• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二萘嵌苯二酰亞胺衍生物的半導(dǎo)體性質(zhì)

    2010-03-06 04:44:26齊冬冬張躍興邊永忠姜建壯
    物理化學(xué)學(xué)報(bào) 2010年4期
    關(guān)鍵詞:化學(xué)系北京科技大學(xué)酰亞胺

    蔡 雪 齊冬冬 張躍興 邊永忠 姜建壯,*

    (1北京科技大學(xué)化學(xué)系,北京 100083;2牡丹江師范學(xué)院化學(xué)系,黑龍江牡丹江 157012)

    Organic field effect transistors(OFETs)have attracted increasing research interests[1]due to their great potential applications in the field of low-cost electronic devices,integrated circuits,and flexibledisplayssincetheirfirstreportin1986[2].Perylene diimide (PDI)semiconductors have been among the most intensively studied semiconductor materials.In recent years,the synthesis of n-type PDI-based organic semiconductors with good OFET performance has achieved great progress.Air-stable n-channel organicsemiconductorbasedona substituted perylene core(PDI-8CN2)wasreported[3].Twon-channelperylenediimide derivatives without strong electron-withdrawing groups have been studied[4]. The charge carrier mobility of PBI-F2and PBI-F4single crystalbased OFETs were revealed to reach up to 0.34 and 0.032 cm2· V-1·s-1[5].Two core-cyanated PDI derivatived,PDI-CN2and PDIFCN2,also exhibited air-stable n-type OFET carrier mobilities[6].

    In addition to the intensive experimental studies over the preparation and fabrication of OFETs,theoretical and computational efforts have been paid to these perylene diimide semiconductors.For example,the semiconducting properties of N-fluoroalkylated dicyanoperylene-3,4∶9,10-bis(dicaboximides)(PDIFCN2)were investigated using DFT method[7].

    In the present paper,as an extension of our research interests in OFETs[8-11],the charge transfer properties of chlorobenzyl or fluorobenzyl substituted PDI derivatives in crystal were investigated using density functional theory(DFT)calculations.The transfr integral in all the possible dimers composed of two neighboring PDI molecules for 1-4 is also studied.

    1 Computational method and details

    According to Marcus theory,the charge transfer can be described as a self-exchange electron-transfer reaction between a neutral molecule and a neighboring cation or anion.The holetransfer or electron-transfer process between spatially neighboring separated molecules can be represented by either of the following reactions:

    where M represents neutral molecule undergoing charge transfer,and M+or M-means cation or anion,respectively.In this situation,the charge transport can be described as a sequential electron hopping process between consecutive molecules.As a result,the hoping rate(Wi)can then be modeled by classical Marcus theory:

    where λ±is the reorganization energy,V the transfer integral,i a specific transfer pathway,kBthe Boltzmann constant,? Planck constant,and T the temperature.

    The reorganization energy λ+or λ-for hole or electron transfer,respectively,which is not dependent on the relative positions of neighboring molecules,is calculated as the sum of the relaxation energies for neutral and positive radicals.The higher the reorganization energy is,the slower the hopping rates are. The reorganization energy λ+(λ-)is due to geometric relaxation accompanying charge transfer.The internal reorganization energies λ±can be defined as shown in Fig.S1(Supporting Information).

    The transfer integral V depends on the relative arrangement of the molecules in the solid state and describes the intermolecular transfer integral,which needs to be maximized to achieve high charge carrier mobility.In all calculations,one PDI molecule is randomly chosen from the crystal structure as the middle molecule for a charge to diffuse and the nearest neighbor molecules in the crystals were taken to evaluate the transfer integrals.All possible intermolecular hopping pathways were generated.It is worth noting that only the nearest neighbor molecules in the crystals of 1-4 were taken to evaluate the transfer integrals and the direct dimer Hamiltonian evaluation method was used.The transfer integral for hole/electron transfer in the direct method can be written as[12-14]:

    where Φ0,site10000000HOMO/LUMOand Φ0,site20000000HOMO/LUMOare the HOMO or LUMO of isolated molecules 1 and 2 of the dimer,respectively,and F0is the Fock operator for the dimer for a fixed pathway,in which the suffix of zero indicates that the molecular orbitals appearing in the operator(the density matrix,for instance)are unperturbed.The Fock matrix is evaluated as:

    where S is the overlap matrix for the dimer,and the Kohn-Sham orbital C and eigenvalue ε are obtained by the zeroth-order Fock matrix without any self-consistent field iteration.

    The diffusion coefficient can be evaluated from the hopping rates as[15]:

    In the above equation,i represents a specific transfer pathway with ribeing the transfer distance(intermolecular center to center distance),Withe hopping rate due to charge carrier to the its neighbor,and n the spatial dimension,which is equal to 3 for the crystal.Piis the relative probability for its neighbor.The assumption is that the charge transfer is a slow process in which the molecules have enough time to become equilibrium.This is pertinent for the soft organic system.

