMSA experiment,the mobility of DNA oligo is mainly determined by its size and charge.However,when two oligos(I and IV,both 60 bases in our experiment)have the same sizes,and therefore possessing similar charges,the relative mobility between them would be determined by their shapes(hydrodynamic diameter).The molecule with a more compact structure would migrate faster than the one with relaxed,loose structure.However,when ran on a denaturing gel in the presence of a DNA denaturing agent(urea,or less frequently,formamide),the mobility of denatured DNA is determined by its size,and almost completely independent of its base composition and sequence[35].As shown in Fig.2,on 12%native PAGE,the band corresponding to oligo I(lane 1)migrates much faster than the band from oligo IV(lane 2),while on the 12%denaturing PAGE containing 7 mol·L-1urea,these two bands have similar mobility(lanes 3 and 4 correspond to I and IV,respectively).These results indicate that oligo I can form a much more compact structure(s)than IV under native conditions(10 mmol·L-1Tris-HCl buffer containing 100 mmol·L-1KCl).We therefore attribute the slow migrating oligo I to the formation of G4.

    2.2 Formation of G4 determined by CD spectroscopy

    Since CD spectra have been well characterized for several G4 structures in solution,comparative CD analysis can provide primary evidence of the existence and structures of G4[36].Fig.3(a) shows that oligo VI incubated in 10 mmol·L-1Tris-HCl(pH 7.4)buffer containing either 100 mmol·L-1 KCl(upper curve) or LiCl(lower curve)both exhibit a CD spectrum characterized by a positive peak at 266 nm,a negative peak at 240 nm,and a pronounced positive shoulder between 280 nm and 310 nm.This spectral pattern is similar to that of the hybrid parallel/antiparallel G4 structure of Bcl-2 Pu39WT,whose structure has already been solved by NMR[37].Thus,these data suggest that the G rich region of VI could form hybrid parallel and antiparallel G4s,or form a mixture of pure parallel and antiparallel structures.In comparison to Pu48-mer,the 4-tetrad G4-forming sequence, critical to PDGF-A expression in the promoter of human plateletderivedgrowthfactorA(PDGF-A),theG4hereseemstobeeasier to form under less favorable conditions,suggesting it is more stable than its counterpart.As shown in Fig.3(a),the positive ellipticity at 266 nm in oligo VI in 100 mmol·L-1LiCl decreases only about 1.5 fold compared to that in 100 mmol·L-1KCl, while the same peak in Pu48-mer decreases more than 2.5 fold when changing from 100 mmol·L-1KCl to 100 mmol·L-1NaCl (Fig.2C in Ref.[36]).Secondly,the CD spectra of oligo VI in 100 mmol·L-1KCl and LiCl are exactly the same except for the different magnitude.On the contrary,a new antiparallel G-quadruplex structure forms in Pu48-mer in 100 mmol·L-1NaCl (Fig.2C in Ref.[36]).The exceptional stability of G4 structures of oligo VI was further verified by CD melting.As shown in Fig.3(b),the ellipticity value at 266 nm is almost independent of temperature until it reaches 70℃,and significant CD signals of hybrid parallel/antiparallel G4 structures of VI can still be detected even when the temperature was increased to 96℃.Due to the temperature limit of the CD instrument,we cannot determine the precise Tmof the oligo VI sample,but we estimate that it would be higher than 85℃.These results suggest that at least one G4 structure of VI should be more stable under thermal denaturing condition than its duplex form(Tm=74℃,estimated from nearest neighbor calculation method[38]).

    2.3 Conformational analysis of G4 by smFRET

    Fig.2 Native and denaturing gel electrophoresis indicating the formation of G4Lanes 1 and 2 are oligos I and IV run in a 12%native PAGE containing 100 mmol·L-1KCl.The mobility difference indicates the formation of G4 in oligo I.Lanes 3 and 4 are oligos I and IV run in a 12%denaturing PAGE containing 7 mol·L-1urea as controls.

    Fig.3 CD spectra and CD melting curves of oligo VI(a) CD spectra of oligo VI in 100 mmol·L-1KCl(upper)and LiCl (lower);(b)CD melting curves of oligo VI in 100 mmol·L-1KClAll solutions contain 10 mmol·L-1Tris-HCl buffer(pH 7.4).ε:molar ellipticity

    Fig.4 Schematic illustrating the designing principle of dual-labeled G4 systems for single molecule FRET(a)internal dual-labeled G4 system formed between oligos I and III;(b)end dual-labeled G4 system formed between oligos II and III;(c)duplex formed in the presence of oligo IV;and(d)duplex formed in the presence of oligos III and V. These systems were designed to show high FRET in folded states(a and b), and low or no FRET in duplex states(c and d).

    The internal and end dual-labeled G4 systems composed of oligos I/III and II/III are shown in Figs.4(a)and 4(b)respectively.The G4 is connected to a 30 bp duplex on its 5′end.In both internal and end dual-labeled constructs,the acceptor,Cy5, is labeled to an adenine via a NHS ester 6 bp from the G4.In the internal dual-labeled system,the donor,Cy3,is labeled on a thymine in the third side loop of G4(Fig.4(a));and in the end labeled system,Cy3 is labeled on the last guanine involved in G4 (Fig.4(b)).In folded states of both internal and end dual-labeled systems,the donor-acceptor distances are within estimated F?rster radius ofCy3/Cy5 pair,5.3 nm[39].In the presence of either V or IV,if G4 hybridizes into duplex state,it would lead to a large decrease of FRET efficiency from about 70%to less than 15%for the internal dual-labeled system,and negligible(<1%) for the end dual-labeled system,as a result of the increased separation between donor and accepter fluorophores in the duplex state(Figs.4(c)and 4(d)).

