• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Dynamics Simulations on the Role of Structural Mg2+Ions in Phosphoryl Transfer Catalyzed by GSK-3β

    2014-10-14 03:44:12SUNHaoJIANGYongJunYUQingSenGAOHui
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:林業(yè)大學(xué)構(gòu)象糖原

    SUN Hao JIANG Yong-Jun YU Qing-Sen GAO Hui

    (1Southwest Forestry University,Kunming 650224,P.R.China;2Key Laboratory for Molecular Design and Nutrition Engineering of Ningbo City,Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,Zhejiang Province,P.R.China;3Department of Chemistry,Zhejiang University,Hangzhou 310027,P.R.China)

    Molecular Dynamics Simulations on the Role of Structural Mg2+Ions in Phosphoryl Transfer Catalyzed by GSK-3β

    SUN Hao1JIANG Yong-Jun2,*YU Qing-Sen3GAO Hui3

    (1Southwest Forestry University,Kunming 650224,P.R.China;2Key Laboratory for Molecular Design and Nutrition Engineering of Ningbo City,Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,Zhejiang Province,P.R.China;3Department of Chemistry,Zhejiang University,Hangzhou 310027,P.R.China)

    Abstract:Glycogen synthase kinase-3β (GSK-3β)is a kind of serine/threonine protein kinase.It regulates the synthesis of glycogen and plays an important part in several signal pathways.It is believed to be an important target for a number of diseases such as diabetes,cancers,chronic inflammation,and Alzheimer′s disease.Mg2+ions are conserved structural metal ions in GSK-3β and they interact with adenosine-triphosphate(ATP).They are very important in phosphoryl transfer in the kinase.In this paper,the effect of two Mg2+ions(Mg,Mg)on GSK-3β is illustrated.Mg2+can stabilize the conformation of GSK-3β and ATP.Without Mg2+,the stabilization of GSK-3β reduces explicitly and the conformation of ATP changes.Mgis important in the phosphorylation reaction while Mgis essential and Lys183 alone cannot maintain the conformation of ATP without the assistance of Mg.ATP forms intramolecular hydrogen bonds and adopts a folded conformation when both Mgand Mgare absent.

    Key Words: GSK-3β kinase;Phosphoryl transfer;Mg2+;Structural metal ion;Molecular dynamics simulation

    There are more than 500 protein kinase genes identified,representing about 1.7%of all human genes[1].In the large and very diverse family of protein kinases,glycogen synthase kinase-3(GSK-3)is of particular interest.It was originally identified in 1980 and was initially believed to phosphorylate and inactivate glycogen synthase(GS)which was the rate-limiting enzyme of glycogen biosynthesis[2].It is ubiquitously expressed in eukaryote[3-4].There are two major isoforms of GSK-3 in mammals:GSK-3β and GSK-3α,which are encoded by different genes.The kinase domain sequences of the two isoforms are almost the same and the main differences occur at the N and C termini[5-7].

    Many different pathways have been described in which GSK-3β plays an important role.Historically GSK-3β fulfilled a significant role in the insulin/IGF1(insulin-like growth factor 1)and Wnt/Shaggy signaling pathways.However,recently it has become clear that GSK-3β is present in many other pathways such as those involving NGF(nerve growth factor)signaling,estradiol signaling,or reelin pathways[8].

    GSK-3β phosphorylates many of its substrates via a primedphosphorylation mechanism,recognizing the canonical phosphorylation motif SXXXpS.This motif contains the phosphoaccepting Ser or Thr that is separated by three residues from a phospho-serine or phospho-threonine.The phosphorylation mechanism is called primed-phosphorylation because a different kinase must first phosphorylate the substrate at the P+4 position before GSK-3β can phosphorylate the P0 residue[9].

    Since GSK-3β has more than 40 substrates and the list is still growing[10],it has being considered as one of the most promising drug targets for adult onset type 2 diabetes[11-13],stroke[14-15],neurodegenerative disorders(Alzheimer′s disease)[16-17],bipolar disorder[18],and schizophrenia[19-20],acute inflammatory processes[21],cancer[2223],and so forth.

    Structural metal ions are important.They can influence the structure of kinases,and the binding of structural metal ions is energetically favored[24].Mg2+is conserved structural metal ion in GSK-3β.Experimental studies[8]on GSK-3β revealed that in GSK-3β,two Mg2+binding sites mainly involve the conserved residues Asn186 and Asp200,like PKA(protein kinase A),CDK(cyclin-dependent kinases)and other protein kinases.

    Many studies showed that Mg2+could increase the activity of GSK-3β,but the details of Mg2+function in GSK-3β still were indistinct.However,some useful information can be learned by referring the other kinase:PKA,because of the structural similarity[8].In PKA,Mg(Mg2+binding with β-and γ-phosphates of ATP)is generally identified as a catalytic activator,while Mg(Mg2+binding with α-and γ-phosphates of ATP)as an inhibitor[25-26].Ab initio studies[1]on PKA revealed that the phosphorylation reaction probably proceeded through a mainly dissociative transition state,and the conserved Asp166(corresponding to Asp181 in GSK-3β)served as the catalytic base to accept the late proton transfer,shown in Fig.1.That study also reported that both metal ions contributed greatly to lower the energy barrier through electrostatic interactions,and the catalytic role of Lys168(corresponding to Lys183 in GSK-3β)was demonstrated to keep ATP and substrate peptide in the near-attack reactive conformation[1,27-28].Because of the conservation of kinase domain structures,we can presume the functions of Mg2+in GSK-3β on the foundation of PKAstudies.In order to reveal the functions of Mg2+in GSK-3β,we performed computational studies on GSK-3β using molecular mechanical methods.In this paper,four enzyme complexes were investigated,which respectively contained two Mg2+,Mgonly,Mgonly,and no Mg2+.