    Fig.1 Schematic molecular structures of compounds 1-4 The drift mobility(μ)of hopping is evaluated from the Einstein relaxation,

    The molecular structures of the series of PDI compounds 1-4 are shown in Fig.1.The neutral molecules,cations,and anions of 1-4wereoptimizedatthesame set,that is,the hybrid density functional B3LYP(Becke-Lee-Young-Parr composite of exchangecorrelation functional)method and the 6-31G(d)basis set,which has been proved suitable for calculating large molecules in the previous work[7].Reorganization energies of 1-4 are provided by carrying out series of single point energy calculations on the basis of the optimized structures.Transfer integrals in all the possible dimers composed of two neighboring PDI molecules for 1-4 were studied according to the direct method[12-14].All the calculations were performed using the Gaussian 03 program[16]in the IBM P690 system at the Shandong Province High Performance Computing Center.

    2 Results and discussion

    2.1 Energy level of HOMO and LUMO and ionization energy and electron affinities

    The calculated HOMO and LUMO energies together with the HOMO-LUMO gap for 1-4 are tabulated in Table 1.Introduction of chlorobenzyl or fluorobenzyl groups onto the PDI molecule leads to a little decrease in the HOMO and LUMO energies from -6.111 and-3.571 eV for 1 to-6.117--6.177 eV and-3.572--3.653 eV for 2-4,and a slight change in their HOMO-LUMO gap.Due to the n-type semiconductor property revealed for 1[17], compounds 2-4 should also be potential n-type semiconductor in terms of their frontier molecular energy levels.

    The adiabatic and vertical ionization energies(IEaand IEv)and the adiabatic and vertical electron affinities(EAaand EAv)for the series of compounds 1-4 are calculated and the results are orga-nized in Table 2,which can provide more direct information for hole and electron injection from the Au source-drain electrode to the semiconductor layers than frontier molecular orbital energy. Accordingtopreviousresearches[18],semiconductormaterialswith the electronic affinity being in the range of 3.0-4.0 eV can ensure both efficient electron injection from common Au sourcedrain electrode and enough ambient stability and therefore show advantage as n-type semiconductors for OFETs.In line with the energy change of HOMO and LUMO,introduction of chlorobenzyl or fluorobenzyl groups leads to a high EAaof 2.543,2.495, and 2.578 eV for 2-4,respectively,which are larger than that of 2.395 eV for 1.The EAaof 2-4,2.50-2.58 eV,approaches the suggested electronic affinity for n-type semiconductor,suggesting the n-type nature of these three compounds.This is in line with the experimental result that N,N′-bis(4-trifluoromethybenzyl)perylene-3,4,9,10-tetracarboxylic diimide(PTCDI-TFB)exhibites n-type semiconducting properties[19].

    Table 1 Energies of frontier orbitals and HOMO-LUMO gaps of 1-4

    2.2 Reorganized energy(λ±)

    The calculated reorganization energies(λ±)for hole-transport and electron-transport process of the four compounds are listed in Table 3.The reorganization energy for electron(λ-)of 2-4, 0.3083,0.2920,and 0.2954 eV,respectively,is larger than that of 1,0.2450 eV,suggesting the smaller mobility of electrontransport for the three compounds than 1 in terms of reorganizationenergy(λ-).Thecomputedreorganizationenergyof1,0.2450 eV,corresponds well with the previous findings that reorganization energy for electron of PDI-C8,7is 0.25 eV using B3LYP functional with 6-311g(d,p)basis set[20].

    Due to the strong coupling between the geometric and electronic structures,the small reorganization energy of these PDI compounds can be rationalized by the small geometric change of the neutral molecule when removing an electron from the HOMO or adding an electron into the LUMO[21].To further understand the change in the internal reorganization energy of these compounds,the geometry deformation of the neutral molecule upon reduction for 4 is studied(Fig.S2 and Table S1 (Supporting Information)).It is well known that the degree of geometry change for 4 upon reduction correlates to the orbital composition of LUMO.As can be seen from Fig.2,the LUMO of 4 mainly distributes over the carbon atoms of perylene core,the four oxygen atoms,and carbon atoms of diimide.The nitrogen,fluorin,hydrogen,and carbon atoms of benzene ring have no contribution to the LUMO of 4.As a consequence,one election reduction leads to structure change mainly in the C—C and C—O bond length for 1,with the largest bond length difference of 0.0834 and 0.119 nm.Upon reduction,the largest bond length modification for both C—C and C—O in 4 in compari-son with neutral molecule is 0.302 and 0.118 nm.As expected,variation in the C—H,C—N,and C—F bond lengths for 4,0.0101, 0.0615,and 0.0484 nm,respectively,is negligible.This is also true for 2 and 3.The larger geometric change for 4 upon reduction in comparison with 1 well rationalizes the larger reorganization energy for electron transfer process in 4 than in 1.

