中圖分類號:X522 文獻(xiàn)標(biāo)志碼:A 文章編號:1671-5489(2025)04-1212-07
Preparation of Y3+ -Doped Sodium Bismuth Molybdate Electrode and Degradation Mechanism of Sildenafil
SUN Jiahong1,LI Jiayi1,F(xiàn)U Zhongdong2,WANG Hongning2,F(xiàn)ENG Wei1 ( College of New Energy and Enuironment, Jilin University, Changchun l30o21, China; 2. Jilin Tuoda Environmental Protection Equipment Engineering Co.,Changchun 13Oo62,China)
Abstract:The NaBi( MoO4)2 electrode was prepared by the pressed sheet method,and the material was modified by doping with Y3+ . The morphology,structure and electrochemical properties of the electrodes were characterized by X-ray difraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM),ultraviolet-visible-diffuse reflectance spectrum (UV-VisDRS) and electron spin resonance (ESR),and the performance and reaction mechanism of the photocatalytic degradation of sildenafil were also investigated. The experimental results show that the NaBi(MoO4)2 -based electrode has a lamellar structure and high purity,with the size ranging from about 37.5nm to 24.6nm . In the optimal electrolyte Na2SO4 solution with a concentration of 0.5mol/L and the optimal bias voltage of 5V ,sildenafil can be completely removed after 70min : Keywords: sodium bismuth molybdate; sildenafil; photocatalysis; pressed sheet electrode
西地那非 (C22H30N6O4S) 為白色結(jié)晶粉末,密度為 39g/cm3 ,主要用于治療心血管疾病[1-2].人體服用后,在其尿液和糞便中含有約 80% 給藥量的西地那非.若將未完全處理的西地那非廢水排放
到環(huán)境中,將對生態(tài)環(huán)境產(chǎn)生不良影響[3].
與物理、化學(xué)和生物等現(xiàn)代處理方法相比,光催化氧化技術(shù)具有反應(yīng)條件溫和、操作簡單、無二次污染等優(yōu)點,是解決環(huán)境污染的有效途徑[4-5]。利用半導(dǎo)體光/電催化的方法,半導(dǎo)體光催化產(chǎn)生的光生電子和空穴可有效生成具有強氧化作用的羥基自由基(·OH)和超氧自由基 (O2??- )等基團,從而有效降解有機污染物[6-9].但常規(guī)的光催化反應(yīng)具有反應(yīng)效率低和光生電子-空穴對復(fù)合率高等缺點,從而降低了光催化反應(yīng)效率.通過施加偏壓,可有效抑制光生電子-空穴復(fù)合,施加的電勢場可誘導(dǎo)光生電子-空穴向相反方向移動,提高分離效率,有效實現(xiàn)污染物的高效降解[10].壓片電極法是制備電極的常用方法之一,通過將電極材料用聚四氟乙烯粘合在不銹鋼網(wǎng)狀集流體上,用壓片機壓合,即可制成電子高性能傳輸電極[11-12].本文通過對 NaBi(MoO4)2 進(jìn)行稀土釔離子摻雜,破壞其電偶極矩的穩(wěn)定性,以增強其壓電性能,并通過X射線衍射(XRD)、掃描電子顯微鏡(SEM)、透射電子顯微鏡(TEM)、紫外可見漫反射光譜(UV-Vis-DRS)和電子自旋共振(ESR)等表征方法,分析其元素組成和晶體結(jié)構(gòu),進(jìn)一步研究壓片電極對西地那非的光-電協(xié)同降解性能.
1實驗
1 試劑、材料和儀器
五水合硝酸鉍 (Bi(NO3)3?5H2O) ,六水合硝酸釔 (Y(NO3)3?6H2O) ,鉬酸鈉 (Na2MoO4?2H2O) ,無水乙醇, Na2SO4 ,聚四氟乙烯乳液,乙炔碳黑,硝酸, NaCl 和高氯酸 HClO4 均為市售分析純試劑;去離子水為實驗室自制;不銹鋼絲網(wǎng)(200目),鉑電極夾,鉑電極和 AgCl 參比電極均購于江蘇環(huán)亞電熱儀表有限公司.
