• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compressive Sensing Sparse Sampling Method for Composite Material Based on Principal Component Analysis

    2018-05-25 06:39:39,,1,2,,

    , , 1,2,,

    1.Jiangsu Engineering Centre of Network Monitoring,Nanjing University of Information Science and Technology,Nanjing 210044,P.R.China;

    2.Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology,Nanjing University of Information Science and Technology,Nanjing 210044,P.R.China;

    3.School of Computer and Software,Nanjing University of Information Science and Technology,

    Nanjing 210044,P.R.China;

    4.School of Information and Control,Nanjing University of Information Science and Technology,Nanjing 210044,P.R.China

    0 Introduction

    Principal component analysis (PCA)is one of the most commonly used multivariate statistical techniques[1]It uses an orthogonal mathematical transformation to convert the observed values of a set of possible dependent variables to principal components,the values that are not linearly related .The number of principal components is less than or equal to the number of original variables.Only when the data is combined with normal distribution,the principal component is independent from each other.PCA is sensitive to the cor-relation level between the original variables.It is also known as Hotelling transform,discrete KLT transform or proper orthogonal decomposition in different fields.

    By projecting the data into the low dimensional space and obtaining the most possible features of the original data,PCA can be used to deal with the data of high dimension,noisy and high correlation.So far it has developed into a kind of exploratory data analysis and prediction model in terms of feature extraction using covariance or correlation matrix decomposition or using a set of matrix signal values.In recent decades,scholars have looked into the characteristics of PCA extraction and dimension reduction in different disciplines[2-4].Wold et al.[5]used cross examination to determine the number of PCA principal components,and a PCA-method for model prediction.Ku[6]introduced"time lag transfer"to statistical monitoring,and developed the monitoring method of the previous static PCA to a dynamic PCA method,which was applied to the detection of the disturbance of the dynamic multivariable system.

    As long as the signals are sparse,through the sampling rate of compressive sensing (CS)is far lower than that of the traditional Nyquist sampling theorem[7-9].The theory must be premised on the sparsity of the signal,and PCA can be used for data dimensionality reduction.Masiero et al.[10]used PCA to find transformations to sparsify signals for CS to retrieve.They dynamically adapted non-stationary real-world signals through the online estimation on their correlation properties in space and time,and then utilized PCA to to derive the transformations for CS.Li et al.[11]proposed an adaptive block compressive sensing based on edge detection at the encoder,and a smoothed projected Landweber (SPL)reconstruction algorithm based on principal component analysis at the decoder.The reconstruction algorithm used PCA to train a dictionary adapting to image structure with hard thresholding,thus the image blocking effects were eliminated effectively and the reconstructed image quality was improved.Dietz et al.[12]presented a real-time dynamic image reconstruction technique, which combined CS and PCA to achieve real-time adaptive radiotherapy with the use of a linac-magnetic resonance imaging system.Li et al.[13]proposed an efficient image fusion framework for infrared and visible images on the basis of robust principal component analysis(RPCA)and CS.Compared with several popular fusion algorithms,this framework could extract the infrared targets while retaining the background information in the visible images.

    Therefore,the compressive sensing method based on PCA is proposed to provide a better so-lution to sparse data representation problem of huge amount of ultrasonic phased array signal.

    1 Principal Component Analysis

    PCA is to reduce the dimension of the original data space by constructing a new set of latent variables,and then extract statistical features from the mapping space,therefore to understand the spatial characteristics of the original data.The variables of the new mapping space are composed of linear combination of the original data variables,which greatly reduces the dimension of the projection space.The number of new variables is less than that of the original variables,while still carry useful information of the original data as much as possible.Its contents include the definition and acquisition of main elements,as well as the principal component of the data reconstruction.Since the statistical characteristic vectors of the projection space are orthogonal to each other,the correlations between variables are eliminated,and the complexity of the original process characteristic analysis is simplified.Therefore,this method can effectively identify the most important elements and structures in the data,remove the noise and redundancy,reduce the original complex data,and reveal the simple structure behind the complex data.

    Given the original datax= (xij)N×M,xis standardized to eliminate the dimensional effects,and the expression is shown as

    The correlation coefficient matrix is calculated between the data variables after standardized operation,and the covariance matrixRis

    where the elementrjkrepresents the correlation coefficient of the original variablex′jandx′k,andrjk=rkj,shown as

    Jacobi method is used to solve the character-istic equationand the eigenvalues of the covariance matrix and the corresponding eigenvectors are obtained.Then it is sorted according to the size of the order,and the characteristic value is recorded as[λ1,λ2,…,λm],and the corresponding feature vector is recorded as[p1,p2,…,pm]

    Then the main elements are calculatedti=Xpi,where the principal componenttion behalf of the projection of the data matrixxon the direction of the load vector corresponding to the main element.