    Table 2 Vertical and adiabatic ionization energies and electron affinities of 1-4

    Table 3 Reorganization energies of hole-and electrontransport processes for 1-4

    Fig.2 Molecular orbital maps of LUMO for compound 4

    2.3 Intermolecular transfer integral(V)and charge transfer mobility(μ)in crystal

    Compounds 1-4 all adopt herring-bone packing manner.The crystal structure and the hopping routes for 3(space group P21/a) are displayed in Fig.3 and Fig.4,respectively,as an example.All the possible transfer routes in the crystal of 1-4 are given in Table 4.Charge transfer integrals between one randomly selected PDI molecule(m0)(middle molecule in purple in Figs.(3,4)) and all its neighboring PDI molecules(m1-m15)are calculated on the basis of the experimental crystal structure of 3.According to the transfer distance,we divided the fifteen dimers between m0 and m1-m15 into six types.The nearest distance from m0 to m5,m8,m9,m11 is about 73 nm in type I.The second nearest distance is 120 nm from m0 to m6 and m7 in type II. As can be seen from Table 4,the farthest distance is 183 nm from m0 to m4 and m13 in type III.The center mass distance in the dimers composed of m0 and m2,m3,m10,m12 is 142 nm in type IV.Compared with type III,the second farthest distance is 180.3 nm from m0 to m1 and m15 in type V.According to the calculation,the distance between middle molecule and m14 is 138.5 nm and the intermolecular transfer integral is 0 meV in type VI.Among the six types of dimers,the largest transfer integral for electron is obtained for type I,about 19.1 meV,indicating the most favorable route for electron transfer in type I due to the largest overlapped stacking mode of molecules m5,m8,m9,and m11 relative to m0 in type I,Fig.5.As can be seen from Table 4,type V displays the second smallest transfer integral of only 0.012 meV for electron,indicating the most unfavorable route for electron transfer in type V due to the smallest overlapped stacking mode of molecules m1 and m15 relative to m0,Fig.6.

    Fig.3 Crystal structure of 3(space group P21/a)in the crystalleft:side view;right:top view

    Fig.4 The hopping route of 3(space group P21/a)in the crystalleft:side view;right:top view

    Table 4 The hopping pathways,center mass distance,and transfer integral of 1-4

    Fig.5 The hopping route of m0→m5 for 3 in the crystalleft:side view;right:top view

    Fig.6 The hopping route of m0→m1 for 3 in the crystal

    Table 5 Space group and mobility(μ-)of 1-4

    The hopping pathways,center mass distance(D),intermolecular transfer integral(V),and mobility(μ)of 1-4 are also tabulated in Tables 4 and 5.As can be seen from Table 4,the largest transfer integral for electron among all the possible routes in the crystal of 1 is 182.98 meV,which is much larger than the largest transfer integral in the crystals of 2-4.These results indicate that the LUMO orbital coupling in the crystal of 1 is much stronger than that in the crystals of 2-4.

    On the basis of the calculated transfer integral,intrinsic charge transfer mobility for electron in the crystals of 1-4 is calculated.The calculated intrinsic mobility in the crystal of 1-4 for electron is 5.39,0.59,0.023,and 0.17 cm2·V-1·s-1,respectively,indicating that the series of PDI compounds are good ntype semiconductors[22-25].The transfer mobility for electron in the crystal of 1 is much larger than those of 2-4,consistent with the trend for the largest transfer integral.Corresponding well with the experimental findings that the electron mobility of N,N′-bis (4-trifluoromethybenzyl)perylene-3,4,9,10-tetracarboxylic diimide (PTCDI-TFB),0.041 cm2·V-1·s-1,was obtained in air for the thin film[19],compounds 3 shows good n-type semiconductor property with the calculated intrinsic charge transfer mobility for electron of 0.023 cm2·V-1·s-1.

    3 Conclusions

    In summary,the charge transfer properties of a series of PDI derivatives for OFET applications were studied by density functional theory(DFT)calculations.Introduction of the chlorobenzyl or fluorobenzyl groups onto PDI is revealed to lower the HOMO and LUMO energy level and increase the electron affinity.The transfer integral and charge mobility values for the series of compounds with known crystal structure were also calculated.The calculation results reveal that the series of PDI derivatives are good n-type semiconducting materials with intrinsic mobility achieving 5.39,0.59,0.023 and 0.17 cm2·V-1·s-1for electron,respectively.And the charge transfer mobility for electron calculated for 3 corresponds well with the previous experimental findings.The present work will be helpful in developing novel PDI semiconducting materials for practical OFET applications.

    Supporting Information Available: Illustration of the internal reorganization energies of charge self-exchange process, atom labels of 4,and B3LYP/6-31G(d)optimized geometries of neutral and anion of 4 have been included.This information is available free of charge via the internet at http://www.whxb.pku. edu.cn.