    1 Computational methods

    1.1 Preparation of the systems

    The structure of GSK-3β in a complex with ATP mimic AMP-PNP(PDB code:1PYX)was chosen as the initial structure.Absent residues on disordered loop of the crystal structure were added and the conformations of the residues were modeled using Loop Search module of Sybyl 6.8(Tripos Inc.).The structure of AMP-PNP was changed to that of ATP by replacing the nitrogen atom N3B in 1PYX with an oxygen atom.Four systems were prepared.System 1,complex-2Mg featured GSK-3β with ATP and two Mg2+ions.System 2,complex-MgI,featured GSK-3β with ATP and Mg,whileMgwas removed.System 3,complex-MgII featured GSK-3β with ATP and Mgwhile Mgwas removed.System 4,complex-noMg,featured GSK-3β withATP,while both Mgand Mgwere removed.

    1.2 Molecular dynamics simulations

    Molecular dynamics simulations were carried out on the four systems respectively,using the SANDER module of AMBER 9.0 with the Amber FF03[29-30]and GAFF force field[31].The parameters of ATP were provided by Amber web site[32].All simulations were carried out at neutral pH.Lys and Arg residues were positively charged,and Asp and Glu residues were negatively charged.Default His protonation state in AMBER9 was adopted.To maintain the electroneutrality of the systems,seven counterions(Cl-)were added into complex-2Mg;fivecounterions(Cl-)were added into complex-MgI and complex-MgII;and three counterions(Cl-)were added into complex-noMg.Every system was immersed in a 1 nm truncated octahedron periodic water box,and the structure water molecules were maintained.The box of water molecules in all systems contained around 13635 TIP3P[33]water molecules.A 2 fs time step was used in all simulations,and long-range electrostatic interactions were treated with the particle mesh Ewald(PME)procedure[34]with a 1 nm non-bonded cutoff.Bond lengths involving hydrogen atoms were constrained using the SHAKE algorithm[35].All systems were minimized prior to the production run.The minimization employed SANDER module under constant volume condition.The solvent molecules were firstly relaxed,while all heavy atoms in both protein and ATP were restrained with forces of 2.0×105kJ·mol-1·nm-2.Then,the systems were continually relaxed.All heavy atoms of the system were restrained with forces of 2.0×105kJ·mol-1·nm-2,except the atoms of the residues modeled by Loop Search module of Sybyl 6.8.Finally,all restraints were lifted and whole system was relaxed.The 3 steps above all featured 1000 cycles of steepest descent followed by 1000 cycles of conjugate gradient minimization.After the relaxation,300 ps of MD simulations were carried out at constant volume,with 4.0×103kJ·mol-1·nm-2restraint on solute.Then 2 ns of equilibration MD followed by 3 ns of production MD were respectively carried out on all systems at constant pressure(101325 Pa).All simulations were performed at 300 K.

    2 Results and discussion

    The root-mean-squared deviations(RMSD)value curves of backbone atoms during the MD simulation have been obtained.The curves in Fig.2 show that corresponding to the relaxation of the systems,the RMSD values of backbone atoms of the complex increase slowly before 1000 ps.And after 1000 ps,the RMSD values are fairly stable around 0.20 nm.The total potential energy fluctuates around a constant mean value after 2 ns.This indicates that the systems attain equilibrium.

    Mg2+can stabilize the structure of GSK-3β.RMS fluctuation(RMSF)values from structure provide an approach to evaluate the convergence of the dynamical properties of the system.As shown in Fig.3,the fluctuation values of complex-2Mg(black curve)are the lowest,while the values of complex-noMg(blue curve)are the highest.The fluctuation values of systems containing only one Mg2+are moderate,and the values of complex-MgI(green curve)are lower than that of complex-MgII(red curve).These indicate that Mg2+can stabilize GSK-3β,just like Mg2+in other kinases[26,36].Furthermore,we can conclude that Mgis more powerful than Mgin stabilizing GSK-3β,because of the lower fluctuation values of complex-MgI.

    Mg2+can influence the conformation of ATP.The stability of conformation of ATP is essential to catalytic reaction[37-38].RMSD values of ATP in different systems during simulations confirm the importance of Mg2+and the necessity of Mg.As shown in Fig.4,the RMSD values of ATP of complex-2Mg(black curve)and complex-MgI(green curve)are stable around 0.025 nm,while the values of complex-MgII are stable around 0.050 nm(red curve).The RMSD values of ATP of complex-noMg(blue curve)increase continuously,corresponding to remarkable conformation change of ATP,which is adverse to phosphoryl transfer.

    To facilitate phosphoryl transfer,ATP and substrates must keep the near-attack reactive conformations(in-line phosphoryl transfer mechanism)[38].The right conformation of ATP is guaranteed by the H-bond between γ-phosphate of ATP and conserved Lys183[1,39-40].As shown in Fig.5(a),in complex-2Mg,the oxygen atom on γ-phosphate of ATP can form H-bond with Lys183,and ATP can adopt right conformation.As shown in Fig.5(d),in complex-noMg,ATP moves away from phosphate transfer region and forms H-bond with Asn64 and Ser66,but without Lys183.As shown in Fig.5(b),in complex-MgII,ATP can form H-bond with Lys183,while as shown in Fig.5(c),in complex-MgI,ATP does not form H-bond with Lys183,but forms H-bond with Ser66.These indicate that Mgplays an important role in keeping the right position of γ-phosphate ofATP.