X射線粉末衍射儀(德國Bruker公司);XL-3OESEMFEG型場發(fā)射掃描電子顯微鏡(美國FEI公司);TecnaiG220型場發(fā)射透射電子顯微鏡(美國FEI公司);壓片機(天津天光光學(xué)儀器有限公司);ESC ALAB 250型X射線光電子能譜儀(美國 Thermo公司);UV3600 型紫外-可見分光光度計(日本島津公司);API320O型液相質(zhì)譜儀(日本島津公司);SBW型直流電源(上海穩(wěn)壓器廠).
2 鉬酸鉍鈉壓片電極的制備
2.1 NaBi(MoO4)2 電極材料的制備
向 20mL 純凈水中加入2.5mmol Na2MoO4?2H2O 和 5mmolBi(NO3)3?5H2O ,攪拌混合至混合物為乳白色混懸液.用 HNO3 將混合溶液的 pH 值調(diào)至6.0后轉(zhuǎn)移到 50mL 水熱反應(yīng)釜中.在200°C 水熱反應(yīng) 24h ,去除上清液,將沉淀的白色固體用無水乙醇離心循環(huán)洗滌3次.上述步驟完成后,將所得白色固體放入烘箱, 80°C 干燥 6h ,即可得純凈 NaBi(MoO4)2 壓片電極材料,命名為NBMO.2.2 Y3+ 摻雜 NaBi(MoO4)2 電極材料的制備
向2.1中乳白色混懸液中加入物質(zhì)的量比(基礎(chǔ)參照物為 Na2MoO4?2H2O) 為 5:100 的Y(NO3)3?6H2O ,與2.1中相同條件和步驟,用水熱法即可制得 Y3+ 摻雜的 NaBi(MoO4)2 壓片電極材料,命名為5Y-NBMO.
2.3 壓片電極的制備
先將不銹鋼絲網(wǎng)(200目)剪成直徑為 4cm 的圓形,再將前兩步制成的電極材料、聚四氟乙烯乳液和乙炔炭黑以 Ψm (電極材料) :V (聚四氟乙烯乳液) :Ωm (乙炔炭黑) )=0.2:200:0.06(g,μL,g) 制成黏稠的糊狀電極材料前驅(qū)體,并將其均勻涂抹在圓形不銹鋼絲網(wǎng)中間.在烘箱中 50°C 干燥 30min 后取出,前后兩面墊上稱量紙后,放入壓片機中.在 10kPa 的壓力下壓 30s 后將材料翻轉(zhuǎn),繼續(xù)壓片 30s 即可得到力學(xué)性能良好的壓片電極.
3 實驗方法
將西地那非用超純水配制成 10mg/L 的溶液.先將制備的壓片電極與直流電源正極相連,作為光陽極;再將 1cm×1cm 的鉑電極與直流電源負(fù)極相連,作為對電極.以 5V 電壓, 0.5mol/L Na2SO4 電解質(zhì)為催化測試背景,在透光率為 85% 的石英電解池中,進(jìn)行光電催化降解測試.每隔一段時間,抽取 10mL 反應(yīng)溶液,經(jīng)半透膜過濾后,存入測試管中待檢測.
4 分析方法
用XRD法分析電極材料的晶體結(jié)構(gòu)及晶相組成,用SEM-EDS法分析材料的表面形貌和元素組成,用TEM法分析材料的微觀形貌和晶格結(jié)構(gòu),用UV-Vis-DRS法分析材料光學(xué)性質(zhì),用液相色譜儀監(jiān)測西地那非在光電催化降解過程中的質(zhì)量濃度變化.