    1 Dimitrakopoulos,C.D.;Malenfant,P.R.L.Adv.Mater.,2002, 14:99

    2 Tsumura,A.;Koezuka,H.;Ando,T.Appl.Phys.Lett.,1986,49: 1210

    3 Jones,B.A.;Antonio,F.;Wasielewski,M.R.;Marks,T.J.J.Am. Chem.Soc.,2007,129:15259

    4 Ling,M.M.;Erk,P.;Gomez,M.;Bao,Z.N.Adv.Mater.,2007, 19:1123

    5 Schmide,R.;Ling,M.M.;Hak,O.J.;Bao,Z.N.Adv.Mater., 2007,19:3692

    6 Jones,B.A.;Ahrens,M.J.;Yoon,M.H.;Facchetti,A.;Marks,T. J.;Wasielewski,M.R.Angew.Chem.Int.Edit.,2004,43:6363

    7 Kuo,M.Y.;Chen,H.Y.;Chao,I.Chem.-Eur.J.,2007,13:4750

    8 Cai,X.;Zhang,Y.X.;Qi,D.D.;Jiang,J.Z.J.Phys.Chem.A, 2009,113:2500

    9 Zhang,Y.X.;Cai,X.;Bian,Y.Z.;Li,X.Y.;Jiang,J.Z.J.Phys. Chem.C,2008,112:5148

    10 Zhang,Y.X.;Cai,X.;Qi,D.D.;Bian,Y.Z.;Jiang,J.Z.J.Phys. Chem.C,2008,112:14579

    11 Cai,X.;Zhang,Y.X.;Qi,D.D.;Jiang,J.Z.Sci.China Ser.BChem.,2009,39:393 [蔡 雪,張躍興,齊冬冬,姜建壯.中國科學(xué)B輯:化學(xué),2009,39:393]

    12 Yang,X.D.;Wang,L.J.;Shuai,Z.G.Chem.Mater.,2008,20: 3205

    13 Yin,S.;Yi,Y.;Li,Q.;Yu,G.;Liu,Y.;Shuai,Z.G.J.Phys.Chem. A,2006,110:7138

    14 Wang,L.J.;Nan,G.J.;Yang,X.D.;Peng,Q.;Li,Q.K.;Shuai,Z. G.Chem.Soc.Rev.,2010,DOI:10.1039/b816406c

    15 Yang,X.;Li,Q.;Shuai,Z.G.Nanotechnology,2007,18:4240299

    16 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03. Revision B.05.Pittsburgh,PA:Gaussian Inc.,2003