    Mg2+can influence the interactions between ATP and Lys85.Lys85 is a conserved catalytic residue which anchors α-and βphosphate of ATP by H-bond.Experimental studies illustrated that if Lys85 was mutated to Arg,GSK-3β would lose its activity[37,41].Calculation studies showed that in kinase,PKA for example,this conserved Lys could strongly stabilize the transition state through electrostatic interactions during phosphoryl transfer[1].To investigate the effect of Mg2+on the interactions between ATP and Lys85,the distances between atoms were monitored:the distances between the oxygen atom of ATP,O1α,and the nitrogen atom of Lys85,NZ,are shown in Fig.6;the distances between the oxygen atom of ATP,O2β,and the nitrogen atom of Lys85,NZ,are shown in Fig.7.As shown in Fig.6 and Fig.7,in complex-2Mg(black curve)and complex-MgI(green curve),the distances between O1αand NZ,and between O2βand NZ are around 0.30 nm,which indicates that stable H-bond between ATP and Lys85 can form,referring to Fig.5(a)and Fig.5(c).In complex-MgII(red curve),the distances are more than 0.35 nm,which indicates that stable H-bonds between ATP and Lys85 can not form,referring to Fig.5(b).In complex-noMg(blue curve),the distances increase continuously,which indicates that ATP is moving away from Lys85,referring to Fig.5(d).The interactions between ATP and Lys85 are important to phosphoryl transfer.The important roles of Mgare evident,because the interactions are demolished when Mgions are absent.

    Mg2+can influence the formation of the conserved H-bonds between adenine moiety of ATP and GSK-3β.The H-bonds between adenine moiety of ATP and Asp133,Val135 are conserved in kinase ATP binding sites[6].These H-bonds can strengthen the binding of ATP to kinases.As shown in Figs.5(a),5(b),and 5(c),in complex-2Mg,complex-MgII,and complex-MgI,the conserved H-bonds can form.As shown in Fig.5(d),in complex-noMg,the conserved H-bonds can not form,suggesting the drifting of ATP in binding site and the weakening ofATP binding.

    We found interesting phenomena during the simulations.Without Mg2+,ATP can form an intramolecular H-bond intermittently,like ATP in CheA histidine kinase[42].The distances between O3′and O1αwere monitored.As shown in Fig.8,in complex-2Mg(black curve),complex-MgII(red curve),and complex-MgI(green curve),the distances between O3′and O1αareabout 0.60 nm.H-bond can not form obviously.In complexnoMg(blue curve),the distances swing between 0.25 and 0.40 nm,indicating the intermittent forming of H-bond between O3′and O1α,Fig.9 shows the process of the H-bond formation.When this H-bond forms,ATP will adopt folded conformation,which is adverse to phosphoryl transfer.

    3 Conclusions

    Mg2+ions stabilize the structure of GSK-3β.Complex containing two Mg2+ions has the lowest RMSF values,while complex containing no Mg2+ion has the highest RMSF values.Mg2+Iis more powerful than Mgin stabilizing GSK-3β,because the RMSF values of complex-MgI are lower than those of complex-MgII.Mg2+can also stabilize the conformation of ATP.Without Mg2+,conformation of ATP will change remarkably and the in-line phosphoryl transfer mechanism will be demolished.Mgguarantees the interactions between ATP and Lys85,while Mgguarantees the right position of γ-phosphate of ATP.Without Mg2+,the conserved H-bonds between adenine moiety ofATP and GSK-3β can not form,and the binding of ATP will weaken.Without Mg2+,an intramolecular H-bond of ATP will form intermittently,which disturbs the catalytic reaction.Mg2+ions take an important role in GSK-3β.Mgseems more important than Mg,while Mgis not dispensable.

    1 Cheng,Y.H.;Zhang,Y.K.;McCammon,J.A.J.Am.Chem.Soc.,2005,127:1553

    2 Embi,N.;Rylatt,D.B.;Cohen,P.Eur.J.Biochem.,1980,107:519

    3 Cross,D.A.;Alessi,D.R.;Cohen,P.;Andelkovich,M.;Hemmings,B.A.Nature,1995,378:785

    4 Hoeflich,K.P.;Luo,J.;Rubie,E.A.;Tsao,M.S.;Jin,O.;Woodgett,J.R.Nature,2000,406:86

    5 Sun,H.;Jiang,Y.J.;Yu,Q.S.;Zou,J.W.Acta Phys.-Chim.Sin.,2009,25:635 [孫 浩,蔣勇軍,俞慶森,鄒建衛(wèi).物理化學(xué)學(xué)報(bào),2009,25:635]