    The contribution rate of each principal com-ponents is calculated asas well as the cumulative contribution rate1,2,…,m.

    In general,the 1th,2th,kth principal component corresponding to the eigenvalues ofλ1,λ2,…,λkwill be selected,where the cumulative contribution rate of eigenvalues is between 85%and 95%.

    In addition,according to the needs,the corresponding dimension (that is,the number of principal components)is selected to composition of the transformation matrix

    Finally,the new data after dimension reduction is calculated as

    2 Compressive Sensing Method Based on PCA

    CS is a novel theory of sampling and restoration for sparse signal[7-9].As long as the original signals are sparse in the time domain or under some kind of orthogonal transform,the signals can be sampled in a low sampling rate,and the original signals can be reconstructed with high probability.

    2.1 Sparse representation of signals

    CS is based on the premise that the signal must be sparse.When sparsifying the signals,the appropriate sparse transform base according to the signal characteristics is necessary to be selected.

    Suppose an originalxsignal with the length ofN,the number of signal isM,aN×Mdimension matrix can be constructed with the original signal,because there are mutual relationship between the amplitude of each signal in each time point.According to the principal component analysis,the covariance matrix obtained ofN×Ndimension can be used as the sparse transform base for sparse representation of signal.Then,the original signalxcan be expressed as

    whereΨ= [ψ1,ψ2,…,ψN]is the transformation matrix ofN×Ndimension,Θthe sparse coefficient vector obtained byxaccording to the principal component analysis,and must meet the following formula

    PCA reduces a kind of high dimensional data to low dimensional data.Then,a set of new variables in low dimensional replace the original variables in high dimension satisfies the conditions associated with the original ones.Therefore,the new variables can carry the maximum information of the original ones.PCA can be used to make sparse representation of the signals.Compared with the commonly used sparse representation method,the sparse signals obtained by the proposed method is more closely related to the original signals.

    According to Section 1,the sparse coefficient vector of original signal is calculated as

    whereΨis the transformation of matrixAin Section 1.

    2.2 Projection observation of signals

    The core of the compressive sensing theory is to design the measurement matrix,and directly determine whether the compressive sensing can be implemented successfully.If the signalxhas a sparse representation under an orthogonal transformΨ,a measurement matrixΦ,Ψ∈RM×N,which is not related to the transform baseΨ,and a linear measurement ofMdimension can be obtained

    Suppose the production measurement vector isy=[y1,y2,...,yM],then

    In order to restore the original signal with high probability,the production measurement matrixΦ,which is not related to the sparse transform baseΨand satisfied with the restricted isometry property,is needed to be constructed to make production transformation of the signal.Gauss random measurement matrix is not related to the majority of the fixed orthogonal base and satisfies the restricted isometry property,so the Gauss matrix can be used as the projection observation matrix[14-16].For the ultrasonic phased array signal,the Gauss random measurement matrix is multiplied with the sparse coefficient of the phased array signal,and the observation vector of the signal can be obtained.

    Suppose the measurement matrixΦisM×Ndimension,andΦ∈RM×N,then the general term

    Each element in the matrix is independent to the Gauss distribution with the mean value of 0,and the varianceThis matrix is not relat-ed to the vast majority of sparse signals,and requires less measurement values in the reconstruction.Gauss random measurement matrix is a matrix with very strong randomicity but high uncertainty.For a signal with a length ofNand a sparse degree ofK,onlyM≥cKlogmeas-ured values are needed to recover the original signal with high probability,wherecis a very small constant.

    2.3 Sparse reconstruction of signals

    During the process of compressive sensing,reconstructing the signalxfrom the observationsyis the inverse problem related to compression sampling,and is called signal reconstruction.By solving Eq.(11),the reconstructed signal can be obtained.This problem is underdetermined with infinite solutions.Candes et al.proved that the underdetermined problem can be solved by solving the minimuml0-norm[13],that is,

    Eq.(13)is a linear programming problem,and is also a convex optimization problem.Taking the reconstruction error into account,it is converted into a minimuml1-norm problem as

    During the process of signal reconstruction,convex optimization algorithm and greedy iterative algorithm are commonly used[17-18].One kind of algorithm is based on convex optimization,mainly by increasing the constraint to obtain the sparsest.And commonly used algorithms are basis pursuit algorithm and gradient projection sparse reconstruction algorithm.The other kind of algorithm is based on greedy iterative algorithm,mainly by the combination of local optimization method to find the non-zero coefficients,in order to approach the original signal.Commonly used algorithms are matching pursuit algorithm and orthogonal matching pursuit algorithm.