    17 Chen,Z.J.;Debije,M.G.;Debaerdemaeker,T.;Osswald,P.; Würthner,F.ChemPhysChem,2004,5:137

    18 Newman,C.R.;Frisbie,C.D.;da Silva,D.A.;Bredas,J.L.; Ewbank,P.C.;Mann,K.R.Chem.Mater.,2004,16:4436

    19 Hosoi,Y.;Tsunami,D.;Ishii,H.;Furukawa,Y.Chemical Physics Letters,2007,436:139

    20 Marcon,V.;Pisula,W.;Dahl,J.;Kirkpatrick,J.;Patwardhan,S.; Grozema,F.;Andrienko,D.J.Am.Chem.Soc.,2009,131:11426

    21 Brédas,J.L.;Street,G.Acc.Chem.Res.,1985,18:309

    22 Unni,K.N.N.;Pandey,A.K.;Alem,S.;Nunzi,J.M.Chemical Physics Letters,2006,421:554

    23 Tatemichi,S.;Ichikawa,M.;Koyama,T.;Taniguchi,Y.Applied Physics Letters,2006,89:112108

    24 Jung,T.;Yoo,B.;Wang,L.;Dodabalapur,A.Applied Physics Letters,2006,88:183102

    25 Singh,T.B.;Erten,S.;Zafer,C.;Turkmen,G.;Kuban,B.;Teoman, Y.;Sariciftci,N.S.;Icli,S.Organic Electronics,2006,7:480

    猜你喜歡
    化學(xué)系北京科技大學(xué)酰亞胺
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2024年1期)2024-01-11 07:56:12
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    《北京科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》
    理論縱橫(2022年6期)2022-12-06 04:27:50
    《北京科技大學(xué)學(xué)報(bào)》(社會(huì)科學(xué)版)
    理論縱橫(2022年1期)2022-02-16 07:26:06
    改性雙馬來酰亞胺樹脂預(yù)浸料性能研究
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    雙馬來酰亞胺對丙烯酸酯結(jié)構(gòu)膠的改性研究
    中國塑料(2017年2期)2017-05-17 06:13:21
    田永訴北京科技大學(xué)拒絕頒發(fā)畢業(yè)證、學(xué)位證案
    EG/DMMP阻燃聚氨酯-酰亞胺泡沫塑料的研究
    中國塑料(2015年6期)2015-11-13 03:02:49
    久久久水蜜桃国产精品网| 制服丝袜大香蕉在线| 亚洲五月婷婷丁香| 99热这里只有精品一区 | 国产色视频综合| 久久久久国产一级毛片高清牌| 看片在线看免费视频| 亚洲欧美精品综合一区二区三区| 丁香欧美五月| 久久中文字幕一级| 欧美中文日本在线观看视频| 丁香六月欧美| 麻豆久久精品国产亚洲av| 久久精品国产亚洲av香蕉五月| 少妇裸体淫交视频免费看高清 | e午夜精品久久久久久久| 可以在线观看毛片的网站| 亚洲国产精品合色在线| av中文乱码字幕在线| 天堂动漫精品| 最近最新免费中文字幕在线| 1024手机看黄色片| x7x7x7水蜜桃| 非洲黑人性xxxx精品又粗又长| 特大巨黑吊av在线直播 | 国产精品久久久久久人妻精品电影| 免费在线观看成人毛片| netflix在线观看网站| 不卡一级毛片| 哪里可以看免费的av片| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久精品国产欧美久久久| 一级毛片高清免费大全| 少妇粗大呻吟视频| 女性生殖器流出的白浆| 99精品久久久久人妻精品| 久久人妻av系列| 国产精品国产高清国产av| 亚洲精品一区av在线观看| 亚洲精品美女久久av网站| 男人的好看免费观看在线视频 | 精品少妇一区二区三区视频日本电影| 香蕉av资源在线| 国产成人精品久久二区二区91| 欧美色欧美亚洲另类二区| 国产精品野战在线观看| 亚洲av成人不卡在线观看播放网| or卡值多少钱| 十分钟在线观看高清视频www| 亚洲av片天天在线观看| 波多野结衣av一区二区av| 亚洲狠狠婷婷综合久久图片| 国产区一区二久久| 欧美乱码精品一区二区三区| 美女免费视频网站| 啪啪无遮挡十八禁网站| 天堂影院成人在线观看| 亚洲一区二区三区色噜噜| 午夜a级毛片| 69av精品久久久久久| 婷婷丁香在线五月| 亚洲最大成人中文| 一a级毛片在线观看| 亚洲欧美一区二区三区黑人| 精品午夜福利视频在线观看一区| 国产视频一区二区在线看| 黄色女人牲交| 成人手机av| 久久热在线av| 黄色 视频免费看| 香蕉av资源在线| 国产成人影院久久av| 国产av一区在线观看免费| 白带黄色成豆腐渣| 亚洲,欧美精品.