    As the formation of G4 is dependent on metal ion coordination[40],initial smFRET studies were performed by using the Cy3/ Cy5 dual-labeled G4 systems to probe the formation of G4 in different salt solutions.Fig.5(a-d)shows the smFRET histograms of internal dual-labeled system (oligos I and III)obtained at 25℃in no salt and in 100 mmol·L-1Li+,Na+,and K+solutions,respectively.In these histograms,four subpopulations were identified by global fittings.S1 around zero is due to inactive acceptor[27]or unfolded DNA.S2,the broadest peak centered about 0.37,is likely the ensemble of partially folded quadruplex.S3 and S4,with their FRET efficiencies centered on 0.66 and 0.87 respectively,are assigned to two distinct G4 structures.One is likely parallel while the other antiparallel.However,we cannot rule out the co-existence of two hybrid parallel/antiparallel conformations.Low FRET S1 and S2 dominate in the histogram obtained in no salt solution(Fig.5(a)).In the absence of cations, the repulsion of central oxygen atoms would overwhelm the strength of Hoogsteen bond at N7 position of guanines involved in maintaining the overall stability of G4[41],while the coordination of cations between G-tetrad can reduce this repulsion,hence stabilize overall G4 structures.A general trend in alkali ions from the most stable to least is as follows:K+>Na+>Li+>compared to no salt.Thus,without central metal cations bound to the tetrads,unfolded and partially folded states would be dominant. In 100 mmol·L-1Li+solution,most of the unfolded states previously observed in the absence of salt(Fig.5(a),S1)were folded into high FRET G4s,which result in a smaller S1 and larger S3, S4(Fig.5(b)).Although the stabilizing effect of lithium cation is very weak,it can still promote G4 structures,evidenced by an increase of high FRET species in Fig.4(b).Histograms obtained in 100 mmol·L-1Na+and K+solutions(Figs.5(c)and 5(d))were identical,with fewer S2 and more S4.The larger increase of S4 over S3 is probably due to the different selectivity of the cation to the specific folded states[42].The similarity between the histograms obtained in Na+and K+solutions is possibly due to the spatial hindrance exerted by the bulky Cy5 label on the third side loop,preventing further structural changes caused by K+.

    Fig.5 Single molecule FRET histograms in G4 conformational analysisHistograms obtained in smFRET conformational analysis experiments using internal(oligos I and III)and end(oligos II and III)dual-labeled G4 systems.(a)to(d),internal dual-labeled G4 system in the absence of salt,100 mmol·L-1Li+,Na+,and K+solutions respectively,measured at 25℃;(e)to(h),end dual-labeled G4 system in the absence of salt,100 mmol·L-1Li+,Na+,and K+solutions respectively,measured at 25℃.All solutions contain 10 mmol·L-1Tris-HCl(pH 7.4),200 μmol·L-1Vitamin C,and 0.05%(φ) Tween 20.

    To learn the effect of labeling position on the folding and stability of G4,similar smFRET experiments were carried out on an end dual-labeled G4 system.The results are shown in Fig.5 (e-h).Global fitting did not work in this case as different G4s form under different salt conditions.Again,S1 is assigned to the inactive Cy5 or unfolded state,while S2 is an ensemble partially folded intermediates as described above.Without salt,only one high FRET subpopulation can be identified and S1 predominates(Fig.5(e)).In comparison to thatofinternal dual-labeled system in the absence of salt(Fig.5(a)),S2 population in the end dual-labeled system(Fig.5(e))is very small while a much larger and slightly shifted S1(“zero”peak)is observed,which is possibly caused by further separation between donor and acceptor in this system.The partially folded species may be merged into the“zero”peak and difficult to resolve by fitting alone.Histograms obtained from Li+and Na+solutions are almost identical(Figs.5(f) and 5(g)),indicating Li+and Na+may have similar effects on the structure and stability of these G4s.FRET histogram obtained in K+solution differs substantially from those obtained in either Na+or Li+,suggesting that K+favors the formation of a particular G4 conformation in S3 without the spatial hindrance exerted by the Cy5 label as observed in the internal labeled system.

    2.4 G4/duplex competition assay using smFRET

    To probe the stability of these G4 structures in the presence of their C-rich complementary strands,G4/duplex competition assays were carried out using smFRET.The Cy3 end-labeled G-rich strands(oligo II)were incubated with 1.5-fold of either III/V (3-component),or IV(2-component)Cy5 labeled C-rich complementary strands to allow the formation of full duplex.In the presence of C-rich strand complementary to the G4-forming sequence,an increase of S2,composed of intermediates is observed(comparing Fig.6(a),upper,to Fig.5(h)).This is likely due to the partial unfolding of G4 structures by the incomplete hybridization.In the 3-component system,a high FRET folded state S4 comes back and the other subpopulations remain relatively constant(comparing Fig.6(a),upper,to Fig.5(g)and 5H). In the 2-component system,this folded state S4 partially unfolds into intermediate S2,while the other folded state S3 still remains constant(comparing Fig.6(a)lower to upper).Thus,a G4/ duplex competition energy landscape of the end-labeled system can be proposed.As shown in Fig.6(b),on encounter of an adjacent C-rich complementary strand,the more stable G4 structure S3 first rearranges to a less stable G4 structure S4,which further unfolds into an intermediate before ending up as a full duplex.In this model,the rate-limiting step is the unfolding of G4 into duplex.