    3 Experiment and Results

    A composite plate is the experimental object.There are nine piezoelectric elements in the linear array arranged on the plate with an equal interval of 12mm.In signal acquisition,data collection points are 1 024,and sampling frequency isfs=1 000 000Hz.

    One array element is set as a drive to transmit signal,and the other eight elements as the sensor to receive the reflection signal.Each array element stimulates the signal in turns,then each degree corresponds to 9×8signals,and 9×8×181sets of data can be obtained.The 90°direction of the data emitted by No.0array element and received by No.1array element is selected as the experimental data,and the processing method of other angles is consistent with this.The time domain waveform of the data set is shown in Fig.1.

    Fig.1 Waveform of original signal in time domain

    At first,PCA is used to deal with the waveform obtained by the 90°direction of the phased array signal emitted by No.0array element and received by No.1array element.The sparse representation of the original signal is obtained,as shown in Fig.2.It can be seen that the sparse coefficient of the phased array signal after PCA transform is mostly zero or close to zero,which is consistent with the characteristic of sparse signal.

    Fig.2 Sparse coefficient after principal component analysis

    Then,the length of utrasonic phased array data isN=1 200,and the number of observationsM=400is selected to complete the operation of signal projection observation,and the waveform is shown in Fig.3.

    Fig.3 Signal obtained by projection observation

    Finally,the basis pursuit algorithm is used to deal with the ultrasonic phased array signal,and the reconstructed signals obtained are shown in Fig.4.

    4 Experimental Error Analysis

    The reconstructed signal based on orthogonal matching pursuit algorithm has some differences in the signal waveform,compared with the original phased array signal.In order to analyze the effect of the reconstruction algorithm more accurately,the reconstructed error with different reconstruction algorithm is displayed numerically,as shown in Table 1.The absolute errorΔVand the relative errorδare calculated as below

    Fig.4 The signal reconstruction based on basis pursuit algorithm

    whereV0is the amplitude of reconstructed signal at the point of maximum amplitude deviation,andV1the amplitude of original phased array signal at the same point.

    Table 1 Reconstruction error

    In Table 1,GPSR is gradient projection for sparse reconstruction algorithm,and OMP is orthogonal matching pursuit algorithm.Fig.5shows the reconstructed signal obtained by BP,GPSR and OMP,respectively.

    Table 2shows the error comparison of some common transform base and the principal component analysis method.

    Fig.5 The signal reconstruction based on BP,GPSR and OMP

    Table 2 The error comparison

    In Table 2,DCT is discrete cosine transform,and DFT is discrete fourier transform.

    The analysis of experimental error indicates that the relative error is relatively lower than that of commonly used method.That is,the proposed method can be applied to signal sparse representation of compressive sensing.

    5 Conclusions

    This paper studies the compressive sensing sparse sampling method based on PCA.This method not only solves the difficulty in storage and processing due to the large amount of data obtained by ultrasonic phased array structural health monitoring,but also effectively improves the relationship between the original signal and the signal after sparse representation.And the experimental result shows that PCA can be used to reconstruct the signal obtained from the phased array structure health monitoring after sparse representation of the signal with small reconstruction error.In future research,we can choose more optimized projection observation matrix,and more efficient reconstruction algorithm to reconstruct the ultrasonic phased array signal.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China(Nos.51405241,61672290),and the Jiangsu Government Scholarship for Overseas Studies and the PAPD Fund.

    [1] LIU S,GU G,ZHANG Q,et al.Principal component analysis algorithm in video compressed sensing[J].International Journal for Light and Electron Optics,2014,125(3):1149-1153.

    [2] MASIERO R,QUER G,MUNARETTO D,et al.Data acquisition through joint compressive sensing and principal component analysis[C]∥IEEE Conference on Global Telecommunications.USA:IEEE,2009 :1271-1276

    [3] ZHANG Y,XU C,LI C,et al.Wood defect detection method with PCA feature fusion and compressed sensing[J].Journal of Forestry Research,2015,26(3):745-751.

    [4] SINGH A,SHARMA L N,DANDAPAT S.Multichannel ECG data compression using compressed sensing in eigenspace[J].Computers in Biology &Medicine,2016,73:24-37.

    [5] WOLD S.Cross-validatory estimation of the number of components in factor and principal components models[J].Technometrics,1978,20(4):397-405.

    [6] KU W,STORER R H,GEORGAKIS C.Disturbance detection and isolation by dynamic principal component analysis[J].Chemometrics and Intelligent Laboratory Systems,1995,30(1):179-196.