| 亚洲五月婷婷丁香| 黄色毛片三级朝国网站| 欧美+亚洲+日韩+国产| 成人免费观看视频高清| 中文字幕人妻熟女乱码| 色综合婷婷激情| 成人国产一区最新在线观看| 丝袜美腿诱惑在线| 成年女人毛片免费观看观看9| 麻豆一二三区av精品| 国产精品综合久久久久久久免费| 亚洲全国av大片| 亚洲av成人av| 18禁黄网站禁片午夜丰满| 亚洲av中文字字幕乱码综合 | 成年女人毛片免费观看观看9| 欧美 亚洲 国产 日韩一| 精品久久久久久,| 一夜夜www| 老司机午夜福利在线观看视频| 国产亚洲精品一区二区www| 女人高潮潮喷娇喘18禁视频| 欧美成人性av电影在线观看| 中文在线观看免费www的网站 | 精品乱码久久久久久99久播| 久99久视频精品免费| 精品高清国产在线一区| 午夜福利高清视频| 90打野战视频偷拍视频| 亚洲一区高清亚洲精品| 欧美日韩瑟瑟在线播放| 国产精品免费一区二区三区在线| 女警被强在线播放| 亚洲av成人一区二区三| 午夜福利一区二区在线看| 久久精品成人免费网站| 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2 | 亚洲专区国产一区二区| 99热只有精品国产| 日本撒尿小便嘘嘘汇集6| 欧美日本视频| 久久婷婷人人爽人人干人人爱| 在线观看午夜福利视频| 九色国产91popny在线| 国产午夜福利久久久久久| 国产av不卡久久| 操出白浆在线播放| 欧美性长视频在线观看| 免费av毛片视频| 久久九九热精品免费| 日日夜夜操网爽| 午夜免费成人在线视频| 色播亚洲综合网| 午夜久久久久精精品| 不卡一级毛片| 欧美性猛交黑人性爽| 免费在线观看成人毛片| 黑人巨大精品欧美一区二区mp4| 免费在线观看完整版高清| 制服诱惑二区| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产毛片av蜜桃av| 午夜福利在线观看吧| 国产高清videossex| 黄网站色视频无遮挡免费观看| 亚洲国产欧洲综合997久久, | 巨乳人妻的诱惑在线观看| 满18在线观看网站| 精品久久久久久久久久免费视频| 每晚都被弄得嗷嗷叫到高潮| 国产高清有码在线观看视频 | 一级毛片女人18水好多| 女人高潮潮喷娇喘18禁视频| av超薄肉色丝袜交足视频| 男女那种视频在线观看| 免费看a级黄色片| 男女之事视频高清在线观看| 亚洲天堂国产精品一区在线| 亚洲 国产 在线| 久久人妻福利社区极品人妻图片| 伦理电影免费视频| 97碰自拍视频| 99久久无色码亚洲精品果冻| 啦啦啦观看免费观看视频高清| 午夜福利高清视频| 男女视频在线观看网站免费 | 欧美一区二区精品小视频在线| 国产精品精品国产色婷婷| 成年女人毛片免费观看观看9| 精品少妇一区二区三区视频日本电影| 91成年电影在线观看| 少妇的丰满在线观看| 美女国产高潮福利片在线看| 黄色视频不卡| 国产成人欧美在线观看| 欧美三级亚洲精品| 国产精品av久久久久免费| 亚洲精品国产一区二区精华液| 在线观看免费视频日本深夜| 国产亚洲欧美在线一区二区| 日本在线视频免费播放| 日本五十路高清| 欧美zozozo另类| 中文在线观看免费www的网站 | av在线天堂中文字幕| 亚洲男人的天堂狠狠| 日本黄色视频三级网站网址| a级毛片a级免费在线| 欧美中文综合在线视频| 18禁观看日本| 国产成人精品无人区| 亚洲欧洲精品一区二区精品久久久| 黄色 视频免费看| 免费看美女性在线毛片视频| 亚洲人成网站高清观看| 老汉色∧v一级毛片| 久久人妻福利社区极品人妻图片| 中文在线观看免费www的网站 | 极品教师在线免费播放| 国产又黄又爽又无遮挡在线| 大型黄色视频在线免费观看| 欧美成人一区二区免费高清观看 | 精品久久久久久成人av| 欧美+亚洲+日韩+国产| 欧美zozozo另类| 国产精品电影一区二区三区| 欧美日本亚洲视频在线播放| 在线观看免费日韩欧美大片| 亚洲最大成人中文| 女性生殖器流出的白浆| 久久午夜综合久久蜜桃| 无遮挡黄片免费观看| www.www免费av| 国产激情偷乱视频一区二区| 婷婷六月久久综合丁香| 热99re8久久精品国产| 曰老女人黄片| 天堂√8在线中文| 欧美黄色淫秽网站| 国产精品免费视频内射| 日本a在线网址| 久久人妻av系列| 久久人人精品亚洲av| 亚洲精华国产精华精| 真人做人爱边吃奶动态| 精品乱码久久久久久99久播| 校园春色视频在线观看| 韩国精品一区二区三区| cao死你这个sao货| 欧美最黄视频在线播放免费| 99re在线观看精品视频| 亚洲成人久久爱视频| www日本黄色视频网| 成年人黄色毛片网站| 国产免费男女视频| 美女高潮到喷水免费观看| 可以免费在线观看a视频的电影网站| 日本黄色视频三级网站网址| 18禁美女被吸乳视频| 久久国产精品人妻蜜桃| 搡老岳熟女国产| 精品欧美国产一区二区三| 国产伦一二天堂av在线观看| 国产一区二区激情短视频| 精品日产1卡2卡| 在线观看www视频免费| 久久人妻福利社区极品人妻图片| 一级毛片精品| 欧美又色又爽又黄视频| 国产91精品成人一区二区三区| 日韩大码丰满熟妇| 色尼玛亚洲综合影院| 亚洲五月色婷婷综合| 中文在线观看免费www的网站 | 级片在线观看| 日本黄色视频三级网站网址| 日韩欧美三级三区| 