[摘要] 冷凍消融術(shù)是一種微創(chuàng)腫瘤治療方法,適用于早期腫瘤患者及無法接受手術(shù)切除治療的晚期腫瘤患者。冷凍消融術(shù)除引起腫瘤組織壞死和細(xì)胞凋亡外,還可促進(jìn)腫瘤自身抗原釋放到血液中,包括損傷相關(guān)分子模式和腫瘤特異性抗原。這些抗原激活宿主免疫系統(tǒng)引發(fā)抗腫瘤免疫反應(yīng),導(dǎo)致原發(fā)腫瘤消退。但這種遠(yuǎn)隔效應(yīng)并不能有效抑制轉(zhuǎn)移腫瘤的生長。近年來,免疫療法是腫瘤治療的重要手段之一,可有效激活患者自身免疫系統(tǒng)。本文主要綜述冷凍消融術(shù)誘導(dǎo)的免疫效應(yīng)及聯(lián)合免疫療法在腫瘤治療中的研究進(jìn)展。
[關(guān)鍵詞] 冷凍消融術(shù);免疫機(jī)制;免疫療法;聯(lián)合治療
[中圖分類號] R73" """"[文獻(xiàn)標(biāo)識碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.20.022
冷凍消融術(shù)是一種微創(chuàng)腫瘤治療方法,適用于早期腫瘤患者及無法接受手術(shù)切除治療的晚期腫瘤患者。冷凍消融術(shù)除引起腫瘤組織壞死和細(xì)胞凋亡外,還可促進(jìn)腫瘤自身抗原釋放到血液中,包括損傷相關(guān)分子模式和腫瘤特異性抗原。本文主要綜述冷凍消融術(shù)誘導(dǎo)的免疫效應(yīng)及聯(lián)合免疫療法在腫瘤治療中的研究進(jìn)展。
1" 冷凍消融術(shù)的關(guān)鍵免疫機(jī)制
1.1" 腫瘤抗原的釋放
冷凍消融術(shù)通過低溫凍融循環(huán)導(dǎo)致腫瘤細(xì)胞內(nèi)外形成冰晶,破壞細(xì)胞膜和細(xì)胞器,最終引發(fā)腫瘤細(xì)胞壞死和凋亡[1]。在此過程中,腫瘤相關(guān)抗原從死亡腫瘤細(xì)胞中釋放,包括腫瘤特異性抗原及其他分子[2]。腫瘤相關(guān)抗原的釋放在冷凍消融術(shù)誘導(dǎo)的免疫反應(yīng)中發(fā)揮關(guān)鍵作用,其被樹突狀細(xì)胞(dendritic cell,DC)等抗原呈遞細(xì)胞捕獲并加工。通過主要組織相容性復(fù)合體,DC將這些抗原呈遞給T細(xì)胞,特別是CD8+細(xì)胞毒性T淋巴細(xì)胞(cytotoxic T lymphocyte,CTL),激活特異性抗腫瘤免疫反應(yīng)[3]
1.2" 危險(xiǎn)信號的釋放
冷凍消融術(shù)可誘導(dǎo)大量危險(xiǎn)信號分子,即損傷相關(guān)分子模式的釋放。這些分子包括高遷移率族蛋白B1(high-mobility group box 1,HMGB1)、熱休克蛋白70、腺苷三磷酸和尿酸等[4]。損傷相關(guān)分子模式通過與模式識別受體如Toll樣受體(toll-like receptor,TLR)結(jié)合,激活固有免疫系統(tǒng)。其中HMGB1與TLR4結(jié)合后可增強(qiáng)DC的抗原呈遞功能,并促進(jìn)其向淋巴結(jié)遷移,進(jìn)一步激活T細(xì)胞[5]。這一過程對啟動有效的適應(yīng)性免疫反應(yīng)至關(guān)重要,有助于建立針對腫瘤細(xì)胞的持久免疫記憶[6]。
1.3" 免疫逃逸的逆轉(zhuǎn)
腫瘤細(xì)胞通過多種機(jī)制逃避免疫系統(tǒng)的監(jiān)視與攻擊,這一現(xiàn)象稱為免疫逃逸。常見的免疫逃逸機(jī)制包括上調(diào)程序性死亡受體配體1(programmed death-ligand 1,PD-L1)表達(dá),分泌免疫抑制性細(xì)胞因子轉(zhuǎn)化生長因子-β和白細(xì)胞介素(interleukin,IL)-10,招募免疫抑制性細(xì)胞,如調(diào)節(jié)性T細(xì)胞(regulatory T cell,Treg細(xì)胞)和髓系抑制性細(xì)胞(myeloid-derived suppressor cell,MDSC)[7-8]。Treg細(xì)胞通過抑制免疫反應(yīng)和免疫細(xì)胞活性發(fā)揮作用,MDSC通過產(chǎn)生抑制分子抑制T細(xì)胞功能,促進(jìn)腫瘤逃避免疫監(jiān)視。