    [7] DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.

    [8] YIN H,LIU Z.Survey of compressed sensing[J].Control and Decision,2013,28(10):1441-1445.

    [9] SUN Y J,GU F H.Compressive sensing of piezoelectric sensor response signal for phased array structural health monitoring[J].International Journal of Sensor Networks,2017,23(4):258-264.

    [10]LI Ran, GAN Zongliang, ZHU Liangchang.Smoothed projected Landweber image compressed sensing reconstruction using hard thresholding based on principal components analysis[J].Journal of Image & Graphics,2013(5):504-514.(in Chiense).

    [11]DIETZ B,YIP E,YUN J,et al.Real‐time dynamic MR image reconstruction using compressed sensing and principal component analysis(CS-PCA):Demonstration in lung tumor tracking[J].Medical Physics,2017,44(8):3978

    [12]LI J,SONG M,PENG Y.Infrared and visible image fusion based on robust principal component analysis and compressed sensing[J].Infrared Physics &Technology,2018,89:129-139.

    [13]CANDES E.The restricted isometry property and its implications for compressed sensing[J].C R Math Acad Sci Paris 2008,346(9-10):589-592.

    [14]ZHANG B Y,CHEN H H,WANG R C,et al.New random signal generating method of multiple excitation vibration system based on white noises(in chinese)[J].Journal of Nanjing University of Aeronautics & Astronautics,2017,49(6):839-844.

    [15]CHEN T,ZHU G,LIU Y.Optimization research of Gauss matrices in compressive sensing[J].Application Research of Computers,2014,31(12):3599-3602.

    [16]QI M X,CHEN S J,ZHOU S P,et al.Crack Detection in Pipes with Different Bend Angles Based on Ultrasonic Guided Wave[J].Transactions of Nanjing University of Aeronautics and Astronautics,2017,34(3):318-325.

    [17]LI Y,HE S.Blind signal separation algorithm for non-negative matrix factorization based on projected gradient[J].Computer Engineering,2016,42(2):104-107.

    [18]ZHU Y,ZHU Y,PENG Y.Adaptive compressive sensing and tracking of dynamic sparse spectrum[J].Journal of Signal Processing,2016,32(3):341-348.