2 結(jié)果與討論
2.1 物相表征
2.1 XRD結(jié)果
圖1為NBMO 和5Y-NBMO的XRD譜.由圖1可見,5Y-NBMO的特征峰分別對應(yīng)純
NaBi( MoO4)2 的(112),(004),(200),(211),(114),(213),(204),(220),(116),(312)和(224)等晶面,表明 NaBi(MoO4)2 的晶格結(jié)構(gòu)未被破壞.此外,還出現(xiàn)了對應(yīng) Y2O3 晶面的(20-2),(202),(310),(11-3),(004),(114),(71-2)衍射峰和對應(yīng)YO458 晶面的(302),(003),(112)衍射峰.可見,5Y-NBMO在合成過程中產(chǎn)生了釔的氧化物.同時 NaBi(MoO4)2 主要衍射峰強度隨 Y3+ 的摻雜而下降,表明摻雜的 Y3+ 有效取代了 NaBi(MoO4)2 中Bi的晶格位,使 NaBi(MoO4)2 主要衍射峰強度變?nèi)鮗13-14].根據(jù) Scherrer 公式估算純NaBi( MoO4)2 材料和 NaBi(MoO4)2 基材料的晶粒尺寸分別為NBMO( 37.5nm )和5Y-NBMO( 24.6nm .因此,Y3+ 摻雜有效抑制了晶粒的生長.
2.2 SEM結(jié)果
圖2為NBMO和5Y-NBMO的SEM照片.由圖2可見, NaBi(MoO4)2 基電極為片層結(jié)構(gòu),呈塊狀分布,摻雜 Y3+ 對電極的形貌影響較小.純 NaBi(MoO4)2 電極含Na,Bi,Mo,O4種元素,摻雜Y3+ 后,電極中僅多了一種元素Y,可見摻雜后的電極在保持原有層狀結(jié)構(gòu)的基礎(chǔ)上,純度仍然很高.
2.3 TEM結(jié)果
圖3為NBMO和5Y-NBMO的TEM照片.由圖3可見,NaBiC MoO4)2 電極呈片狀分布,與SEM結(jié)果一致.TEM照片中寬度為 0. 313,0. 289,0. 264nm 的晶格條紋分別對應(yīng) NaBi(MoO4)2 的(112),(004),(200)晶面,與XRD結(jié)果相符.衍射花樣表明,NBMO和5Y-NBMO均為混晶結(jié)構(gòu).由圖3(B)可見,摻雜 Y3+ 對NaBi( MoO4) 2電極的形貌影響較小,仍可觀察到原有的 NaBi(MoO4)2 晶格條紋.此外,還可觀察到與釔的氧化物相對應(yīng)的晶格條紋[15].寬度為 0. 393,0. 293,0. 306nm 的晶格條紋分別對應(yīng) Y2O3 的(202),(003),(302)晶面,與XRD結(jié)果相符.
2.4 UV-Vis-DRS結(jié)果
圖4為NBMO 和5Y-NBMO的UV-Vis-DRS譜.由圖4可見:NaBi( MoO4)2 電極的吸收帶邊為 4277nm ,表明該電極對可見光有較強的吸收能力;5Y-NBMO電極的吸收帶邊為 8219nm 可見光的吸收范圍變大,表明摻雜適量的 Y3+ 后,NaBi ( MoO4)2 基電極的可見光響應(yīng)能力顯著提升[11].
2.2 降解性能的影響因素
2.2.1 降解性能
將西地那非的光電催化降解過程進(jìn)行一級反應(yīng)動力學(xué)擬合,結(jié)果如圖5所示,其中PS,PC,EC和PEC分別表示光降解實驗值、光催化降解實驗值、電催化降解實驗值和光電催化降解實驗值.由圖5可見, R2 最小值為0.990,表明西地那非的質(zhì)量濃度變化與時間呈良好的線性關(guān)系,可認(rèn)為西地那非的光電催化降解反應(yīng)遵循一級反應(yīng)動力學(xué)過程.對應(yīng)的光電催化反應(yīng)的快慢速率常數(shù)分別為0.05(5Y-NBMO)和0.0002(NBMO).可見,以摩爾分?jǐn)?shù)為 5% 的 Y3+ 摻雜的NaBi( MoO4)2 電極催化降解效果最優(yōu),且光電催化反應(yīng)速率常數(shù) K 值為純 NaBi(MoO4)2 電極 K 值的260倍.