嫁个100分男人电影在线观看| 天堂影院成人在线观看| 色哟哟哟哟哟哟| 亚洲精品色激情综合| 久久午夜亚洲精品久久| 天堂影院成人在线观看| 欧美亚洲日本最大视频资源| 欧美激情 高清一区二区三区| 久久午夜亚洲精品久久| 免费在线观看视频国产中文字幕亚洲| 美女大奶头视频| av视频在线观看入口| 欧洲精品卡2卡3卡4卡5卡区| 中文资源天堂在线| 国产亚洲精品第一综合不卡| а√天堂www在线а√下载| 少妇的丰满在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产在线观看jvid| 欧美黑人巨大hd| 国内久久婷婷六月综合欲色啪| 又紧又爽又黄一区二区| 久久精品夜夜夜夜夜久久蜜豆 | 一二三四社区在线视频社区8| 在线观看免费午夜福利视频| 亚洲av中文字字幕乱码综合 | 少妇的丰满在线观看| 日韩精品中文字幕看吧| 精品国产美女av久久久久小说| 18禁裸乳无遮挡免费网站照片 | 国产精品久久久久久亚洲av鲁大| 国产精品日韩av在线免费观看| 日本 欧美在线| 淫妇啪啪啪对白视频| 欧美一区二区精品小视频在线| 中文字幕另类日韩欧美亚洲嫩草| 在线av久久热| 国产成+人综合+亚洲专区| 亚洲真实伦在线观看| 黄频高清免费视频| 精品日产1卡2卡| 少妇 在线观看| 久久久久久久久久黄片| 免费在线观看黄色视频的| 搡老熟女国产l中国老女人| 啦啦啦免费观看视频1| 一级片免费观看大全| 九色国产91popny在线| 亚洲成人久久性| 国产精品自产拍在线观看55亚洲| 国内精品久久久久久久电影| 久久久久久久久中文| 午夜福利在线在线| 国产精品自产拍在线观看55亚洲| 91麻豆av在线| 老司机深夜福利视频在线观看| 日韩精品免费视频一区二区三区| 午夜免费激情av| 亚洲国产欧美网| 在线观看一区二区三区| 这个男人来自地球电影免费观看| 国产在线精品亚洲第一网站| 亚洲成人久久性| 91av网站免费观看| 欧美中文综合在线视频| 免费在线观看影片大全网站| 极品教师在线免费播放| 国产精品久久电影中文字幕| 亚洲 欧美 日韩 在线 免费| 女性生殖器流出的白浆| 亚洲成a人片在线一区二区| 12—13女人毛片做爰片一| 亚洲成av人片免费观看| 老熟妇乱子伦视频在线观看| cao死你这个sao货| 色老头精品视频在线观看| 性色av乱码一区二区三区2| 亚洲av中文字字幕乱码综合 | 女人爽到高潮嗷嗷叫在线视频| 黄色视频不卡| 中文字幕av电影在线播放| 亚洲av成人av| 精品国内亚洲2022精品成人| 久久精品影院6| 最近最新中文字幕大全电影3 | 久久久久国产一级毛片高清牌| 婷婷精品国产亚洲av在线| 国产成人av教育| 亚洲国产欧美日韩在线播放| 麻豆国产av国片精品| 亚洲熟女毛片儿| 亚洲精华国产精华精| 色老头精品视频在线观看| 性色av乱码一区二区三区2| 国产精品亚洲美女久久久| 亚洲av电影在线进入| 一级毛片女人18水好多| 变态另类丝袜制服| 国产精品电影一区二区三区| 黄色视频不卡| 一区二区三区国产精品乱码| a级毛片a级免费在线| 日日摸夜夜添夜夜添小说| 中文字幕人妻丝袜一区二区| 精品国产乱子伦一区二区三区| 在线永久观看黄色视频| 国内久久婷婷六月综合欲色啪| 一区二区日韩欧美中文字幕| 国产日本99.免费观看| 国语自产精品视频在线第100页| 亚洲欧美日韩无卡精品| 色在线成人网| 最近最新免费中文字幕在线| 国产成人av激情在线播放| 最好的美女福利视频网| 69av精品久久久久久| 精品久久久久久久久久久久久 | 久久欧美精品欧美久久欧美| 欧美成人性av电影在线观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美丝袜亚洲另类 | 中文字幕另类日韩欧美亚洲嫩草| 成人18禁高潮啪啪吃奶动态图| 亚洲专区中文字幕在线| 国产成人精品无人区| 国产99久久九九免费精品| 色综合亚洲欧美另类图片| 亚洲国产中文字幕在线视频| 国产免费av片在线观看野外av| 午夜成年电影在线免费观看| 国产高清激情床上av| 久久伊人香网站| 在线观看一区二区三区| 成人18禁在线播放| 精品乱码久久久久久99久播| 国产精品电影一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 在线国产一区二区在线| 性色av乱码一区二区三区2| 搞女人的毛片| cao死你这个sao货| 侵犯人妻中文字幕一二三四区| 丝袜人妻中文字幕| 亚洲精品中文字幕在线视频| 日韩有码中文字幕| 嫩草影视91久久| 亚洲成人久久爱视频| 大型黄色视频在线免费观看| 久久久久久亚洲精品国产蜜桃av| 一级a爱片免费观看的视频| 婷婷丁香在线五月| 精品国产美女av久久久久小说| 国产高清videossex| 午夜免费观看网址| 99精品在免费线老司机午夜| av有码第一页| 在线国产一区二区在线| 日本免费a在线| 搞女人的毛片| 夜夜爽天天搞| 亚洲五月色婷婷综合| 禁无遮挡网站| ponron亚洲| 久99久视频精品免费| 99国产极品粉嫩在线观看| 桃色一区二区三区在线观看| 在线视频色国产色| 精品久久久久久成人av| 免费电影在线观看免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品九九99| 色综合婷婷激情| 国内毛片毛片毛片毛片毛片| 777久久人妻少妇嫩草av网站| 