    国产精品一区二区三区四区免费观看| 大片电影免费在线观看免费| 最后的刺客免费高清国语| 成人二区视频| 亚洲不卡免费看| 久久久色成人| 日韩欧美 国产精品| 黄色一级大片看看| 日韩视频在线欧美| 亚洲人成网站在线播| 日本av手机在线免费观看| 美女主播在线视频| freevideosex欧美| 国产精品国产三级专区第一集| 久久国产精品大桥未久av | 联通29元200g的流量卡| 国产爱豆传媒在线观看| 一级毛片电影观看| 天堂俺去俺来也www色官网| 99久久精品一区二区三区| 国产免费福利视频在线观看| 国产精品三级大全| 最近的中文字幕免费完整| 美女中出高潮动态图| 美女脱内裤让男人舔精品视频| 亚洲精品视频女| 国产精品久久久久久久电影| 欧美精品亚洲一区二区| 老司机影院成人| 免费黄频网站在线观看国产| av在线蜜桃| www.色视频.com| 久久国产亚洲av麻豆专区| 嘟嘟电影网在线观看| 色5月婷婷丁香| 国产极品天堂在线| 校园人妻丝袜中文字幕| 日本黄色片子视频| 97在线人人人人妻| 99热这里只有是精品在线观看| 青春草视频在线免费观看| 免费观看av网站的网址| 国产精品三级大全| 欧美3d第一页| 看十八女毛片水多多多| 黑人高潮一二区| 亚洲精品国产av成人精品| 精品亚洲成国产av| 我的老师免费观看完整版| 五月玫瑰六月丁香| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区四那| 成人毛片a级毛片在线播放| 中文精品一卡2卡3卡4更新| 久久国内精品自在自线图片| 赤兔流量卡办理| 男人舔奶头视频| 狂野欧美激情性xxxx在线观看| 国产黄色视频一区二区在线观看| 中文资源天堂在线| 亚洲av欧美aⅴ国产| 街头女战士在线观看网站| 少妇丰满av| av一本久久久久| 校园人妻丝袜中文字幕| 在线观看免费高清a一片| 国产精品女同一区二区软件| 亚洲精品久久午夜乱码| 天堂8中文在线网| 欧美zozozo另类| 女人十人毛片免费观看3o分钟| 美女cb高潮喷水在线观看| 日韩亚洲欧美综合| 国产美女午夜福利| 女的被弄到高潮叫床怎么办| 男人添女人高潮全过程视频| 伊人久久精品亚洲午夜| 五月伊人婷婷丁香| 日本一二三区视频观看| kizo精华| 亚洲真实伦在线观看| 18禁在线播放成人免费| 免费看日本二区| 国产成人精品福利久久| 少妇人妻久久综合中文| 一本久久精品| 国产av一区二区精品久久 | 少妇裸体淫交视频免费看高清| 久久精品久久久久久久性| 人妻一区二区av| 亚洲熟女精品中文字幕| 欧美成人一区二区免费高清观看| 老师上课跳d突然被开到最大视频| 蜜桃亚洲精品一区二区三区| 少妇高潮的动态图| 1000部很黄的大片| 美女主播在线视频| 最黄视频免费看| 制服丝袜香蕉在线| 久久热精品热| 久久精品国产自在天天线| 各种免费的搞黄视频| 亚洲精品色激情综合| 欧美一区二区亚洲| 免费观看性生交大片5| 男人爽女人下面视频在线观看| 国产精品一区www在线观看| 久久99热6这里只有精品| 亚洲av综合色区一区| 精品亚洲成a人片在线观看 | 国产亚洲午夜精品一区二区久久| 大片免费播放器 马上看| 天堂俺去俺来也www色官网| 夜夜爽夜夜爽视频| 伦理电影大哥的女人| 亚洲精华国产精华液的使用体验| 国产精品人妻久久久久久| 国产成人一区二区在线| 你懂的网址亚洲精品在线观看| av播播在线观看一区| 国产午夜精品久久久久久一区二区三区| 自拍偷自拍亚洲精品老妇| 视频区图区小说| 啦啦啦在线观看免费高清www| 成人18禁高潮啪啪吃奶动态图 | 亚洲三级黄色毛片| 国产精品人妻久久久久久| 性高湖久久久久久久久免费观看| 欧美最新免费一区二区三区| 欧美日韩在线观看h| 啦啦啦在线观看免费高清www| 久久综合国产亚洲精品| 简卡轻食公司| 免费黄网站久久成人精品| 中文字幕人妻熟人妻熟丝袜美| 国产在线男女| 精品熟女少妇av免费看| 十分钟在线观看高清视频www | 国产精品欧美亚洲77777| 能在线免费看毛片的网站| 亚洲图色成人| 成人亚洲精品一区在线观看 | 精品久久久久久久末码| 国产久久久一区二区三区| 日韩,欧美,国产一区二区三区| 日韩av在线免费看完整版不卡| 欧美精品国产亚洲| 18禁在线无遮挡免费观看视频| 成人二区视频| 十八禁网站网址无遮挡 | 色吧在线观看| 卡戴珊不雅视频在线播放| 特大巨黑吊av在线直播| 99re6热这里在线精品视频| 国产黄色免费在线视频| 精品午夜福利在线看| 午夜老司机福利剧场| 极品少妇高潮喷水抽搐| 夫妻性生交免费视频一级片| 最黄视频免费看| 国产精品女同一区二区软件| 99热这里只有是精品在线观看| 欧美+日韩+精品| 日本av免费视频播放| 91久久精品国产一区二区三区| 国产老妇伦熟女老妇高清| 蜜桃久久精品国产亚洲av| 蜜桃在线观看..