2.2.2 電解質(zhì)溶液影響
在西地那非質(zhì)量濃度為 10mg/L ,電解質(zhì)溶液濃度為 0.5mol/L ,偏壓為 5V 的條件下進(jìn)行光電催化降解實驗,考察不同種類電解質(zhì)對西地那非降解性能的影響,結(jié)果如圖6(A)所示.由6(A)可見,5Y-NBMO壓片電極在 HClO4 電解質(zhì)溶液中的效率最高,僅 20min 時,西地那非的降解率已達(dá)95% , 40min 時幾乎完全降解.降解速率最快的原因是 HClO4 的強氧化性破環(huán)了西地那非的分子結(jié)構(gòu). Na2SO4 電解質(zhì)的降解能力次之,約 70min 將西地那非完全去除.NaC1溶液對西地那非的降解效率最低,約 120min 時將西地那非完全去除,原因可能為 Cl- 占據(jù)了電極的活性位點[16].
不同濃度的 Na2SO4 作為電解質(zhì)溶液對西地那非降解性能的影響如圖6(B)所示.由圖6(B)可見:當(dāng)Na2SO4 濃度為 0.1mol/L 時,5Y-NBMO電極光電催化降解西地那非的效率最低, 110min 時降解率約為 77% ;當(dāng) Na2SO4 電解質(zhì)溶液濃度為 0.5mol/L 時,5Y-NBMO電極光電催化降解西地那非的效率最高, 70min 時降解率約為 100% ;當(dāng) Na2SO4 電解質(zhì)溶液濃度為 0mol/L 時,5Y-NBMO電極完全降解西地那非需約 120min .可見當(dāng)電解質(zhì)濃度過高時,電極材料位點會被結(jié)晶占據(jù),從而影響降解率[17].因此,確定溶液最佳電解質(zhì)濃度為 0.5mol/L
2.2.3 偏壓影響
在西地那非質(zhì)量濃度為 10mg/L , 0.5molNa2SO4 電解質(zhì)的條件下,通過添加不同的直流電壓考察偏壓對降解西地那非的影響,結(jié)果如圖7所示.由圖7可見:當(dāng)外加偏壓為 0.5V 時,西地那非的降解率最低, 110min 時降解率僅為 75% ;當(dāng)偏壓為 5V 時,降解率最高, 70min 時,西地那非幾乎完全降解;繼續(xù)增加偏壓,電極表面開始析出氣泡,降解率逐漸降低,當(dāng)外加偏壓為 2.5V 時,電極表面出現(xiàn)大量氣泡,溶液渾濁, 100min 降解率小于 90% .這是因為通過外加偏壓可將電子-空穴進(jìn)行分離,加快西地那非降解,當(dāng)偏壓為 5V 時,反應(yīng)中電子-空穴對分離最徹底,氧化和還原位點相互分隔開,互不影響,此時降解率最高[18].繼續(xù)增大偏壓,光電極的空間電荷層可能發(fā)生重新排列和分布,導(dǎo)致光電催化反應(yīng)中光生載流子的數(shù)量減少,從而西地那非降解率下降[19].并且當(dāng)外加偏壓增加到一定程度時,電極表面會產(chǎn)生大量氣泡,將西地那非與光電極上活性位點隔絕,使降解率明顯下降[20].因此,反應(yīng)的最佳偏壓為 5V
2.2.4 穩(wěn)定性
圖8為5Y-NBMO電極對西地那非的9次循環(huán)降解率.由圖8可見,5Y-NBMO電極在9次循環(huán)實驗中均表現(xiàn)出良好的降解性能.9次循環(huán)降解實驗后,5Y-NBMO電極的西地那非降解率由99.5% 下降至 97.4% ,下降幅度較小,這是由于5Y-NBMO 電極具有良好的機械穩(wěn)定性,因此在循環(huán)降解過程中保持了良好的降解效率.