    6 Zhang,N.;Jiang,Y.J.;Zou,J.W.;Zhuang,S.L.;Jin,H.X.;Yu,Q.S.Proteins,2007,67:941

    7 Zhang,N.;Jiang,Y.J.;Zou,J.W.;Zhang,B.;Wang,Y.H.;Yu,Q.S.Eur.J.Med.Chem.,2006,41:373

    8 Martinez,A.;Castro,A.;Medina,M.Glycogen synthase kinase 3(gsk-3)and its inhibitors.New Jersey:Wiley,2006:51-54

    9 Fiol,C.J.;Wang,A.;Roeske,R.W.;Roach,P.J.J.Biol.Chem.,1990,265:6061

    10 Jope,R.S.;Johnson,G.V.Trends Biochem.Sci.,2004,29:95

    11 Summers,S.A.;Kao,A.W.;Kohn,A.D.;Backus,G.S.;Roth,R.A.;Pessin,J.E.;Birnbaum,M.J.J.Biol.Chem.,1999,274:17934

    12 Ross,S.E.;Erickson,R.L.;Hemati,N.;MacDougald,O.A.Mol.Cell.Biol.,1999,19:8433

    13 Wagman,A.S.;Johnson,K.W.;Bussiere,D.E.;Curr.Pharm.Des.,2004,10:1105

    14 Martinez,A.;Castro,A.;Dorronsoro,I.;Alonso,M.Med.Res.Rev.,2002,22:373

    15 Schafer,M.;Goodenough,S.;Moosmann,B.;Behl,C.Brain Res.,2004,1005:84

    16 Phiel,C.J.;Wilson,C.A.;Lee,V.M.;Klein,P.S.Nature,2003,423:435

    17 Hernandez,F.;Perez,M.;Lucas,J.J.;Mata,A.M.;Bhat,R.;Avila,J.J.Biol.Chem.,2004,279:3801

    18 Gould,T.D.;Zarate,C.A.;Manji,H.K.J.Clin.Psych.,2004,65:10

    19 Emamian,E.S.;Hall,D.;Birnbaum,M.J.;Karayiorgou,M.;Gogos,J.A.Nat.Genet.,2004,36:131

    20 Bhat,R.V.;Budd,H.S.L.;Avila,J.J.Neurochem.,2004,89:1313

    21 Ghosh,S.;Karin,M.Cell,2002,109:81

    22 Peifer,M.;Polakis,P.Science,2000,287:1606

    23 Pap,M.;Cooper,G.M.J.Biol.Chem.,1998,273:19929

    24 Diaz,N.;Suarez,D.Biochemistry,2007,46:8943

    25 Ryves,W.J.;Dajani,R.;Pearl,L.;Harwood,A.J.Biochem.Biophys.Res.Commun.,2002,290:967

    26 Herberg,F.W.;Doyle,M.L.;Cox,S.;Taylor,S.S.Biochemistry,1999,38:6352

    27 Valiev,M.;Kawai,R.;Adams,J.A.;Weare,J.H.J.Am.Chem.Soc.,2003,125:9926

    28 Diaz,N.;Field,M.J.J.Am.Chem.Soc.,2004,126:529

    29 Duan,Y.;Wu,C.;Chowdhury,S.;Lee,M.C.;Xiong,G.;Zhang,W.;Yang,R.;Cieplak,P.;Luo,R.;Lee,T.J.Comput.Chem.,2003,24:1999

    30 Lee,M.C.;Duan,Y.Proteins,2004,55:620

    31 Wang,J.;Wolf,R.M.;Caldwell,J.W.;Kollamn,P.A.;Case,D.A.J.Comput.Chem.,2004,25:1157

    32 Meagher,K.L.;Redman,L.T.;Carlson,H.A.J.Comput.Chem.,2003,24:1016

    33 Jorgensen,W.L.;Chandrasekhar,J.;Madura,J.;Klein,M.L.J.Chem.Phys.,1983,79:926

    34 Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.,1993,98:10089

    35 Ryckaert,J.P.;Ciccotti,G.;Berendsen,H.J.C.J.Comput.Phys.,1977,23:327

    36 Adams,J.A.;Taylor,S.S.Biochemistry,1992,31:8516

    37 Hao,S.;Jiang,Y.J.;Yu,Q.S.;Luo,C.C.;Zou,J.W.Biochem.Biophys.Res.Commun.,2008,377:962

    38 http://dx.doi.org/10.1007/s00894-010-0738-0

    39 Hanks,S.K.;Quinn,A.M.Methods Enzymol.,1991,200:38

    40 Knighton,D.R.;Cadena,D.L.;Zheng,J.H.;Teneyck,L.F.;Taylor,S.S.;Sowadski,J.M.;Gill,G.N.Proc.Natl.Acad.Sci.U.S.A.,1993,90:5001

    41 Gómez-Sintes,R.;Hernandez,F.;Avila,J.;Gotteland,J.P.;Zaratin,P.;Lucas,J.J.SENC.Rev.Neurol.,2005,41:71

    42 Zhang,J.;Xu,Y.H.;Shen,J.H.;Luo,X.M.;Chen,J.G.;Chen,K.X.;Zhu,W.L.;Jiang,H.L.J.Am.Chem.Soc.,2005,127:11709

    分子動(dòng)力學(xué)模擬研究結(jié)構(gòu)金屬鎂離子在GSK-3β激酶磷酸化中的作用

    孫 浩1蔣勇軍2,*俞慶森3高 慧3

    (1西南林業(yè)大學(xué),昆明650224;2浙江大學(xué)寧波理工學(xué)院分子設(shè)計(jì)與營養(yǎng)工程市重點(diǎn)實(shí)驗(yàn)室,浙江寧波315100;3浙江大學(xué)化學(xué)系,杭州310027)

    糖原合成酶激酶-3β(GSK-3β)是一種絲氨酸/蘇氨酸蛋白激酶,調(diào)節(jié)糖原合成酶的活性,并在生物體內(nèi)的多條信號通路中發(fā)揮作用.GSK-3β是糖尿病,腫瘤,急性炎癥,早老性癡呆等多種復(fù)雜疾病的藥物作用靶標(biāo).Mg2+是GSK-3β激酶的保守結(jié)構(gòu)金屬離子,與三磷酸腺苷(ATP)分子作用,在激酶的磷酸化中扮演重要的角色,本文闡明了兩個(gè)Mg2+離子(Mg,Mg)在激酶磷酸化中的作用:Mg2+穩(wěn)定GSK-3β與ATP的構(gòu)象.缺乏Mg2+離子,GSK-3β結(jié)構(gòu)的柔性增強(qiáng),同時(shí)ATP的構(gòu)象發(fā)生改變,相對Mg離子而言,Mg離子在磷酸化反應(yīng)中的作用更突出,但Mg離子也是必不可少的,如果沒有Mg離子,Lys183無法獨(dú)立穩(wěn)定ATP的合適構(gòu)象.當(dāng)兩個(gè)Mg2+離子都不存在時(shí),ATP形成分子內(nèi)的氫鍵,成為一種折疊的構(gòu)象.