| 制服丝袜香蕉在线| 色吧在线观看| 啦啦啦视频在线资源免费观看| 久久人人爽人人片av| 在线播放无遮挡| 深夜a级毛片| 国产免费视频播放在线视频| 一级av片app| 蜜桃在线观看..| 街头女战士在线观看网站| 精品少妇久久久久久888优播| 韩国av在线不卡| 久久亚洲国产成人精品v| 日韩一本色道免费dvd| 又粗又硬又长又爽又黄的视频| 好男人视频免费观看在线| 亚洲精品一区蜜桃| 久久久久国产网址| 亚洲欧美精品专区久久| 久久久精品94久久精品| 简卡轻食公司| 亚洲av中文字字幕乱码综合| 男女边摸边吃奶| 97超视频在线观看视频| 能在线免费看毛片的网站| 直男gayav资源| 人人妻人人澡人人爽人人夜夜| 视频区图区小说| 国产成人a∨麻豆精品| 日韩 亚洲 欧美在线| 国产精品麻豆人妻色哟哟久久| 看免费成人av毛片| 亚洲美女黄色视频免费看| av在线播放精品| 国产视频内射| 国产成人一区二区在线| av在线蜜桃| 蜜臀久久99精品久久宅男| 观看av在线不卡| 精品久久久久久久久亚洲| 99久久精品热视频| 久久久久人妻精品一区果冻| 午夜老司机福利剧场| 亚洲av不卡在线观看| 另类亚洲欧美激情| 欧美三级亚洲精品| 色婷婷av一区二区三区视频| 精品久久久精品久久久| 直男gayav资源| h日本视频在线播放| av免费观看日本| 啦啦啦中文免费视频观看日本| 亚洲国产成人一精品久久久| 人妻制服诱惑在线中文字幕| 亚洲经典国产精华液单| 新久久久久国产一级毛片| 日韩国内少妇激情av| 哪个播放器可以免费观看大片| 亚洲精品国产色婷婷电影| 51国产日韩欧美| 欧美人与善性xxx| 亚洲av男天堂| 亚洲国产色片| 亚洲久久久国产精品| 亚洲怡红院男人天堂| 国产老妇伦熟女老妇高清| 91精品一卡2卡3卡4卡| 日本wwww免费看| 日韩亚洲欧美综合| 91狼人影院| 日韩不卡一区二区三区视频在线| 国产在视频线精品| 国产精品国产av在线观看| 观看av在线不卡| 亚洲va在线va天堂va国产| 成人美女网站在线观看视频| 国产黄片美女视频| 欧美精品人与动牲交sv欧美| 亚洲精品乱久久久久久| 一本久久精品| 99热这里只有精品一区| 日韩成人伦理影院| 国产女主播在线喷水免费视频网站| 亚洲伊人久久精品综合| 日本爱情动作片www.在线观看| 在线免费观看不下载黄p国产| 亚洲av成人精品一区久久| 成人亚洲精品一区在线观看 | 精华霜和精华液先用哪个| 黑人猛操日本美女一级片| 热99国产精品久久久久久7| 亚洲图色成人| 久久鲁丝午夜福利片| 亚洲av国产av综合av卡| 大码成人一级视频| 午夜老司机福利剧场| 国产91av在线免费观看| 亚洲国产精品999| 少妇人妻一区二区三区视频| 高清不卡的av网站| 欧美日韩亚洲高清精品| 91精品一卡2卡3卡4卡| 亚洲精品视频女| 99九九线精品视频在线观看视频| 亚洲人与动物交配视频| 欧美一级a爱片免费观看看| 成人亚洲欧美一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 卡戴珊不雅视频在线播放| 日本黄色片子视频| 人妻一区二区av| 国产真实伦视频高清在线观看| 午夜免费鲁丝| 国产深夜福利视频在线观看| 夫妻性生交免费视频一级片| 又粗又硬又长又爽又黄的视频| 久久久久久人妻| 中文欧美无线码| 中文乱码字字幕精品一区二区三区| h日本视频在线播放| 观看美女的网站| a级一级毛片免费在线观看| 97超视频在线观看视频| 最近最新中文字幕大全电影3| 久久精品国产自在天天线| 建设人人有责人人尽责人人享有的 | 熟女电影av网| 18禁在线无遮挡免费观看视频| 一个人看视频在线观看www免费| 男女国产视频网站| 高清毛片免费看| 男女免费视频国产| 久久久久久久久久成人| 黄片无遮挡物在线观看| 99久国产av精品国产电影| 国产成人午夜福利电影在线观看| 26uuu在线亚洲综合色| 亚洲精品日本国产第一区| 一个人看视频在线观看www免费| 丰满人妻一区二区三区视频av| 色视频www国产| 大话2 