2.2.5 降解機理
為考察5Y-NBMO電極在光電催化過程中的降解機理,對其進(jìn)行電子自旋共振(ESR)實驗,結(jié)果如圖9所示.由圖9可見,5Y-NBMO電極比NBMO電極具有更明顯的·OH和 O2?- 信號,表明摻雜 Y3+ 增強了NBMO電極產(chǎn)生·OH和 O2?- 能力,從而有助于提升降解效果.
5Y-NBMO電極的光電催化降解機理如圖10所示.由圖10可見,光陽極在可見光照射下,發(fā)生電子-空穴分離,電子在偏壓作用下,由陽極轉(zhuǎn)移到陰極與氧氣結(jié)合生成 O2?- ,將西地那非降解;一部分空穴直接降解西地那非,另一部分空穴氧化 OH- 生成·OH,·OH氧化西地那非實現(xiàn)降解.在偏壓 5V,0.5mol/LNa2SO4 為電解質(zhì)的條件下,5Y-NBMO電極明顯高于純NaBi( MoO4 )電極的光電催化降解性能.原因可能為:1) Y3+ 替換了NaBi( MoO4 )晶格中的 Bi3+ ,稀土離子的上轉(zhuǎn)換效應(yīng)有效壓縮了半導(dǎo)體能帶;2)釔作為稀土元素具有多電子能級,可形成多電子阱對光生電子進(jìn)行捕獲,從而促進(jìn)光生空穴-電子對的分離[17.21-22].這兩方面均可強化光電催化體系中電子-空穴分離,提高5Y-NBMO光電極對西地那非的降解率.
綜上所述,本文對NaBi( MoO4 )及其摻雜 Y3+ 后的壓片電極進(jìn)行了光電催化降解新型污染物西地那非的環(huán)境凈化性能研究.結(jié)果表明:以摩爾分?jǐn)?shù)為 5% 的 Y3+ 摻雜NaBi( MoO4 )形成的電極對降解性能有顯著提升;在偏壓 5V , 0.5mol/LNa2SO4 為電解質(zhì)的條件下,5Y-NBMO電極明顯高于純NaBi( MoO4 )電極的光電催化降解性能.
參考文獻(xiàn)
[1]HONG Y M,LEEI,TAE B,et al. Contribution of Sewage to Occurence of Phosphodiesterase-5 Inhibitors in Natural Water [J]. Scientific Reports,2021,11(1):9470-1-9470-12.
[2]CIPRIAN P,ANCA Z,SIMONA N,et al. Exploring the Multifaceted Potential of Sildenafil in Medicine [J]. Medicina,2023,59(12):2190-1-2190-42.
[3]ZIZZAMIA A R,TESORO C,BIANCO G,et al. Eficient Photooxidation Processes for the Removal of Sildenafil from Aqueous Environments: A Comparative Study[J]. Case Study in Chemical and Environmental Enginering, 2024,9: 100708-1-100708-10.
[4] ZENG Q R,JIA Z A,LIU X,et al. A Novel 1T-2H MoS2 /NaBi ( MoO4)2 Alternating-Phase Piezoelectric Composites for High-Eficient Ultrasound-Drived Piezoelectric Catalytic Removal of Sildenafil[J].Process Safety and Environmental Protection,2023,179:314-328.
[5]KAYALI Z, OBAYDO R H,SAKUR A A. Spider Diagram and Sustainability Evaluation of UV-Methods Strategy for Quantification of Aspirin and Sildenafil Citrate in the Presence of Salicylic Acid in Their Bulk and Formulation[J]. Heliyron,2023,9(4):e15260-1-el5260-18.