    GSK-3β激酶; 磷酸化;Mg2+; 結(jié)構(gòu)金屬離子; 分子動(dòng)力學(xué)模擬

    O641

    Received:September 1,2010;Revised:October 15,2010;Published on Web:November 30,2010.

    ?Corresponding author.Email:yjjiang@nit.zju.edu.cn;Tel:+86-574-88229517.

    The project was supported by the National High Technology Research and Development Program of China(863)(2007AA02Z301),National Natural Science Foundation of China(20803063),Natural Science Foundation of Ningbo,China(2010A610024),and Key Scientific Research Foundation of Southwest Forestry University,China(110932).

    國家高技術(shù)研究發(fā)展計(jì)劃(863)(2007AA02Z301),國家自然科學(xué)基金(20803063),寧波市自然科學(xué)基金(2010A610024)及西南林業(yè)大學(xué)重點(diǎn)科研基金(110932)資助項(xiàng)目

    猜你喜歡
    林業(yè)大學(xué)構(gòu)象糖原
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    糖原在雙殼貝類中的儲(chǔ)存、轉(zhuǎn)運(yùn)和利用研究進(jìn)展
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    體育運(yùn)動(dòng)后快速補(bǔ)糖對肌糖原合成及運(yùn)動(dòng)能力的影響
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    王建設(shè):糖原累積癥
    肝博士(2021年1期)2021-03-29 02:32:08
    一種一枝黃花內(nèi)酯分子結(jié)構(gòu)與構(gòu)象的計(jì)算研究
    玉米麩質(zhì)阿拉伯木聚糖在水溶液中的聚集和構(gòu)象
    Cu2+/Mn2+存在下白花丹素對人血清白蛋白構(gòu)象的影響
    亚洲欧美一区二区三区黑人| 国产精品免费大片| 啦啦啦中文免费视频观看日本| a 毛片基地| 新久久久久国产一级毛片| 高清视频免费观看一区二区| 如日韩欧美国产精品一区二区三区| 亚洲avbb在线观看| 久热爱精品视频在线9| 国产深夜福利视频在线观看| 国产在线免费精品| 欧美日韩成人在线一区二区| 亚洲国产精品一区三区| 国产日韩欧美视频二区| 国产精品久久久人人做人人爽| 精品免费久久久久久久清纯 | 交换朋友夫妻互换小说| 老司机福利观看| 国产亚洲精品一区二区www | 亚洲三区欧美一区| 亚洲av美国av| 麻豆国产av国片精品| 国产精品一区二区在线不卡| 久久国产精品影院| 18禁国产床啪视频网站| 后天国语完整版免费观看| 国产人伦9x9x在线观看| 侵犯人妻中文字幕一二三四区| 美女中出高潮动态图| 免费观看av网站的网址| 中文精品一卡2卡3卡4更新| 天天躁日日躁夜夜躁夜夜| 欧美+亚洲+日韩+国产| 精品人妻熟女毛片av久久网站| 亚洲人成电影观看| www.熟女人妻精品国产| 激情视频va一区二区三区| 热99久久久久精品小说推荐| 麻豆av在线久日| 国产男女内射视频| 一边摸一边做爽爽视频免费| 在线精品无人区一区二区三| 精品国产乱码久久久久久小说| 黄色a级毛片大全视频| 午夜两性在线视频| 老汉色av国产亚洲站长工具| 美女主播在线视频| 一级毛片精品| 精品人妻1区二区| 国产一区二区三区在线臀色熟女 | 精品人妻1区二区| 久久精品人人爽人人爽视色| 人人妻人人澡人人看| 国产99久久九九免费精品| 国产精品久久久久久精品古装| 久久中文看片网| 亚洲av国产av综合av卡| 人人妻人人添人人爽欧美一区卜| 成年av动漫网址| 国产精品av久久久久免费| 美女脱内裤让男人舔精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 男女高潮啪啪啪动态图| 日韩免费高清中文字幕av| 国内毛片毛片毛片毛片毛片| 国产成人欧美在线观看 | 亚洲人成电影观看| 波多野结衣一区麻豆| 操美女的视频在线观看| 欧美中文综合在线视频| 精品少妇久久久久久888优播| 中文字幕精品免费在线观看视频| 久热爱精品视频在线9| 99国产极品粉嫩在线观看| 亚洲,欧美精品.