冷凍消融術(shù)通過破壞腫瘤微環(huán)境,部分逆轉(zhuǎn)這些免疫逃逸機(jī)制。首先,冷凍消融術(shù)可通過減少免疫抑制性細(xì)胞數(shù)量抑制PD-L1的表達(dá),減弱程序性死亡受體1(programmed death-1,PD-1)/PD-L1介導(dǎo)T細(xì)胞抑制作用[9]。其次,冷凍消融術(shù)可破壞Treg細(xì)胞和MDSC,增強(qiáng)抗腫瘤免疫反應(yīng)[10]。最終,冷凍消融術(shù)誘導(dǎo)的炎癥反應(yīng)和抗原釋放有助于重塑腫瘤微環(huán)境,促進(jìn)免疫激活和腫瘤清除[11]
2" 影響冷凍消融術(shù)免疫效果的因素
2.1" 冷凍速率和解凍速率
冷凍速率和解凍速率是冷凍消融術(shù)的關(guān)鍵參數(shù)。冷凍速率決定冰晶的形成速度和大小,直接影響腫瘤細(xì)胞的物理破壞程度??焖倮鋬隹稍诩?xì)胞內(nèi)形成小型冰晶,有效破壞細(xì)胞膜和細(xì)胞器;而緩慢解凍則通過引發(fā)滲透失衡和機(jī)械應(yīng)力造成更大細(xì)胞損傷,誘導(dǎo)更多細(xì)胞壞死[12]??焖倮鋬雠c緩慢解凍的組合可誘導(dǎo)更強(qiáng)的免疫原性細(xì)胞死亡,進(jìn)而增強(qiáng)抗腫瘤免疫反應(yīng)。
2.2" 冷凍循環(huán)次數(shù)
目前,主流的冷凍循環(huán)次數(shù)為2次。冷凍消融腫瘤周圍灌洗液中的IL-1β、IL-2、IL-6、IL-12b、γ干擾素和腫瘤壞死因子-α水平顯著升高,表明兩輪冷凍消融可有效激活促炎性細(xì)胞因子,增強(qiáng)遠(yuǎn)端腫瘤免疫細(xì)胞活性,產(chǎn)生最強(qiáng)遠(yuǎn)端效應(yīng)。SOLSTICE研究中,128例患者接受冷凍消融術(shù),術(shù)后12個(gè)月和24個(gè)月的局部無復(fù)發(fā)生存(relapse free survive,RFS)率分別為85.1%和77.2%。二次冷凍消融術(shù)后復(fù)發(fā)腫瘤的局部RFS率分別提高至91.1%和84.4%[13]。
2.3" 壞死凋亡面積比例
冷凍消融術(shù)后,腫瘤組織中壞死與凋亡細(xì)胞的比值是評估治療效果的關(guān)鍵指標(biāo)。壞死是由急性損傷引起的細(xì)胞死亡,主要發(fā)生在冷凍區(qū)域中心;凋亡則是程序性細(xì)胞死亡,集中在冷凍區(qū)域邊緣。二者引發(fā)的抗腫瘤免疫效應(yīng)存在顯著差異。壞死腫瘤細(xì)胞釋放DNA、RNA、熱休克蛋白70、尿酸和HMGB1,這些免疫原性分子作為“危險(xiǎn)信號”激活免疫反應(yīng),進(jìn)而激活T細(xì)胞[14];相較之下,凋亡通常誘導(dǎo)免疫抑制。大量凋亡細(xì)胞在缺乏共刺激信號情況下可導(dǎo)致外周耐受,而吞噬凋亡細(xì)胞的DC成熟度不足,無法有效產(chǎn)生細(xì)胞因子,進(jìn)而引發(fā)T細(xì)胞失能或克隆缺失[15-16]。因此,壞死與凋亡細(xì)胞的比值對免疫效應(yīng)有重要影響[17]。
3" 腫瘤免疫治療
免疫療法通過調(diào)控機(jī)體免疫系統(tǒng)識別并殺傷腫瘤細(xì)胞,已成為腫瘤治療的重要手段。免疫療法核心機(jī)制包括解除免疫抑制、增強(qiáng)抗原呈遞、激活效應(yīng)細(xì)胞及重塑腫瘤微環(huán)境[18]。①免疫檢查點(diǎn)抑制劑(immune checkpoint inhibitor,ICI):腫瘤細(xì)胞通過表達(dá)PD-L1等免疫檢查點(diǎn)分子,與T細(xì)胞表面的PD-1等結(jié)合,抑制T細(xì)胞活化,促進(jìn)腫瘤免疫逃逸。ICI可阻斷此類信號通路,恢復(fù)T細(xì)胞功能[19]。②過繼性細(xì)胞療法(adoptive cell therapy,ACT):通過基因工程改造患者T細(xì)胞或擴(kuò)增自然殺傷細(xì)胞(natural killer cell,NK細(xì)胞),增強(qiáng)其靶向殺傷能力。嵌合抗原受體T細(xì)胞免疫治療(chimeric antigen receptor T cell immunotherapy,CAR-T)通過識別腫瘤表面抗原(如CD19)直接攻擊腫瘤;NK細(xì)胞則通過釋放穿孔素和顆粒酶誘導(dǎo)腫瘤凋亡[20]。