[6]YU GL, SUN QF,YANG Y,et al. S-Scheme Heterojunction Construction of Fe/BiOCl/BiVO4 for Enhanced Photocatalytic Degradation of Ciprofloxacin [J].Progress in Natural Science:Materials International,2024, 34(2):290-303.
[7]WANG W,CHI H N,JIA Z J,et al. Photocatalytic Degradation of Bismuth Vanadate/Graphene Nanocomposites [J].Materials Science amp; Engineering:B,2024,302:117217-1-117217-8.
[8]PAN ML,LIU S B,CHEW J W. Unlocking the High Redox Activity of MoS2 on Dual-Doped Graphene as a Superior Piezocatalyst [J]. Nano Energy,2020,68:104366-1-104366-7.
[9]ZHOU X F,WU S H,LIC B.Piezophototronic Efect in Enhancing Charge Carrier Separation and Transfer in ZnO/ BaTiO3Heterostructures for High-Eficiency Catalytic Oxidation[J].Nano Energy,2019,66:104127-1-104127-16.
[10] JIA SF,SU YP, ZHANG BP,et al. Few-Layer MoS2 Nanosheet-Coated KNbO 3 Nanowire Heterostructures: Piezo-Photocatalytic Effct Enhanced Hydrogen Production and Organic Pollutant Degradation [J]. Nanoscale, 2019,11(16):7690-7700.
[11]GHOLAMI A, MADDAHFAR M. Synthesis and Characterization of Barium Molybdate Nanostructures with the Aid of Amino Acids and Investigation of Its Photocatalytic Degradation of Methyl Orange[J]. Journal of Materials Science:Materials in Electronics,2016,27(7): 6773-6778.
[12]QIAN W Q,YANG W Y, ZHANG Y,et al. Piezoelectric Materials for Controling Electro-Chemical Processes [J].Nano-Micro Letters,2020,12(11):149-1-149-39.
[13]LI M,HAN N, ZHANG X,et al. Perovskite Oxide for Emerging Photo(Electro)Catalysis in Energy and Environment [J]. Environmental Research,2022,205:112544-1-112544-13.
[14]INAMUDDIN,BODDULA R,ASIRI A M. Methods for Electrocatalysis: Advanced Materials and Alied Applications [M]. Berlin: Springer,2020:7.
[15]HALDAR D,DINDA D,SAHA S K. High Selectivity in Water Soluble MoS2 Quantum Dots for Sensing Nitro Explosives [J]. Journal of Materials Chemistry C,2016,4(26):6321-6326.
[16]GRINBERG V A,EMETS V V,TSODIKOV M V,et al.Photoelectrocatalytic Degradation of Organic Compounds on Nanoscale Semiconductor Materials [J]. Applied Catalysis B: Environmental,2021,57(4):69-712.
[17]LIU H,LI D,SHAO L,et al. Immobilization of Nonisolated BiPO4 Particles onto PDMS/ SiO2 Composite for the Photocatalytic Degradation of Dye Pollutants [J]. International Journal of Environmental Science and Technology, 2020,17(9):4061-4074.
[18]PAPAGIANNIS I,KOUTSIKOU G, FRONTISTIS Z,et al. Photoelectrocatalytic vs. Photocatalytic Degradation of Organic Water Born Pollutants [J]. Catalysts, 2018,8(10): 455-1-455-10.
[19]KUSMIEREK E. Semiconductor Electrode Materials Applied in Photoelectrocatalytic Wastewater Treatment: An Overview [J].Catalysts,2020,10(4): 439-1-439-49.
[20]WU W Z,WANG L,LI Y L,et al. Piezoelectricity of Single-Atomic-Layer MoS2 for Energy Conversion and Piezotronics [J]. Nature,2014,514(7523):470-474.
[21]FRANZ S,ARAB H,,LUCOTTI A,et al. Exploiting Direct Currnt Plasma Electrolytic Oxidation to Boost Photoelectrocatalysis [J]. Catalysts,2020,10(3): 325-1-325-14.