| 久久av网站| 男女床上黄色一级片免费看| 亚洲av日韩精品久久久久久密| 亚洲av欧美aⅴ国产| 69精品国产乱码久久久| 午夜激情久久久久久久| 黄色毛片三级朝国网站| 美女国产高潮福利片在线看| 久久久久久久国产电影| 午夜免费观看性视频| 亚洲av日韩精品久久久久久密| 亚洲一码二码三码区别大吗| 日本av免费视频播放| 99香蕉大伊视频| 伦理电影免费视频| 日日摸夜夜添夜夜添小说| 精品久久久精品久久久| 午夜视频精品福利| 宅男免费午夜| 视频在线观看一区二区三区| 欧美中文综合在线视频| 窝窝影院91人妻| 999精品在线视频| 国产一区二区三区综合在线观看| 亚洲免费av在线视频| 久久精品亚洲熟妇少妇任你| avwww免费| 99国产精品免费福利视频| 黄色视频不卡| 中国国产av一级| 两个人看的免费小视频| 91九色精品人成在线观看| 亚洲欧美激情在线| 免费黄频网站在线观看国产| 十八禁网站网址无遮挡| av网站免费在线观看视频| 两人在一起打扑克的视频| 中国国产av一级| 亚洲va日本ⅴa欧美va伊人久久 | 可以免费在线观看a视频的电影网站| 欧美大码av| av免费在线观看网站| 波多野结衣av一区二区av| 天天操日日干夜夜撸| 久久久久精品国产欧美久久久 | 亚洲精品中文字幕一二三四区 | 不卡av一区二区三区| 亚洲精品久久成人aⅴ小说| 免费女性裸体啪啪无遮挡网站| 老鸭窝网址在线观看| 九色亚洲精品在线播放| 久久久久国产精品人妻一区二区| 妹子高潮喷水视频| 女人高潮潮喷娇喘18禁视频| 国产亚洲av片在线观看秒播厂| 欧美97在线视频| 国产三级黄色录像| 国产成人影院久久av| 日韩中文字幕视频在线看片| 午夜免费鲁丝| 一边摸一边做爽爽视频免费| 巨乳人妻的诱惑在线观看| 亚洲性夜色夜夜综合| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品av麻豆av| 久久久久网色| 乱人伦中国视频| 亚洲精品粉嫩美女一区| 国产黄频视频在线观看| 法律面前人人平等表现在哪些方面 | 香蕉国产在线看| 久久久久久人人人人人| 黑人巨大精品欧美一区二区蜜桃| 女人被躁到高潮嗷嗷叫费观| 成年动漫av网址| 久久中文字幕一级| 久久久久国内视频| 各种免费的搞黄视频| 在线观看免费高清a一片| 亚洲欧美精品综合一区二区三区| 精品人妻一区二区三区麻豆| 国产成人精品在线电影| 青春草亚洲视频在线观看| 18禁观看日本| 欧美精品人与动牲交sv欧美| 91精品国产国语对白视频| 丝袜喷水一区| 亚洲熟女精品中文字幕| 欧美精品啪啪一区二区三区 | 黄色怎么调成土黄色| 黄频高清免费视频| 男女之事视频高清在线观看| 一进一出抽搐动态| 黄片播放在线免费| 亚洲专区国产一区二区| 日韩精品免费视频一区二区三区| 黄频高清免费视频| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添小说| 婷婷成人精品国产| kizo精华| 一级,二级,三级黄色视频| 色综合欧美亚洲国产小说| 老司机深夜福利视频在线观看 | 亚洲av日韩在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 免费日韩欧美在线观看| 一二三四社区在线视频社区8| 亚洲伊人久久精品综合| 啦啦啦啦在线视频资源| 国产成人精品无人区| 国产一区二区 视频在线| 国产在线一区二区三区精| 久久99一区二区三区| 亚洲情色 制服丝袜| 亚洲少妇的诱惑av| 男女边摸边吃奶| 99精品久久久久人妻精品| 新久久久久国产一级毛片| 欧美老熟妇乱子伦牲交| 男女之事视频高清在线观看| 人人妻人人澡人人爽人人夜夜| 99国产精品一区二区蜜桃av | 91精品国产国语对白视频| av电影中文网址| 黄色 视频免费看| 另类亚洲欧美激情| 亚洲人成77777在线视频| 国产欧美日韩一区二区精品| 久久热在线av| 亚洲中文字幕日韩| 国产精品国产av在线观看| 国产福利在线免费观看视频| 久久久久久亚洲精品国产蜜桃av| 99久久综合免费| 成人国产一区最新在线观看| 性高湖久久久久久久久免费观看| 操出白浆在线播放| 精品高清国产在线一区| 精品人妻一区二区三区麻豆| 久久人妻熟女aⅴ| av网站在线播放免费| av电影中文网址| 黄色 视频免费看| 日韩电影二区| 母亲3免费完整高清在线观看| 法律面前人人平等表现在哪些方面 | 久久久久久久国产电影| 黄色视频不卡| 久久精品久久久久久噜噜老黄| 热re99久久国产66热| 日韩欧美国产一区二区入口| 成人亚洲精品一区在线观看| 国产成人一区二区三区免费视频网站| 99久久99久久久精品蜜桃| 91成人精品电影| 免费女性裸体啪啪无遮挡网站| 老司机福利观看| 一二三四在线观看免费中文在| 国产主播在线观看一区二区| a在线观看视频网站| 窝窝影院91人妻| 亚洲欧美色中文字幕在线| 两性夫妻黄色片| 亚洲va日本ⅴa欧美va伊人久久 | 熟女少妇亚洲综合色aaa.