    2.5 G4 hybridization and unfolding kinetics

    Fig.6 Single molecule FRET histograms in G4/duplex competition assay and the proposed free energy landscape(a)Histograms obtained in smFRET G4/duplex competition assay of the end dual-labeled system.Upper:3-component(oligos II,III,and V)and lower:2-component(oligos II and IV).All experiments were carried out at 25℃in solutions containing 100 mmol·L-1K+,10 mmol·L-1Tris-HCl(pH 7.4),200 μmol·L-1Vitamin C,and 0.05%(φ) Tween 20;(b)Proposed free energy landscape.S3,S4 are two G4 structures,S2 are mainly intermediates between G4 and duplex and S1 is the full duplex.

    Fig.7 A model for the competition between G4(oligo II)and duplex in the presence of full length C-rich complimentary strand(oligo IV)GQ is a G4 structure formed in the single stranded oligo II;C-Rich is the denatured single stranded oligo IV;GQC1 and GQC2 are schematic representations of two G4 structure corresponding to S3 and S4,respectively;P-Duplex is a partially formed duplex;and Duplex is the fully formed duplex.

    In light of the energy landscape for the unfolding of the end dual-labeled G4 system in K+solution,we propose a kinetic scheme for the competition between G4 and duplex in the presence of C-rich complementary strands,as shown in Fig.7.In this model,GQ is the oligo II in G4 form,and C-Rich refers to the random-coiled complementary strand oligo IV.When oligos II and IV are incubated together,a partial duplex will quickly form in the 30-base long non-G4-forming region.These G4/duplex hybrids would initially maintain the most stable(lowest free energy)G4 structure GQC1,corresponding to the S3 species in Fig.5(h)and Fig.6(a).Following the progress of the reaction,some GQC1 would interconvert,via conformational rearrangement,into GQC2,a less stable G4 structure corresponding to the S4 species in Fig.5(h)and Fig.6(a).Afterwards,GQC2 unfolds,leaving a partially formed duplex(tagged as P-Duplex) that eventually anneals into a full duplex(tagged as Duplex).

    Based on the facts that,i)GQC1 is more stable than GQC2;ii) the GQC2 population is much smaller than GQC1 in the presence of K+(Fig.5(h)and Fig.6(a),lower);and iii)the formation of the P-Duplex is very fast due to the existence of the adjacent complementary strand,the model proposed above can be simplified to,

    where k1and k2are the partial annealing rate(duplex hybridization rate)and the G4 unfolding rate,respectively.From this reaction scheme,it is not difficult to obtain the rate equation against species GQC as follows:

    where c0is the initial concentration of both GQ and C.The analytical solution of Eq.(2)can be used to obtain the duplex hybridization rate and the subsequent G4 unfolding rate from fitting to the experimental data,as shown in Fig.8.The fitting was carried out in MatLab 2009(MathWorks,Inc.,Natick,MA,USA) by a built-in curve-fitting tool.The hybridization rate constant and unfolding rate constant were determined to be(3.8±0.2)×104mol-1·L·s-1and(8.3±0.4)×10-6s-1,respectively.In comparison to the hybridization rate constant of 1.37×105mol-1·L·s-1between a 31 base G4-forming strand and its complementary from the human c-myc promoter[43],the hybridization rate constant measured here is slower but well within the typical range of DNA hybridization.Remarkably,the unfolding rate constant of the G4 studied here is two to three magnitude slower than that of typical 3-tetrad G4s,with literature values 7.90×10-3s-1for human c-myc G4[43]and 2.34×10-2s-1for human telomeric G4[44], respectively.In addition to the results from single molecule duplex/G4 competition assay,the unfolding kinetics confirmed the exceptional stability of the four-tetrad G4,which could form easily in the promoter during gene transcription.

    Fig.8 Kinetics of G4 unfoldingHybridization time trace recorded by acceptor Cy5 fluorescence(black)and the fit (red)based on the solution of Eq(2).The reaction was carried out at 25℃in 100 mmol·L-1KCl solution containing 10 mmol·L-1Tris-HCl(pH 7.4), 200 μmol·L-1Vitamin C,and 0.05%Tween 20.

    3 Conclusions

    A prerequisite for regulatory roles of G4 in gene expression lies in its capability of rivaling the duplex in the gene promoter. We observed the formation of exceptionally stable G4 structures in the GC-rich motif found in the promoter of human MEF2D. smFRET assay indicates these G4 structures can efficiently compete with the duplex,raising the expectation that this G4 is a molecular switch that regulates MEF2D expression,therefore it may serve as a new target for the development of drugs against MEF2D related heart malfunctions.Based on a kinetics scheme where G4 unfolding is rate-limiting,we obtained duplex hybridization rate and G4 unfolding rate,which confirms the sta-bility of the 4-tetrad G4.We also demonstrated that a fluorophore internally labeled in the third loop of this G4 could provide us a new option to monitor the formation and dynamics of G4 by FRET.This approach may be particular beneficial where there is a long loop within the G4 sequence[45]and the label would not interfere G4 formation.We are hoping to apply this labeling strategy to the study of G-rich minisatellites,where like telomeres,multiple G4s could form.It is worth noting that the sm-FRET research is focused on probing conformational dynamics and real-time kinetics of G4 structures at single molecule level, and the exact structures of these biomolecules formed can be determined by NMR spectroscopy,which is beyond the scope of this study.Nevertheless,DMS footprinting can provide valuable information about the involvement of base Gs in the quadruplex[11].

    Acknowledgment: The authors wish to thank Dr.Nigel Brand for proofreading the manuscript.