[22]SUN YY,HE W,SUNXY,et al. MoS2 Quantum Dots as a Specific Fluorescence Sensor for Selection of Rutin and for Temperature Sensing [J]. Luminescence,2020,35(8): 1416-1423.
(責(zé)任編輯:單凝)
Brief Introduction to“Journal of Jilin University(Science Edition)\"
“Journal of Jilin University (Science Edition)”is a comprehensive academic journal in the fields of science sponsored by Jilin University and administrated by the Ministry of Education of the People's Republic of China. The journal started publication in 1955.The original name at starting publication was“Journal of Natural Science of Northeast People University”,which was changed into“Acta Scientiarum Naturalium Universitatis Jilinensis”in 1958 owing to the name change of the university. The present journal name has been begun since the beginning of 2Oo2 after a new Jilin University was set up,which comes from the amalgamation of the original Jilin University,Jilin University of Technology,Bethune Medicine University,Changchun University of Science and Technology and Changchun Post and Telecommunication Institute on June 12,2Ooo.The domestic journal number is CN 22-134O/O,and the international journal number is ISSN 1671-5489.
The editorial board of the journal consists of 52 members who are all well-known professors. Among them there are five Academicians of the Chinese Academy of Sciences,they are Professors FENG Shouhua(chemist),SHEN Jiacong(chemist),XU Ruren(chemist),ZOU Guangtian (physicist) and YU Jihong (chemist). Professor FENG Shouhua holds the post of the editor-in-chief.
The journal mainly covers the latest scientific research results achieved in basic theoretical research,applied and developed researches,the contents of which are contained in the columns of theses,reviews,research notes and letters in the fields of mathematics,physics,chemistry,life science,computer science,electricity and electronics,environment science and so on.
The international standards and rules in both editing and publishing are strictly carried out. In order to be convenient for the readers,who do not understand Chinese,to acquire information and for the international abstract journals and literature databases to cite the contents,the journal name,the authors’names,the corresponding communication address,a detailed abstracts and keywords,and copyright indication are also described in English.
The“Journal of Jilin University (Science Edition)”enjoys a high prestige both at home and abroad.The articles published in the journal are all accepted for coverage in many well-known scientific and technological literature databases and abstract journals such as “MR”,“CA”and “CSA:MI” in USA,“Zbl Math” in Germany,“AJ” in Russia,“SA”in England,“Chinese Scientific and Technical Database”,“Chinese Mathematical Abstracts”and so on. The impact factors and the total cites of the journal rank in the front row among the journals of Chinese universities and institutes. The journal entered the rank of Double Hundred Journals of the Chinese Scientific and Technological Journal Array in 2O0l and has become one of the best core scientific and technological journals.
The journal won successively national prizes in excellent journals appraised by the State Scientific and Technological Ministry and the News-publication Government Office twenty-two times,the firstclass prize in both edition qualityand academic quality,and the first prizes of the excellent journal of Chinese universities given by the Ministry of Education ten times and the first-class prizes and excellent journal both at edition quality and style given by Jilin Province six times,and it was appraised two consecutive outstanding S.amp; T. journals of China in 2008 and 20l1,respectively,and won the title of the excellent journal of the fifth session of Chinese universities given by the Ministry of Education in 2Ol4,and won the title of the excellent science and technology journal of Chinese Universities in 20l8.It was selected as one of the top 100 Sci-tech Journals in Chinese universities in 2020.
All the editors and staffs of the Editorial Department will work conscientiously and cautiously to serve the readers and authors whole-heartedly as always,and are determined to make greater contributions to building a first-class university and running a first-rate journal.
Address:Editorial Department of Journal of Jilin University (Science Edition),Central Campus, Jilin University,No.2699 Qianjin Street,Changchun 130012,P.R.China. Tel:86-431-88499428;E-mail: sejuj@mail. jlu.edu.cn;http://xuebao. jlu.edu. cn.