男鬼变身卡| 啦啦啦视频在线资源免费观看| 久久这里有精品视频免费| 少妇人妻久久综合中文| 在线免费观看不下载黄p国产| av天堂中文字幕网| 久久ye,这里只有精品| 内地一区二区视频在线| 久久精品人妻少妇| 97热精品久久久久久| 亚洲久久久国产精品| 亚洲精品乱久久久久久| a级毛色黄片| 久久久久久久久久人人人人人人| 有码 亚洲区| 亚洲图色成人| 免费人妻精品一区二区三区视频| 国产精品久久久久久av不卡| 老女人水多毛片| 亚洲av欧美aⅴ国产| 国产精品女同一区二区软件| 日日摸夜夜添夜夜添av毛片| 欧美性感艳星| 国产成人一区二区在线| 天美传媒精品一区二区| 看免费成人av毛片| 91精品伊人久久大香线蕉| 伦精品一区二区三区| 噜噜噜噜噜久久久久久91| 80岁老熟妇乱子伦牲交| 亚洲精品国产色婷婷电影| 国产伦精品一区二区三区四那| 高清av免费在线| 夜夜爽夜夜爽视频| 麻豆国产97在线/欧美| 成人综合一区亚洲| 一本色道久久久久久精品综合| 尤物成人国产欧美一区二区三区| 国产成人免费观看mmmm| 亚洲人成网站高清观看| 高清av免费在线| 男人添女人高潮全过程视频| 亚洲av福利一区| 午夜福利在线在线| 久久人人爽人人片av| 亚洲一区二区三区欧美精品| 日韩一区二区三区影片| 亚洲欧美日韩无卡精品| 亚洲精品456在线播放app| 亚洲美女黄色视频免费看| 国产精品一二三区在线看| 蜜臀久久99精品久久宅男| 少妇熟女欧美另类| 街头女战士在线观看网站| 天堂俺去俺来也www色官网| 国产极品天堂在线| 免费看日本二区| 亚洲天堂av无毛| 国产精品久久久久久精品古装| 国产午夜精品久久久久久一区二区三区| 成年免费大片在线观看| 亚洲精品视频女| 在线免费观看不下载黄p国产| 亚洲一区二区三区欧美精品| 国产69精品久久久久777片| 黄片无遮挡物在线观看| 中文字幕亚洲精品专区| 在线观看一区二区三区| 高清毛片免费看| 九九久久精品国产亚洲av麻豆| 亚洲图色成人| 黑人高潮一二区| 精品久久久噜噜| 啦啦啦在线观看免费高清www| 中文字幕久久专区| 亚洲内射少妇av| 人妻 亚洲 视频| 欧美国产精品一级二级三级 | 黄色一级大片看看| 一二三四中文在线观看免费高清| 夫妻性生交免费视频一级片| 国产精品久久久久成人av| 亚洲电影在线观看av| 热99国产精品久久久久久7| 在线看a的网站| 麻豆成人午夜福利视频| 汤姆久久久久久久影院中文字幕| 日韩一区二区三区影片| 婷婷色综合大香蕉| 国产深夜福利视频在线观看| 黑人高潮一二区| 日韩电影二区| 伦理电影免费视频| 国产在线视频一区二区| 亚洲婷婷狠狠爱综合网| 日本-黄色视频高清免费观看| 在现免费观看毛片| 亚洲av国产av综合av卡| 欧美成人精品欧美一级黄| 99热国产这里只有精品6| 久久精品国产a三级三级三级| 久久久久精品久久久久真实原创| 乱码一卡2卡4卡精品| 久久99热这里只有精品18| 建设人人有责人人尽责人人享有的 | 免费高清在线观看视频在线观看| 国产精品女同一区二区软件| 久久精品久久久久久久性| 成年av动漫网址| 午夜福利网站1000一区二区三区| 国产免费视频播放在线视频| 欧美高清成人免费视频www| 日本猛色少妇xxxxx猛交久久| 老女人水多毛片| 久久久久久久久大av| 丝瓜视频免费看黄片| 日韩不卡一区二区三区视频在线| 亚洲人成网站在线播| 国产一区二区三区av在线| 久久久久国产精品人妻一区二区| 中文字幕av成人在线电影| 亚洲四区av| 国产有黄有色有爽视频| 久久午夜福利片| 99re6热这里在线精品视频| 欧美另类一区| 成人一区二区视频在线观看| 日韩三级伦理在线观看| 国产精品麻豆人妻色哟哟久久| 国产精品秋霞免费鲁丝片| 久久久久久久国产电影| 黄片无遮挡物在线观看| 秋霞在线观看毛片| 国产爱豆传媒在线观看| 国产淫片久久久久久久久| 国产精品久久久久久久电影| 欧美zozozo另类| 免费看光身美女| 天堂8中文在线网| 久久亚洲国产成人精品v| 久久久久人妻精品一区果冻| 亚洲av中文字字幕乱码综合| 亚洲国产精品国产精品| h日本视频在线播放| 夫妻午夜视频| 在线观看人妻少妇| 免费观看a级毛片全部| 亚洲精品456在线播放app| 自拍偷自拍亚洲精品老妇| 青春草国产在线视频| 免费高清在线观看视频在线观看| 国产精品嫩草影院av在线观看| 国产精品一区二区三区四区免费观看| 久久久久久久精品精品| kizo精华| 