    1 Watson,J.D.;Crick,F.H.Nature,1953,171:737

    2 Wells,R.D.J.Biol.Chem.,1988,263:1095

    3 Wells,R.D.Trends.Biochem.Sci.,2007,32:271

    4 Bacolla,A.;Wells,R.D.J.Biol.Chem.,2004,279:47411

    5 Wells,R.D.;Blakesley,R.W.;Hardies,S.C.;Horn,G.T.;Larson, J.E.;Selsing,E.;Burd,J.F.;Chan,H.W.;Dodgson,J.B.;Jensen, K.F.;Nes,I.F.;Wartell,R.M.CRC Crit.Rev.Biochem.,1977,4: 305

    6 Henderson,E.;Hardin,C.C.;Walk,S.K.;Tinocov Jr.,I.; Blackburn,E.H.Cell,1987,51:899

    7 Simonsson,T.J.Biol.Chem.,2001,382:621

    8 Bates,P.;Mergny,J.L.;Yang,D.EMBO Rep.,2007,8:1003

    9 Li,J.;Correia,J.J.;Wang,L.;Trent,J.O.;Chaires,J.B.Nucleic Acids Res.,2005,33:4649

    10 Ribeyre,C.;Lopes,J.;Boule,J.B.;Piazza,A.;Guedin,A.;Zakian, V.A.;Mergny,J.L.;Nicolas,A.PLoS Genet.,2009,5:e1000475

    11 Siddiqui-Jain,A.;Grand,C.L.;Bearss,D.J.;Hurley,L.H.Proc. Natl.Acad.Sci.U.S.A.,2002,99:11593

    12 Paeschke,K.;Simonsson,T.;Postberg,J.;Rhodes,D.;Lipps,H.J. Nat.Struct.Mol.Biol.,2005,12:847

    13 Lipps,H.J.;Rhodes,D.Trends Cell Biol.,2009,19:414

    14 Fry,M.Front.Biosci.,2007,12:4336

    15 Creacy,S.D.;Routh,E.D.;Iwamoto,F.;Nagamine,Y.;Akman,S. A.;Vaughn,J.P.J.Biol.Chem.,2008,283:34626

    16 Du,Z.;Zhao,Y.;Li,N.Genome Res.,2008,18:233

    17 Qin,Y.;Hurley,L.H.Biochimie,2008,90:1149

    18 Han,H.Y.;Hurley,L.H.Trends Pharmacol.Sci.,2000,21:136

    19 Gryaznov,S.M.;Jackson,S.;Dikmen,G.;Harley,C.;Herbert,B. S.;Wright,W.E.;Shay,J.W.Nucleosides Nucleotides&Nucleic Acids,2007,26:1577

    20 Arora,A.;Dutkiewicz,M.;Scaria,V.;Hariharan,M.;Maiti,S.; Kurreck,J.RNA,2008,14:1290

    21 Arhin,G.K.;Boots,M.;Bagga,P.S.;Milcarek,C.;Wilusz,J. Nucleic Acids Res.,2002,30:1842

    22 Bruce,S.R.;Dingle,R.W.C.;Peterson,M.L.RNA,2003,9: 1264

    23 Czubryt,M.P.;Olson,E.N.Recent Prog.Horm.Res.,2004,59: 105

    24 Frey,N.;Katus,H.A.;Olson,E.N.;Hill,J.A.Circulation,2004, 109:1580

    25 McKinsey,T.A.;Olson,E.N.J.Clin.Invest.,2005,115:538

    26 Kim,Y.;Phan,D.;van Rooij,E.;Wang,D.Z.;McAnally,J.;Qi, X.;Richardson,J.A.;Hill,J.A.;Bassel-Duby,R.;Olson,E.N. J.Clin.Invest.,2008,118:124