| 欧美日韩亚洲高清精品| 免费高清在线观看视频在线观看| 国产精品熟女久久久久浪| 欧美激情极品国产一区二区三区| 制服人妻中文乱码| 久久精品熟女亚洲av麻豆精品| 国产极品粉嫩免费观看在线| 久久久精品区二区三区| 久久免费观看电影| 99久久99久久久精品蜜桃| 欧美激情 高清一区二区三区| 最近最新免费中文字幕在线| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久精品电影小说| 久久久久国内视频| 99久久国产精品久久久| 亚洲av电影在线观看一区二区三区| 水蜜桃什么品种好| 精品乱码久久久久久99久播| 久久久国产成人免费| 真人做人爱边吃奶动态| 涩涩av久久男人的天堂| 大型av网站在线播放| 正在播放国产对白刺激| 亚洲精品中文字幕在线视频| 在线天堂中文资源库| 制服诱惑二区| 国产1区2区3区精品| 99国产极品粉嫩在线观看| 老熟妇乱子伦视频在线观看 | www.av在线官网国产| 亚洲精品日韩在线中文字幕| a级毛片黄视频| 亚洲第一青青草原| 欧美国产精品一级二级三级| avwww免费| 亚洲免费av在线视频| 午夜视频精品福利| 久9热在线精品视频| 777久久人妻少妇嫩草av网站| 丝袜美腿诱惑在线| 国产1区2区3区精品| 免费在线观看完整版高清| 久久久久久亚洲精品国产蜜桃av| 老熟女久久久| 美女主播在线视频| 另类精品久久| 欧美精品人与动牲交sv欧美| 老熟妇乱子伦视频在线观看 | 黄色a级毛片大全视频| 美女中出高潮动态图| 午夜老司机福利片| 亚洲精品国产av成人精品| 老熟女久久久| 日本av手机在线免费观看| 亚洲精品成人av观看孕妇| 无遮挡黄片免费观看| 满18在线观看网站| 久久影院123| 国产欧美日韩一区二区三区在线| 亚洲九九香蕉| 亚洲avbb在线观看| 动漫黄色视频在线观看| 国产一区二区三区在线臀色熟女 | 精品第一国产精品| 99国产极品粉嫩在线观看| 人成视频在线观看免费观看| 黄色a级毛片大全视频| 在线观看人妻少妇| 最近最新中文字幕大全免费视频| 丰满迷人的少妇在线观看| 国产精品影院久久| 人成视频在线观看免费观看| 亚洲色图综合在线观看| 丝袜在线中文字幕| 亚洲一码二码三码区别大吗| 久久性视频一级片| 90打野战视频偷拍视频| 国产黄色免费在线视频| 91九色精品人成在线观看| 成年动漫av网址| tocl精华| 国产精品熟女久久久久浪| 国产91精品成人一区二区三区 | 免费在线观看黄色视频的| av免费在线观看网站| 免费女性裸体啪啪无遮挡网站| 91精品伊人久久大香线蕉| 另类亚洲欧美激情| av片东京热男人的天堂| 久久精品国产综合久久久| 一本一本久久a久久精品综合妖精| 777米奇影视久久| 午夜视频精品福利| 亚洲精华国产精华精| 中文字幕高清在线视频| 在线永久观看黄色视频| 国产av又大| 国产在视频线精品| 亚洲精品美女久久久久99蜜臀| 中文字幕色久视频| 国产无遮挡羞羞视频在线观看| av网站免费在线观看视频| 一区二区三区乱码不卡18| 久久久久精品人妻al黑| svipshipincom国产片| av在线app专区| 香蕉国产在线看| 久久久久网色| 色94色欧美一区二区| 久久人人爽av亚洲精品天堂| 国产一区有黄有色的免费视频| 亚洲欧美成人综合另类久久久| 亚洲欧美精品综合一区二区三区| 国产亚洲精品久久久久5区| 两个人看的免费小视频| 成年动漫av网址| 精品国产一区二区久久| 不卡一级毛片| 99精国产麻豆久久婷婷| 我的亚洲天堂| 国产精品香港三级国产av潘金莲| 免费观看a级毛片全部| 夜夜骑夜夜射夜夜干| 国产免费av片在线观看野外av| 国产黄频视频在线观看| 欧美精品亚洲一区二区| 欧美xxⅹ黑人| 夜夜夜夜夜久久久久| 欧美日韩黄片免| 电影成人av| 午夜福利影视在线免费观看| 亚洲精品美女久久久久99蜜臀| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜在线中文字幕| 国产精品 国内视频| 免费日韩欧美在线观看| 国产精品一区二区在线观看99| 国产高清videossex| 无遮挡黄片免费观看| 国产精品成人在线| 9热在线视频观看99| 久久国产精品大桥未久av| 50天的宝宝边吃奶边哭怎么回事| 久热这里只有精品99| 一本—道久久a久久精品蜜桃钙片| 美女视频免费永久观看网站| 一级,二级,三级黄色视频| 欧美精品啪啪一区二区三区 | 久久久久久亚洲精品国产蜜桃av| 成年av动漫网址| 国产一区二区三区av在线| 色老头精品视频在线观看| 国产亚洲欧美在线一区二区| 免费av中文字幕在线| 极品少妇高潮喷水抽搐| 大香蕉久久成人网| 精品国产国语对白av| 国产精品久久久人人做人人爽| 如日韩欧美国产精品一区二区三区| av在线播放精品| 他把我摸到了高潮在线观看 | 少妇人妻久久综合中文| 天堂俺去俺来也www色官网| 少妇裸体淫交视频免费看高清 | 视频在线观看一区二区三区| 国产亚洲精品一区二区www | 黄色视频在线播放观看不卡| 亚洲人成77777在线视频| 淫妇啪啪啪对白视频 | 人成视频在线观看免费观看| 狂野欧美激情性bbbbbb| 香蕉国产在线看| 中文字幕制服av| 国产一区二区在线观看av| 免费黄频网站在线观看国产| 人妻久久中文字幕网| 国产主播在线观看一区二区| 大码成人一级视频| 欧美 日韩 精品 国产| 亚洲精华国产精华精| 国产精品久久久久成人av| 欧美黑人欧美精品刺激| 免费观看a级毛片全部| 久久精品亚洲熟妇少妇任你| 日本精品一区二区三区蜜桃| 一本色道久久久久久精品综合| 一边摸一边做爽爽视频免费| 91av网站免费观看| av国产精品久久久久影院| 国内毛片毛片毛片毛片毛片| 法律面前人人平等表现在哪些方面 | 精品人妻熟女毛片av久久网站| svipshipincom国产片| 