[摘 要] 在分析戶外廣告牌風(fēng)荷載的基礎(chǔ)上,通過計算廣告牌結(jié)構(gòu)上的靜態(tài)風(fēng)荷載和脈動風(fēng)荷載,利用隨機(jī)振動理論和正態(tài)分布法建立了廣告牌的風(fēng)動響應(yīng)模型和抗風(fēng)可靠度數(shù)學(xué)模型。對如何根據(jù)實際情況合理設(shè)計廣告的結(jié)構(gòu)體系,提高其抗風(fēng)能力,構(gòu)建了一個比較完善的計算方法。
[關(guān)鍵詞] 風(fēng)荷載 風(fēng)動響應(yīng) 可靠度 數(shù)學(xué)模型
一、引言
隨著科學(xué)技術(shù)與經(jīng)濟(jì)的發(fā)展,越來越多的戶外廣告牌呈現(xiàn)出體型結(jié)構(gòu)的高大化、復(fù)雜化和柔性化的趨勢,其結(jié)構(gòu)材料也朝著高強、輕質(zhì)的方向變化,使得廣告牌對風(fēng)的敏感性越來越強。浙江省作為一個沿海省份,在歷年的臺風(fēng)過程中,戶外廣告牌損毀的現(xiàn)象比較嚴(yán)重.從損毀形式看,主要有以下幾種情形:(1)廣告牌結(jié)構(gòu)橫截面或構(gòu)件的內(nèi)力達(dá)到(超過)設(shè)計極限,在一次臺風(fēng)過程中斷裂、失穩(wěn)或倒塌;(2)廣告牌結(jié)構(gòu)因長時間疲勞累積損傷,引起后續(xù)性結(jié)構(gòu)破壞,至使不能正常工作;(3)廣告牌架上的面板或裝飾材料損毀。
因此,如何合理設(shè)計戶外廣告牌的框架和外形結(jié)構(gòu)體系,降低廣告牌承受的風(fēng)荷載,提高其抗臺風(fēng)能力的可靠度,顯得尤為重要。
二、問題的分析與模型的建立
在進(jìn)行戶外廣告牌抗風(fēng)能力研究時,通常實測到的是風(fēng)速,但在廣告牌工程設(shè)計過程中要考慮的是廣告牌在臺風(fēng)(強風(fēng))過程中承受的風(fēng)壓,因此,在研究中需要把風(fēng)速轉(zhuǎn)換成風(fēng)壓。一般地,臺風(fēng)(強風(fēng))可根據(jù)作用形式分解成不隨時間變化的平均風(fēng)和隨時間變化的脈動風(fēng)兩部分,它們對廣告牌結(jié)構(gòu)產(chǎn)生平均風(fēng)荷載和脈動風(fēng)荷載等,當(dāng)然,廣告牌承受的風(fēng)荷載不僅與近地風(fēng)的性質(zhì)、風(fēng)速、風(fēng)向有關(guān),也與廣告牌的高度、形狀和地表狀況等相關(guān)。
根據(jù)20世紀(jì)60年代A·G·Davenport提出風(fēng)振理論,在我國的相關(guān)建筑規(guī)范中,給出了相應(yīng)結(jié)構(gòu)表面在高度 處的風(fēng)荷載的計算公式:
(1)
其中,Wz為風(fēng)荷載的標(biāo)準(zhǔn)值(KN/m2);μs為風(fēng)荷載體型系數(shù); A為廣告牌迎風(fēng)投影面積;P為空氣密度(hPa);(hpa);V(z,t)為來流風(fēng)速(m/s)。
在不同地域,根據(jù)氣候環(huán)境和地形地貌的變化,空氣密度p可按文獻(xiàn)中的公式計算。
根據(jù)貝努利方程知,若某地比較空曠平坦地面上離地10m高統(tǒng)計所得的50年一遇10min平均最大風(fēng)速為V0(m/s),則當(dāng)?shù)氐幕撅L(fēng)壓為:
(2)
隨著廣告牌高度和體型的變化,在不同高度z處,臺風(fēng)(強風(fēng))對廣告牌產(chǎn)生的風(fēng)壓也是不斷變化的,因此若用表示Cw(z)為高度z處單位高度上的力系數(shù),其中
Cw(z)=μs·A(3)
則廣告牌在高度z處的風(fēng)荷載又可以簡單地表示為:
(4)
從式(1)可以看出,廣告牌風(fēng)荷載不僅和臺風(fēng)(強風(fēng))的風(fēng)速相關(guān),同時與廣告牌的風(fēng)荷載體型系數(shù)以及廣告的迎風(fēng)投影面積相關(guān)。
1.平均風(fēng)荷載和脈動風(fēng)荷載的計算
若將風(fēng)速V(z,t)分解為平均風(fēng)速(z)和脈動風(fēng)速v(z,t),即
V(z,t)=(z)+v(z,t)(5)
將式(5)代入式(4)得
(6)
相對于平均風(fēng)(z)而言,脈動風(fēng)v(z,t)<<(z),忽略二階小量,得
在高度z處平均風(fēng)(z)作用于廣告牌的平均風(fēng)荷載為:
(7)
在高度z處脈動風(fēng)v(z,t)作用于廣告牌的脈動風(fēng)荷載為:
(8)
由式(7)、(8)可知,式(4)可近似地表示為
(9)
脈動風(fēng)荷載的均方根為:
(10)
其中,,為沿高度z的來流湍流度。
2.體型系數(shù)的計算