    27 Ying,L.M.;Green,J.J.;Li,H.;Klenerman,D.;Balasubramanian, S.Proc.Natl.Acad.Sci.U.S.A.,2003,100:14629

    28 Shirude,P.S.;Okumus,B.;Ying,L.M.;Ha,T.;Balasubramanian, S.J.Am.Chem.Soc.,2007,129:7484

    29 Shirude,P.S.;Ying,L.M.;Balasubramanian,S.Chem.Commun., 2008:2007

    30 Shirude,P.S.;Balasubramanian,S.Biochimie,2008,90:1197

    31 White,S.S.;Balasubramanian,S.;Klenerman,D.;Ying,L.M. Angew.Chem.Int.Edit.,2006,45:7540

    32 Selvin,P.R.Nat Struct.Biol.,2000,7:730

    33 Ying,L.M.;Wallace,M.I.;Balasubramanian,S.;Klenerman,D. J.Phys.Chem.B,2000,104:5171

    34 Wallace,M.I.;Ying,L.M.;Balasubramanian,S.;Klenerman,D. Proc.Natl.Acad.Sci.U.S.A.,2001,98:5584

    35 Bartlett,J.M.S.;Stirling,D.PCR protocols.2nd ed.Totowa: Humana Press,2003:68

    36 Qin,Y.;Rezler,E.M.;Gokhale,V.;Sun,D.;Hurley,L.H.Nucleic Acids Res.,2007,35:7698

    37 Dai,J.;Dexheimer,T.S.;Chen,D.;Carver,M.;Ambrus,A.;Jones, R.A.;Yang,D.J.Am.Chem.Soc.,2006,128:1096

    38 SantaLucia Jr.,J.Proc.Natl.Acad.Sci.U.S.A.,1998,95:1460

    39 Bowen,M.E.;Weninger,K.;Ernst,J.;Chu,S.;Brunger,A.T. Biophys.J.,2005,89:690

    40 Arnott,S.;Chandrasekaran,R.;Marttila,C.M.Biochem.J.,1974, 141:537

    41 Mergny,J.L.;De Cian,A.;Ghelab,A.;Sacca,B.;Lacroix,L. Nucleic Acids Res.,2005,33:81

    42 Sen,D.;Gilbert,W.Nature,1990,344:410

    43 Halder,K.;Chowdhury,S.Nucleic Acids Res.,2005,33:4466

    44 Green,J.J.;Ladame,S.;Ying,L.M.;Klenerman,D.; Balasubramanian,S.J.Am.Chem.Soc.,2006,128:9809

    45 Cogoi,S.;Paramasivam,M.;Spolaore,B.;Xodo,L.E.Nucleic Acids Res.,2008,36:3765

    亚洲熟女精品中文字幕| 午夜av观看不卡| 丁香六月天网| 中文字幕av电影在线播放| 国产精品一国产av| 少妇被粗大的猛进出69影院| 亚洲av成人不卡在线观看播放网 | 九色亚洲精品在线播放| av网站在线播放免费| 日韩熟女老妇一区二区性免费视频| 亚洲自偷自拍图片 自拍| 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产精品大桥未久av| 日韩电影二区| 久久久久精品性色| 我的亚洲天堂| 99久久精品国产亚洲精品| 亚洲国产欧美一区二区综合| 亚洲视频免费观看视频| 97在线人人人人妻| 一级a爱视频在线免费观看| 亚洲精品久久午夜乱码| 久久精品久久久久久久性| 日本猛色少妇xxxxx猛交久久| 亚洲一码二码三码区别大吗| 少妇精品久久久久久久| 韩国高清视频一区二区三区| 久久韩国三级中文字幕| 日韩中文字幕视频在线看片| 久久免费观看电影| 亚洲成人国产一区在线观看 | 久久女婷五月综合色啪小说| 国产成人系列免费观看| 最近2019中文字幕mv第一页| 男女边吃奶边做爰视频| 国产 一区精品| 亚洲精品美女久久av网站| 新久久久久国产一级毛片| 国语对白做爰xxxⅹ性视频网站| 日本一区二区免费在线视频| 国产女主播在线喷水免费视频网站| 久久毛片免费看一区二区三区| 丝袜在线中文字幕| 我要看黄色一级片免费的| 成人漫画全彩无遮挡| 亚洲美女黄色视频免费看| 另类亚洲欧美激情| 欧美在线一区亚洲| 青春草视频在线免费观看| av又黄又爽大尺度在线免费看| 久久久精品94久久精品| 视频在线观看一区二区三区| 色网站视频免费| 日本欧美视频一区| 黄色 视频免费看| 国产黄色视频一区二区在线观看| 久久久久久久久免费视频了| 亚洲精品国产一区二区精华液| 国产一区二区三区av在线| 久久国产精品大桥未久av| 亚洲,欧美精品.