欧美成人一区二区免费高清观看 | 精品久久久久久久人妻蜜臀av| 99热只有精品国产| 一级毛片女人18水好多| 露出奶头的视频| 91在线观看av| 国产成人精品无人区| 精品少妇一区二区三区视频日本电影| 一本一本综合久久| 亚洲真实伦在线观看| 精品久久蜜臀av无| 亚洲片人在线观看| 精品国产乱子伦一区二区三区| 国产一区二区在线av高清观看| 国产成人精品久久二区二区免费| 欧美成人性av电影在线观看| 麻豆成人av在线观看| 十八禁人妻一区二区| 亚洲五月色婷婷综合| 99在线视频只有这里精品首页| 久久精品人妻少妇| 精品国产亚洲在线| a级毛片在线看网站| 中文字幕av电影在线播放| 国产真人三级小视频在线观看| 无人区码免费观看不卡| 欧美精品亚洲一区二区| 99国产综合亚洲精品| 高清在线国产一区| 国产精品,欧美在线| 日韩大尺度精品在线看网址| 黑丝袜美女国产一区| 99国产精品一区二区三区| 男女视频在线观看网站免费 | 日韩欧美国产一区二区入口| 91麻豆av在线| 亚洲激情在线av| 亚洲欧美日韩高清在线视频| 一二三四社区在线视频社区8| 一级毛片高清免费大全| 大型av网站在线播放| av免费在线观看网站| 色播亚洲综合网| 日本黄色视频三级网站网址| 免费在线观看成人毛片| 在线观看一区二区三区| 久久久久久久久免费视频了| a级毛片a级免费在线| 两性午夜刺激爽爽歪歪视频在线观看 | 国产91精品成人一区二区三区| 日韩大尺度精品在线看网址| 日韩视频一区二区在线观看| 亚洲最大成人中文| 亚洲成av人片免费观看| 婷婷精品国产亚洲av在线| 人妻久久中文字幕网| 国产91精品成人一区二区三区| 麻豆一二三区av精品| 一夜夜www| 在线观看舔阴道视频| 精品久久久久久久毛片微露脸| 亚洲 欧美一区二区三区| 久久狼人影院| 亚洲成a人片在线一区二区| www.自偷自拍.com| 制服诱惑二区| 亚洲三区欧美一区| 亚洲国产欧美一区二区综合| 在线观看舔阴道视频| 亚洲精品粉嫩美女一区| 黑人欧美特级aaaaaa片| 一区福利在线观看| 欧美黄色淫秽网站| 午夜福利在线在线| 日本一区二区免费在线视频| 亚洲一区二区三区色噜噜| 嫁个100分男人电影在线观看| 亚洲欧美精品综合一区二区三区| 丝袜人妻中文字幕| 精品国产亚洲在线| 制服诱惑二区| 亚洲 欧美 日韩 在线 免费| 亚洲精华国产精华精| 婷婷亚洲欧美| 国产伦人伦偷精品视频| 99国产精品一区二区三区| 午夜亚洲福利在线播放| 在线观看舔阴道视频| 成在线人永久免费视频| 精品高清国产在线一区| 国产黄a三级三级三级人| 亚洲欧美日韩高清在线视频| 国产精品二区激情视频| 日韩大尺度精品在线看网址| 亚洲av成人av| 淫妇啪啪啪对白视频| 免费看美女性在线毛片视频| 一边摸一边做爽爽视频免费| 欧美色欧美亚洲另类二区| 两个人免费观看高清视频| 日日爽夜夜爽网站| 亚洲精品中文字幕一二三四区| 国产精品免费视频内射| 一区二区三区精品91| 成人国产一区最新在线观看| 国产精品永久免费网站| videosex国产| 成人国产综合亚洲| 黄片大片在线免费观看| 亚洲精品一区av在线观看| 久久青草综合色| 黄片小视频在线播放| 久久人妻av系列| 亚洲精品色激情综合| 黄色a级毛片大全视频| 美女高潮喷水抽搐中文字幕| 国产人伦9x9x在线观看| 欧美激情 高清一区二区三区| 高潮久久久久久久久久久不卡| 免费高清视频大片| 成人欧美大片| 视频区欧美日本亚洲| 真人做人爱边吃奶动态| 亚洲人成77777在线视频| 色综合婷婷激情| 丝袜美腿诱惑在线| 两性午夜刺激爽爽歪歪视频在线观看 | 巨乳人妻的诱惑在线观看| 美女扒开内裤让男人捅视频| 精品乱码久久久久久99久播| 亚洲 欧美一区二区三区| 91成年电影在线观看| 无限看片的www在线观看| 69av精品久久久久久| 亚洲人成网站在线播放欧美日韩| 久久久久九九精品影院| 12—13女人毛片做爰片一| 三级毛片av免费| 2021天堂中文幕一二区在线观 | 一a级毛片在线观看| 脱女人内裤的视频| 午夜亚洲福利在线播放| 老熟妇乱子伦视频在线观看| 这个男人来自地球电影免费观看| 亚洲 欧美 日韩 在线 免费| 午夜福利视频1000在线观看| 欧美成人午夜精品| 丝袜人妻中文字幕| 午夜福利高清视频| 成人国语在线视频| 久久精品国产亚洲av香蕉五月| 国产在线精品亚洲第一网站| 久久精品影院6| 好看av亚洲va欧美ⅴa在| 搡老妇女老女人老熟妇| 婷婷亚洲欧美| 大香蕉久久成人网| 国产高清视频在线播放一区| 可以在线观看的亚洲视频| 亚洲 国产 在线| 亚洲免费av在线视频| 97人妻精品一区二区三区麻豆 | www日本在线高清视频| 最近最新免费中文字幕在线| 日本黄色视频三级网站网址| 久久香蕉激情| 村上凉子中文字幕在线| 国产激情久久老熟女| 久热这里只有精品99| 两个人看的免费小视频| 深夜精品福利| 精品国内亚洲2022精品成人| 国产一区二区三区在线臀色熟女| 在线观看舔阴道视频| 黄频高清免费视频| 老司机在亚洲福利影院| 久久久久国内视频| 亚洲精品国产区一区二| 日本一区二区免费在线视频| 日韩欧美国产一区二区入口| 亚洲免费av在线视频| 一a级毛片在线观看| 在线播放国产精品三级| 深夜精品福利| 一区二区三区国产精品乱码| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩瑟瑟在线播放| 又大又爽又粗|