廣告牌在高度 處的風(fēng)荷載除與臺風(fēng)的風(fēng)速密切相關(guān)外,同時與廣告牌的風(fēng)荷載體型系數(shù)和廣告牌的迎風(fēng)投影面積相關(guān)。其中,風(fēng)荷載體型系數(shù)指風(fēng)在廣告牌表面引起的實際壓力或吸力與來流風(fēng)壓的比值,因此,廣告牌在高度 處的體型系數(shù)可簡單表示為:
(11)
由于廣告牌各面上各點的風(fēng)壓比值并不相等,為了計算簡化,在廣告牌高度 處的體型系數(shù),當(dāng)測點布置比較均勻時,可記為
(12)
因此,如何合理改當(dāng)前常見的平面面析結(jié)構(gòu)為弧線性結(jié)構(gòu),保證在相同表面積大小的前提下,減少廣告牌的迎面投影面積和廣告牌正面受風(fēng)力作用的強度,是一個重要的研究課題。
3.廣告牌的風(fēng)動響應(yīng)和可靠度模型
在平均風(fēng)荷載的作用下,廣告牌產(chǎn)生靜力變形,此時廣告牌的平均風(fēng)動響應(yīng)可根據(jù)靜力方程求解:
(13)
其中、、分別表示廣告牌的剛度矩陣、平均風(fēng)動響應(yīng)矩陣和平均風(fēng)荷載矩陣。
在脈動風(fēng)壓的作用下,廣告牌可以看做是一個多自由度的質(zhì)點桿體系,此時廣告牌的脈動風(fēng)振動可以利用脈動風(fēng)有限元動力方程模型求解:
MS0+CS0+KS=F (14)
其中,M、C、K分別為廣告牌的質(zhì)量矩陣、阻尼矩陣和剛度矩陣;S為廣告牌的風(fēng)動響應(yīng)矩陣;F為脈動風(fēng)荷載矩陣,它的第 i個元素為μs(zi)A(zi)ω(zi,t),其中μs(zi)、A(zi)、ω(zi,t)分別為高度zi處的體型系數(shù)、迎風(fēng)面積和脈動風(fēng)荷載。
根據(jù)式(13)、(14)可以建立廣告牌的風(fēng)動響應(yīng)模型:
S(t)=+sd(t)(15)
其中,S(t)、、sd(t)分別表示廣告牌的總風(fēng)動響應(yīng),平均風(fēng)動響應(yīng)和脈動風(fēng)動響應(yīng)。
當(dāng)廣告牌結(jié)構(gòu)在臺風(fēng)(強風(fēng)(作用下,其風(fēng)動響應(yīng)超越規(guī)范規(guī)定的限值(安全界限)的概率在規(guī)定的范圍之內(nèi)時,才是安全的。設(shè)廣告牌在建立時(t=0)處于可靠狀態(tài),那么隨機(jī)過程x(t)在時間 (0,T]內(nèi)不超過界限x=b的概率為
Ps(b)=P{X(T)≤b,0 等價于求首次超越破壞時間Tf的概率分布函數(shù),即 Ps(b)=1-P{Tf≤t,0 利用正態(tài)分布理論,可以建立廣告牌在一次強風(fēng)作用下的動力可靠度模型為: (18) 其中F(W0)為一次強風(fēng)的10min最大平均風(fēng)壓的概率密度函數(shù)。 為了計算方便,將式(18)作離散化處理,則可建立模型為: (19) 其中F(P)為一次強風(fēng)的10min最大平均風(fēng)壓的概率分布,m是將平均風(fēng)壓劃分的等級數(shù)。 如果在某一地區(qū)時間(0,T]內(nèi)發(fā)生強風(fēng)次數(shù)為k次的概率為Pk(t),那么廣告牌在設(shè)計基準(zhǔn)期T內(nèi)抗風(fēng)的動力可靠度模型為: (20) 一般地,Pk(t)服從于普阿松分布,即 (21) 其中υ表示單位時間內(nèi)強風(fēng)發(fā)生的平均次數(shù),在實際計算過程中,單位時間長度可設(shè)為1a。 將式(21)代入式(20),整理得廣告牌結(jié)構(gòu)在風(fēng)載作用下破壞的概率為 (22) 三、結(jié)論 本文通過分析廣告牌的風(fēng)荷載構(gòu)成,建立了廣告牌的風(fēng)動響應(yīng)模型,以及廣告牌的抗風(fēng)可靠度數(shù)學(xué)模型,對如何合理設(shè)計廣告的框架和外形結(jié)構(gòu)體系,提高其抗臺風(fēng)(強風(fēng))能力構(gòu)建了一個比較完善的數(shù)學(xué)模型,為實際問題的抗風(fēng)設(shè)計有較為重要的指導(dǎo)意義。 參考文獻(xiàn): [1]哈莉婭·達(dá)力列汗:高層建筑風(fēng)荷載及其抗風(fēng)設(shè)計[J].工業(yè)建筑,2005,35(增刊):271~275 [2]甘鳳林 潘茲勇:高層建筑和高聳結(jié)構(gòu)的搞風(fēng)設(shè)計探討[J].山西建筑,2007,33(8):9~10 [3]何艷麗 李 燕:單層筒殼的風(fēng)振響應(yīng)及實用抗風(fēng)設(shè)計方法[J].空間結(jié)構(gòu),2006,12(3):7~11 [4]羅乃東 趙國藩:高層、高聳結(jié)構(gòu)抗風(fēng)動力可靠度[J].大連理工大學(xué)學(xué)報,2002,42(2):208~212 注:本文中所涉及到的圖表、注解、公式等內(nèi)容請以PDF格式閱讀原文