欧美精品高潮呻吟av久久| 三级毛片av免费| 久久青草综合色| 国产精品一区二区精品视频观看| 亚洲精品美女久久av网站| 多毛熟女@视频| 国产精品久久久av美女十八| 国产麻豆69| 美女视频免费永久观看网站| 中国美女看黄片| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲精品久久久久久婷婷小说| 在线 av 中文字幕| 欧美日韩亚洲综合一区二区三区_| 一级毛片精品| 老汉色av国产亚洲站长工具| 91大片在线观看| 人妻 亚洲 视频| 人妻久久中文字幕网| 91成人精品电影| 精品久久久久久电影网| 欧美 日韩 精品 国产| 成人手机av| 国产精品国产三级国产专区5o| 亚洲av欧美aⅴ国产| 老司机亚洲免费影院| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久久精品电影小说| 丝袜人妻中文字幕| 成人国产一区最新在线观看| 久久久国产一区二区| 亚洲精品一二三| 久久国产亚洲av麻豆专区| 免费女性裸体啪啪无遮挡网站| 欧美日韩av久久| 丝袜人妻中文字幕| 男人舔女人的私密视频| 少妇的丰满在线观看| 一区二区日韩欧美中文字幕| 人人妻人人添人人爽欧美一区卜| 亚洲性夜色夜夜综合| 老熟妇乱子伦视频在线观看 | 女性被躁到高潮视频| 视频在线观看一区二区三区| 亚洲 国产 在线| 精品一区二区三区四区五区乱码| 男女无遮挡免费网站观看| 久久国产精品人妻蜜桃| 捣出白浆h1v1| 欧美人与性动交α欧美软件| 嫁个100分男人电影在线观看| 自线自在国产av| av网站在线播放免费| 国产精品二区激情视频| 午夜91福利影院| a级毛片在线看网站| 女人被躁到高潮嗷嗷叫费观| 777米奇影视久久| 亚洲男人天堂网一区| 黑人操中国人逼视频| a级毛片在线看网站| 老熟妇仑乱视频hdxx| 精品久久蜜臀av无| 高清视频免费观看一区二区| 99九九在线精品视频| a级毛片在线看网站| 纯流量卡能插随身wifi吗| 亚洲伊人久久精品综合| 精品人妻一区二区三区麻豆| 亚洲免费av在线视频| 国产亚洲精品第一综合不卡| 精品一区二区三区四区五区乱码| 自线自在国产av| 三级毛片av免费| 成人av一区二区三区在线看 | 天堂俺去俺来也www色官网| 亚洲av国产av综合av卡| 亚洲专区国产一区二区| 久久天躁狠狠躁夜夜2o2o| a 毛片基地| 久久免费观看电影| 一级黄色大片毛片| 亚洲一区二区三区欧美精品| 国产日韩欧美视频二区| 久久精品亚洲av国产电影网| 欧美日韩黄片免| 美女主播在线视频| 亚洲 国产 在线| 精品一区二区三区四区五区乱码| 好男人电影高清在线观看| 国产国语露脸激情在线看| 成年av动漫网址| 亚洲伊人久久精品综合| 在线观看人妻少妇| 亚洲国产欧美在线一区| 丝袜喷水一区| 老司机福利观看| 人妻 亚洲 视频| 成人影院久久| 亚洲成人国产一区在线观看| 天天躁日日躁夜夜躁夜夜| 国产成人影院久久av| 国产精品影院久久| www.熟女人妻精品国产| 久久女婷五月综合色啪小说| 欧美精品亚洲一区二区| 久久精品久久久久久噜噜老黄| 在线观看免费视频网站a站| 久久 成人 亚洲| 大型av网站在线播放| 亚洲国产成人一精品久久久| 国产成人啪精品午夜网站| 久久久国产精品麻豆| 国产精品1区2区在线观看. | 一个人免费在线观看的高清视频 | 在线看a的网站| 女人被躁到高潮嗷嗷叫费观| 国产精品免费大片| 国产免费现黄频在线看| 黑人巨大精品欧美一区二区mp4| 99久久精品国产亚洲精品| 亚洲,欧美精品.| 美国免费a级毛片| 成年人黄色毛片网站| 国产真人三级小视频在线观看| 国产av国产精品国产| 老鸭窝网址在线观看| 久久精品国产a三级三级三级| 国产高清国产精品国产三级| 欧美激情高清一区二区三区| 美女视频免费永久观看网站| www.精华液| 日韩熟女老妇一区二区性免费视频| 久热爱精品视频在线9| e午夜精品久久久久久久| 91麻豆精品激情在线观看国产 | 国产精品自产拍在线观看55亚洲 | 欧美人与性动交α欧美精品济南到| 国产无遮挡羞羞视频在线观看| 国产成人影院久久av| 动漫黄色视频在线观看| 69精品国产乱码久久久| 亚洲精品一区蜜桃| 国产成人欧美在线观看 | 亚洲 欧美一区二区三区| 人人妻人人澡人人爽人人夜夜| 欧美性长视频在线观看| 麻豆av在线久日| 老汉色∧v一级毛片| 日韩制服骚丝袜av| 国产在线观看jvid| 亚洲国产中文字幕在线视频| 亚洲av美国av| 午夜日韩欧美国产| 俄罗斯特黄特色一大片| 欧美日韩av久久| 两性夫妻黄色片| 嫩草影视91久久| 久久久久视频综合| 欧美午夜高清在线| 国产成人免费无遮挡视频| 亚洲精品国产av蜜桃| 首页视频小说图片口味搜索| 国产精品久久久人人做人人爽| xxxhd国产人妻xxx| 男女之事视频高清在线观看| 亚洲精品国产av蜜桃| 欧美大码av| 高清黄色对白视频在线免费看| 嫩草影视91久久| 天堂8中文在线网| 亚洲精品中文字幕一二三四区 | 黄色视频不卡| 久热爱精品视频在线9| 狂野欧美激情性xxxx| 国产精品.久久久| 久久久精品区二区三区| 国产激情久久老熟女| 国产精品自产拍在线观看55亚洲 | 欧美精品亚洲一区二区|