| 日本91视频免费播放| 国产精品一二三区在线看| 一边摸一边抽搐一进一出视频| av卡一久久| 亚洲精品国产色婷婷电影| 国产一区亚洲一区在线观看| 日本色播在线视频| 久久99精品国语久久久| 两性夫妻黄色片| 国产精品av久久久久免费| 精品国产一区二区三区久久久樱花| 男女床上黄色一级片免费看| 久久毛片免费看一区二区三区| 精品少妇黑人巨大在线播放| 久久久精品免费免费高清| 精品亚洲乱码少妇综合久久| 老司机靠b影院| 水蜜桃什么品种好| 亚洲综合精品二区| 91精品国产国语对白视频| 亚洲国产精品一区三区| 大码成人一级视频| 波多野结衣一区麻豆| 色网站视频免费| 19禁男女啪啪无遮挡网站| 18禁国产床啪视频网站| 一个人免费看片子| 天天躁狠狠躁夜夜躁狠狠躁| 十八禁高潮呻吟视频| 97精品久久久久久久久久精品| www日本在线高清视频| 一级毛片我不卡| 成人影院久久| 日韩大片免费观看网站| 国产免费现黄频在线看| 黄色视频不卡| 一区二区日韩欧美中文字幕| 搡老岳熟女国产| 蜜桃国产av成人99| 美女国产高潮福利片在线看| 精品国产国语对白av| 国产片内射在线| 国产成人欧美在线观看 | 欧美 日韩 精品 国产| 久久久久网色| 啦啦啦中文免费视频观看日本| 中文字幕人妻熟女乱码| 日韩av不卡免费在线播放| 亚洲av电影在线进入| 18禁国产床啪视频网站| 国产淫语在线视频| 欧美精品高潮呻吟av久久| 国产精品久久久久久久久免| 国产乱来视频区| 中文字幕精品免费在线观看视频| 久久97久久精品| 久久影院123| 精品一区二区三区av网在线观看 | 亚洲欧美一区二区三区国产| 亚洲精品国产一区二区精华液| 视频在线观看一区二区三区| 一级毛片黄色毛片免费观看视频| www.av在线官网国产| 欧美老熟妇乱子伦牲交| 成人午夜精彩视频在线观看| 新久久久久国产一级毛片| 国产一区有黄有色的免费视频| 秋霞在线观看毛片| 精品第一国产精品| 激情五月婷婷亚洲| 日韩av免费高清视频| 中文字幕色久视频| 美女扒开内裤让男人捅视频| 色综合欧美亚洲国产小说| 久久99精品国语久久久| 久久鲁丝午夜福利片| 国产精品一区二区在线观看99| 日韩人妻精品一区2区三区| 欧美精品一区二区免费开放| 操美女的视频在线观看| 国产亚洲最大av| 我的亚洲天堂| 9191精品国产免费久久| 色婷婷久久久亚洲欧美| 免费在线观看视频国产中文字幕亚洲 | 男女边吃奶边做爰视频| 观看美女的网站| 中文字幕av电影在线播放| 中文字幕精品免费在线观看视频| av女优亚洲男人天堂| 一边摸一边做爽爽视频免费| 人妻人人澡人人爽人人| 人妻人人澡人人爽人人| 天天躁日日躁夜夜躁夜夜| 久久国产亚洲av麻豆专区| 精品一区二区三区av网在线观看 | xxx大片免费视频| 久久久久久久久久久久大奶| 亚洲七黄色美女视频| 国产精品一区二区在线观看99| 欧美人与善性xxx| 美女午夜性视频免费| 妹子高潮喷水视频| 国产视频首页在线观看| 久久久久精品国产欧美久久久 | 欧美亚洲日本最大视频资源| 精品久久久精品久久久| 高清不卡的av网站| 国产精品女同一区二区软件| 黄片播放在线免费| 一区二区av电影网| 日韩一本色道免费dvd| 黄色一级大片看看| 捣出白浆h1v1| 亚洲精品久久成人aⅴ小说| 999久久久国产精品视频| 亚洲欧美一区二区三区国产| 亚洲五月色婷婷综合| 亚洲欧美日韩另类电影网站| 欧美成人精品欧美一级黄| 晚上一个人看的免费电影| 中文字幕亚洲精品专区| 天天躁夜夜躁狠狠躁躁| 久久人人97超碰香蕉20202| 99久久人妻综合| 久久久国产欧美日韩av| 男人舔女人的私密视频| 国产爽快片一区二区三区| 97在线人人人人妻| 亚洲第一av免费看| 一区二区日韩欧美中文字幕| 国产探花极品一区二区| 一级毛片黄色毛片免费观看视频| 国产男女超爽视频在线观看| 中文天堂在线官网| 久久精品国产亚洲av涩爱| 看免费成人av毛片| 亚洲欧美成人精品一区二区| 一本一本久久a久久精品综合妖精| 国产精品一区二区在线观看99| 99国产综合亚洲精品| 欧美激情高清一区二区三区 | 精品久久蜜臀av无| 国产亚洲午夜精品一区二区久久| 18禁裸乳无遮挡动漫免费视频| 国产精品免费大片| 久久韩国三级中文字幕| 无限看片的www在线观看| 亚洲成人一二三区av| 97在线人人人人妻| 欧美黑人精品巨大| 赤兔流量卡办理| 成年人免费黄色播放视频| 亚洲精品aⅴ在线观看| 波多野结衣一区麻豆| 99热网站在线观看| 久久午夜综合久久蜜桃| xxxhd国产人妻xxx| 国产99久久九九免费精品| 国产老妇伦熟女老妇高清| 在线免费观看不下载黄p国产| 少妇 在线观看| 中文字幕亚洲精品专区| 国产色婷婷99| 亚洲男人天堂网一区| 美女福利国产在线| 欧美少妇被猛烈插入视频| 久久久国产一区二区| 丰满乱子伦码专区| av网站在线播放免费| 在线观看免费高清a一片| 美女国产高潮福利片在线看| 啦啦啦啦在线视频资源| 亚洲少妇的诱惑av| 在线观看免费视频网站a站| 在线观看免费视频网站a站| 国产一卡二卡三卡精品 | 美女高潮到喷水免费观看| 美女高潮到喷水免费观看| 在线天堂最新版资源| 香蕉国产在线看| 色综合欧美亚洲国产小说| 男男h啪啪无遮挡| a 