噜噜噜噜噜久久久久久91| 小蜜桃在线观看免费完整版高清| 啦啦啦在线观看免费高清www| 高清在线视频一区二区三区| 日韩精品有码人妻一区| 亚洲精品中文字幕在线视频 | 亚洲av免费高清在线观看| 91精品一卡2卡3卡4卡| 中国三级夫妇交换| 新久久久久国产一级毛片| 国产成人免费观看mmmm| 中文字幕人妻熟人妻熟丝袜美| 高清日韩中文字幕在线| 亚洲精品乱码久久久v下载方式| 欧美日韩视频精品一区| 美女高潮的动态| 亚洲精品亚洲一区二区| 下体分泌物呈黄色| 永久网站在线| 美女cb高潮喷水在线观看| 久久国产精品大桥未久av | 大香蕉97超碰在线| 欧美日韩综合久久久久久| videossex国产| 波野结衣二区三区在线| 免费观看无遮挡的男女| 99re6热这里在线精品视频| 少妇裸体淫交视频免费看高清| 熟女av电影| 国产亚洲91精品色在线| 欧美一级a爱片免费观看看| 亚洲av福利一区| av在线老鸭窝| 亚州av有码| 黄色欧美视频在线观看| 最近最新中文字幕免费大全7| 又爽又黄a免费视频| 日本vs欧美在线观看视频 | 欧美高清性xxxxhd video| 亚洲熟女精品中文字幕| 三级国产精品片| 亚洲av日韩在线播放| 久久午夜福利片| 亚洲欧美日韩东京热| 久久ye,这里只有精品| 大又大粗又爽又黄少妇毛片口| 中国三级夫妇交换| 97在线人人人人妻| 草草在线视频免费看| 国产精品久久久久久久久免| 只有这里有精品99| 免费在线观看成人毛片| 亚洲av中文av极速乱| 51国产日韩欧美| 精品熟女少妇av免费看| 免费av中文字幕在线| 日韩一区二区视频免费看| 高清日韩中文字幕在线| 亚洲精品456在线播放app| 亚洲精品视频女| 少妇 在线观看| 亚洲精品亚洲一区二区| 国产美女午夜福利| 亚洲一区二区三区欧美精品| 啦啦啦啦在线视频资源| 日本色播在线视频| 精品99又大又爽又粗少妇毛片| 最新中文字幕久久久久| av线在线观看网站| 成人国产av品久久久| 久久精品国产鲁丝片午夜精品| 国产一区二区在线观看日韩| 老熟女久久久| 久久久久视频综合| 中文字幕久久专区| 免费久久久久久久精品成人欧美视频 | av一本久久久久| 夜夜爽夜夜爽视频| 一本色道久久久久久精品综合| 中文字幕免费在线视频6| 亚洲美女黄色视频免费看| 国产中年淑女户外野战色| 亚洲av欧美aⅴ国产| 国产精品久久久久成人av| 欧美日韩综合久久久久久| 久久 成人 亚洲| 人人妻人人澡人人爽人人夜夜| 国产精品久久久久久av不卡| 国产男女超爽视频在线观看| 一区二区三区免费毛片| 色网站视频免费| 日韩免费高清中文字幕av| 夫妻性生交免费视频一级片| videossex国产| 全区人妻精品视频| 亚洲四区av| 日韩欧美 国产精品| 亚洲欧美一区二区三区国产| 日韩人妻高清精品专区| 51国产日韩欧美| 日产精品乱码卡一卡2卡三| 成年免费大片在线观看| 免费观看a级毛片全部| 老熟女久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人午夜福利电影在线观看| 视频中文字幕在线观看| 国产黄片美女视频| 国产片特级美女逼逼视频| 蜜臀久久99精品久久宅男| 国产91av在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 十八禁网站网址无遮挡 | 国产精品一区www在线观看| 少妇人妻一区二区三区视频| 精品亚洲乱码少妇综合久久| xxx大片免费视频| 中国美白少妇内射xxxbb| 91久久精品国产一区二区成人| 亚洲国产高清在线一区二区三| 狂野欧美激情性bbbbbb| 美女主播在线视频| av黄色大香蕉| 日韩av免费高清视频| 97超碰精品成人国产| 欧美zozozo另类| 成人免费观看视频高清| 最近手机中文字幕大全| 边亲边吃奶的免费视频| 国产中年淑女户外野战色| 亚洲伊人久久精品综合| 人人妻人人爽人人添夜夜欢视频 | 国产亚洲一区二区精品| 又粗又硬又长又爽又黄的视频| 国产黄片美女视频| 啦啦啦啦在线视频资源| 国产男女内射视频| 性高湖久久久久久久久免费观看| 国产精品国产三级国产专区5o| 大码成人一级视频| 亚洲av二区三区四区| 欧美3d第一页| 亚洲欧洲日产国产| 熟女电影av网| 中文字幕免费在线视频6| 亚洲av电影在线观看一区二区三区| 男女免费视频国产| 老熟女久久久| 久久久久久久精品精品| 亚洲精品乱码久久久久久按摩| 国产成人a区在线观看|