毛片基地| 丁香六月天网| 成人午夜精彩视频在线观看| 国产精品一区二区在线观看99| 男女边摸边吃奶| 最近最新中文字幕免费大全7| 黑人欧美特级aaaaaa片| 午夜免费鲁丝| 色婷婷久久久亚洲欧美| 精品国产超薄肉色丝袜足j| 人人妻,人人澡人人爽秒播 | 午夜精品国产一区二区电影| 在线观看人妻少妇| a级片在线免费高清观看视频| 亚洲成人av在线免费| 亚洲精品视频女| 日本色播在线视频| av又黄又爽大尺度在线免费看| 国产精品女同一区二区软件| 日韩欧美精品免费久久| 老熟女久久久| 欧美最新免费一区二区三区| 亚洲一码二码三码区别大吗| 国产免费又黄又爽又色| 99国产精品免费福利视频| 又大又爽又粗| 久久久久人妻精品一区果冻| 丰满饥渴人妻一区二区三| 午夜免费男女啪啪视频观看| 丝袜人妻中文字幕| 久久久久久久久免费视频了| 黄网站色视频无遮挡免费观看| 亚洲,欧美精品.| 国产黄色免费在线视频| 久久ye,这里只有精品| 欧美成人午夜精品| 国产精品香港三级国产av潘金莲 | 你懂的网址亚洲精品在线观看| 精品国产一区二区久久| 精品少妇久久久久久888优播| 建设人人有责人人尽责人人享有的| 国产毛片在线视频| 亚洲精品视频女| 丰满迷人的少妇在线观看| 最近2019中文字幕mv第一页| 午夜福利,免费看| 美女主播在线视频| 天堂8中文在线网| 亚洲精品国产av蜜桃| 成人亚洲精品一区在线观看| 精品久久久久久电影网| 欧美 亚洲 国产 日韩一| 精品国产一区二区三区四区第35| 欧美xxⅹ黑人| 免费av中文字幕在线| 建设人人有责人人尽责人人享有的| 不卡视频在线观看欧美| 国产国语露脸激情在线看| 亚洲精品日本国产第一区| 免费少妇av软件| a级毛片在线看网站| 欧美久久黑人一区二区| 欧美亚洲日本最大视频资源| 久久久国产精品麻豆| 一区二区av电影网| 99久国产av精品国产电影| 久久久精品免费免费高清| 国产精品国产三级专区第一集| 搡老乐熟女国产| 国产一级毛片在线| av有码第一页| 少妇人妻 视频| 2021少妇久久久久久久久久久| 久久久精品免费免费高清| 亚洲熟女精品中文字幕| 黄色毛片三级朝国网站| 午夜影院在线不卡| 日韩av在线免费看完整版不卡| 亚洲,一卡二卡三卡| 性色av一级| 亚洲国产精品999| bbb黄色大片| 不卡av一区二区三区| 亚洲第一青青草原| 亚洲美女视频黄频| 色婷婷久久久亚洲欧美| 亚洲精华国产精华液的使用体验| 亚洲色图 男人天堂 中文字幕| 丝袜美足系列| 欧美精品高潮呻吟av久久| 最新的欧美精品一区二区| 亚洲国产精品一区三区| 久久久久久免费高清国产稀缺| 久久鲁丝午夜福利片| 色吧在线观看| a级毛片黄视频| 男女床上黄色一级片免费看| 国产成人91sexporn| 午夜激情av网站| 宅男免费午夜| 国产极品粉嫩免费观看在线| 高清欧美精品videossex| 亚洲人成网站在线观看播放| 一区二区三区精品91| 男男h啪啪无遮挡| 波多野结衣av一区二区av| 男女边摸边吃奶| 国精品久久久久久国模美| 国产成人系列免费观看| 欧美日韩成人在线一区二区| 9191精品国产免费久久| 国产淫语在线视频| 丝袜人妻中文字幕| 热re99久久国产66热| av在线老鸭窝| 亚洲av国产av综合av卡| 色视频在线一区二区三区| 国产亚洲精品第一综合不卡| 一级,二级,三级黄色视频| 丁香六月欧美| 国产一区有黄有色的免费视频| 日韩一本色道免费dvd| 久久精品久久精品一区二区三区| 女的被弄到高潮叫床怎么办| 精品国产乱码久久久久久男人| 中国国产av一级| 日韩视频在线欧美| 69精品国产乱码久久久| 高清欧美精品videossex| 欧美老熟妇乱子伦牲交| 中国三级夫妇交换| 999精品在线视频| 肉色欧美久久久久久久蜜桃| 伦理电影免费视频| www.自偷自拍.com| 天天躁夜夜躁狠狠久久av| 久久久久久久精品精品| 巨乳人妻的诱惑在线观看| 男人操女人黄网站| 中文字幕精品免费在线观看视频| 国产av一区二区精品久久| 婷婷色麻豆天堂久久| 国产成人a∨麻豆精品| 亚洲精品久久成人aⅴ小说| 又大又黄又爽视频免费| 水蜜桃什么品种好| 午夜福利免费观看在线| 色综合欧美亚洲国产小说| 在线观看www视频免费| 成人亚洲欧美一区二区av| 制服人妻中文乱码| 日韩制服丝袜自拍偷拍| 日韩一本色道免费dvd| 91精品国产国语对白视频| 国产精品久久久av美女十八| 这个男人来自地球电影免费观看 | 久久精品国产a三级三级三级| 视频在线观看一区二区三区| 91精品伊人久久大香线蕉| 考比视频在线观看| 亚洲av成人精品一二三区| 久久人人爽人人片av| 狠狠婷婷综合久久久久久88av| 制服人妻中文乱码| 免费黄频网站在线观看国产| 国产精品一国产av| www日本在线高清视频| 亚洲中文av在线| 亚洲国产中文字幕在线视频| 久久人人97超碰香蕉20202| 色精品久久人妻99蜜桃| 色播在线永久视频| 熟女av电影| 各种免费的搞黄视频| 性色av一级| 男女下面插进去视频免费观看| 啦啦啦视频在线资源免费观看| 精品一品国产午夜福利视频| 久久久精品国产亚洲av高清涩受| 亚洲欧美日韩另类电影网站| 国产精品一区二区在线观看99| 免费久久久久久久精品成人欧美视频| 欧美日韩亚洲高清精品| 亚洲欧美精品自产自拍| 亚洲av电影在线观看一区二区三区| 精品亚洲成国产av| 视频在线观看一区二区三区| 亚洲精品国产av成人精品| 秋霞伦理黄片| 男的添女的下面高潮视频| 国产精品二区激情视频| 久久韩国三级中文字幕| 亚洲激情五月婷婷啪啪| 亚洲一级一片aⅴ在线观看| 精品国产超薄肉色丝袜足j| 亚洲一码二码三码区别大吗| 亚洲 欧美一区二区三区| 在线观看免费视频网站a站| 日韩制服骚丝袜av| 国产亚洲一区二区精品| 亚洲欧美一区二区三区黑人| 丁香六月欧美| 国产av一区二区精品久久| av又黄又爽大尺度在线免费看| 18禁动态无遮挡网站| 亚洲人成电影观看| 热99国产精品久久久久久7| 久久久久久久久久久免费av| 精品一区二区三区av网在线观看 | 国产深夜福利视频在线观看| 超色免费av| 成年人午夜在线观看视频| 19禁男女啪啪无遮挡网站| 哪个播放器可以免费观看大片| 亚洲国产精品成人久久小说| 亚洲中文av在线| 午夜免费鲁丝| 国产伦理片在线播放av一区| 亚洲综合色网址| 亚洲精品一区蜜桃| av免费观看日本| 亚洲国产欧美网| 久久久久精品人妻al黑| 久久ye,这里只有精品| 一区福利在线观看| 七月丁香在线播放| 一二三四在线观看免费中文在| 在线天堂中文资源库| 国产精品亚洲av一区麻豆 | av免费观看日本| 少妇人妻精品综合一区二区| 国产成人精品久久久久久| 嫩草影院入口| 国产在线视频一区二区| 国产人伦9x9x在线观看| 男女午夜视频在线观看| 久久精品亚洲av国产电影网| 水蜜桃什么品种好| 中文字幕人妻丝袜制服| 91精品国产国语对白视频| 男女床上黄色一级片免费看| 欧美另类一区| 免费少妇av软件| 十分钟在线观看高清视频www| 女人被躁到高潮嗷嗷叫费观| 欧美精品一区二区免费开放| 一二三四在线观看免费中文在| 亚洲国产精品一区二区三区在线| 亚洲国产最新在线播放| www.av在线官网国产| 久久人人爽av亚洲精品天堂| 午夜福利一区二区在线看| 色吧在线观看| 97在线人人人人妻| 久久精品久久久久久噜噜老黄| 久久精品久久久久久久性| 欧美日韩成人在线一区二区| 黄色视频在线播放观看不卡| 最近中文字幕2019免费版| 在线观看免费高清a一片| 欧美黄色片欧美黄色片| √禁漫天堂资源中文www| 欧美在线黄色| 各种免费的搞黄视频| 黑人巨大精品欧美一区二区蜜桃| 黄片无遮挡物在线观看| 天堂俺去俺来也www色官网| 亚洲一区二区三区欧美精品| 色婷婷久久久亚洲欧美| 人体艺术视频欧美日本| 99久久99久久久精品蜜桃| 亚洲av日韩精品久久久久久密 | 操出白浆在线播放| 欧美亚洲日本最大视频资源| 黄片无遮挡物在线观看| 美女视频免费永久观看网站| 国产黄频视频在线观看| 国产亚洲av高清不卡| 久久久久久久久久久久大奶| 老司机亚洲免费影院| 色网站视频免费| 咕卡用的链子| 亚洲人成77777在线视频| 中文字幕高清在线视频| 国产免费现黄频在线看| 91精品国产国语对白视频| 人妻一区二区av| 两个人看的免费小视频| 热99久久久久精品小说推荐| 黑人猛操日本美女一级片| 美女中出高潮动态图| 国产一区亚洲一区在线观看| 亚洲第一av免费看| 一本色道久久久久久精品综合| 免费黄频网站在线观看国产| 桃花免费在线播放| 午夜影院在线不卡| 亚洲综合色网址| tube8黄色片| 成人国产av品久久久| 久久久久久久大尺度免费视频| 成人手机av| 亚洲精品中文字幕在线视频| 国产 一区精品| 女人被躁到高潮嗷嗷叫费观| 日本午夜av视频| 丝袜在线中文字幕| 哪个播放器可以免费观看大片| 亚洲精品中文字幕在线视频| 香蕉国产在线看| 晚上一个人看的免费电影| 又大又黄又爽视频免费| 高清在线视频一区二区三区| 色吧在线观看| 搡老岳熟女国产| 色综合欧美亚洲国产小说| 午夜福利乱码中文字幕| 激情五月婷婷亚洲| 高清视频免费观看一区二区| 亚洲情色 制服丝袜| 精品少妇黑人巨大在线播放| 中文字幕av电影在线播放| 性高湖久久久久久久久免费观看| 一二三四中文在线观看免费高清| 国产伦理片在线播放av一区| 日本爱情动作片www.在线观看| 咕卡用的链子| www.av在线官网国产| 午夜福利视频精品| 成人亚洲欧美一区二区av| 一本大道久久a久久精品| 制服丝袜香蕉在线| 欧美日韩精品网址| 十八禁人妻一区二区| 精品国产超薄肉色丝袜足j| 国产一区二区三区av在线| 在线亚洲精品国产二区图片欧美| 日韩不卡一区二区三区视频在线| 精品人妻一区二区三区麻豆| 视频区图区小说| 伊人久久国产一区二区| 性少妇av在线| 在线观看一区二区三区激情| 亚洲欧洲日产国产| 欧美黄色片欧美黄色片| av在线播放精品| 亚洲人成77777在线视频| 久久久久国产精品人妻一区二区| 色精品久久人妻99蜜桃| 超碰97精品在线观看| 少妇人妻 视频| 欧美av亚洲av综合av国产av | 亚洲成人免费av在线播放| 中文字幕色久视频| 久久久精品免费免费高清| 丰满迷人的少妇在线观看| 国产在线免费精品| 不卡视频在线观看欧美| 精品一区在线观看国产| 国产毛片在线视频| 一区二区三区四区激情视频| 美女高潮到喷水免费观看| av国产久精品久网站免费入址| 亚洲av日韩在线播放| 亚洲欧美日韩另类电影网站| 日本色播在线视频| 丝瓜视频免费看黄片| av又黄又爽大尺度在线免费看| 久久天堂一区二区三区四区| av国产精品久久久久影院| 精品国产露脸久久av麻豆|