③腫瘤疫苗:腫瘤疫苗通過遞送腫瘤特異性抗原(如新抗原、共享抗原),激活DC并呈遞抗原至T細(xì)胞,誘導(dǎo)特異性免疫應(yīng)答。個(gè)體化新抗原疫苗可精準(zhǔn)靶向突變蛋白[21]。④細(xì)胞因子療法:免疫刺激性細(xì)胞因子(如IL-2、α型干擾素)直接激活T細(xì)胞和NK細(xì)胞;粒細(xì)胞-巨噬細(xì)胞集落刺激因子(granulooyte-macrophage colony-stimulating factor,GM-CSF)促進(jìn)DC成熟和抗原呈遞[22]。
4" 冷凍消融術(shù)聯(lián)合免疫療法
4.1" 冷凍消融術(shù)聯(lián)合ICI
ICI[如PD-1/PD-L1、細(xì)胞毒性T淋巴細(xì)胞相關(guān)抗原4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)]通過解除免疫系統(tǒng)中的抑制信號恢復(fù)T細(xì)胞的抗腫瘤活性。免疫檢查點(diǎn)由效應(yīng)淋巴細(xì)胞表達(dá)的共抑制分子組成,防止其過度激活。腫瘤組織通過在腫瘤細(xì)胞和基質(zhì)細(xì)胞中表達(dá)相應(yīng)配體逃避免疫監(jiān)視。常見的共抑制受體包括CTLA-4、PD-1、T細(xì)胞免疫球蛋白和黏蛋白結(jié)構(gòu)域-3、淋巴細(xì)胞活化基因-3等[23]。CTLA-4由活化T細(xì)胞、尤其是Treg細(xì)胞表達(dá),抑制效應(yīng)T細(xì)胞的激活,并作為Treg細(xì)胞的效應(yīng)分子[24]。臨床前研究表明CTLA-4的阻斷可導(dǎo)致免疫原性腫瘤(如51Blim10結(jié)腸癌和SA/1N纖維肉瘤)被排斥[25]。前列腺癌小鼠模型研究表明CTLA-4抑制劑與手術(shù)切除或腫瘤疫苗聯(lián)合使用,可有效減少轉(zhuǎn)移灶并降低原發(fā)腫瘤的發(fā)生率[26-27]。在前列腺癌TRAMP C2小鼠模型中應(yīng)用冷凍消融術(shù)聯(lián)合CTLA-4阻斷抗體觀察到繼發(fā)性腫瘤被CD4+T細(xì)胞和CD8+T細(xì)胞高度浸潤,腫瘤內(nèi)T效應(yīng)細(xì)胞與CD4+FoxP3+T調(diào)節(jié)細(xì)胞的比例顯著增加[28]。在非小細(xì)胞肺癌小鼠模型中,冷凍消融和PD-1阻斷通過STING依賴性Ⅰ型干擾素信號通路促進(jìn)抗腫瘤作用[29]。在乳腺癌冷凍消融術(shù)聯(lián)合伊匹單抗臨床研究中,輔助性T細(xì)胞1的活化和增殖及治療后促進(jìn)增殖的效應(yīng)T細(xì)胞相對腫瘤床內(nèi)Treg細(xì)胞持續(xù)升高[30]。
4.2" 冷凍消融術(shù)聯(lián)合腫瘤疫苗
腫瘤疫苗通過引入腫瘤特異性抗原,激活并增殖T細(xì)胞,從而靶向殺傷腫瘤細(xì)胞。冷凍消融術(shù)過程中產(chǎn)生的腫瘤抗原為腫瘤疫苗提供更多靶點(diǎn),可顯著增強(qiáng)疫苗效果。DC作為重要的抗原呈遞細(xì)胞在冷凍消融術(shù)后被激活,進(jìn)一步增強(qiáng)T細(xì)胞效應(yīng)反應(yīng)[29]。基于自體腫瘤開發(fā)的腫瘤疫苗為個(gè)體化免疫治療帶來新希望。靶向淋巴結(jié)原位腫瘤冷凍介導(dǎo)的納米疫苗(包裹黃芪多糖)通過馬來酰亞胺修飾的Pluronic F127-殼聚糖納米顆粒捕捉冷凍消融術(shù)過程中釋放的免疫原性腫瘤抗原,特異性靶向淋巴結(jié),促進(jìn)溶酶體逃逸,激活遠(yuǎn)端DC,并通過交叉呈遞調(diào)節(jié)T細(xì)胞分化,打破腫瘤免疫抑制微環(huán)境,實(shí)現(xiàn)持久的腫瘤特異性免疫[31]。在一項(xiàng)三陰性型乳腺癌肺轉(zhuǎn)移研究中,Meriva作為腫瘤疫苗可減少腫瘤微環(huán)境中的IL-6刺激T細(xì)胞,冷凍消融術(shù)聯(lián)合Meriva積累并激活CD8+T細(xì)胞,形成多種腫瘤相關(guān)抗原[32]。
4.3" 冷凍消融術(shù)聯(lián)合ACT
ACT通過體外擴(kuò)增和改造患者自身免疫細(xì)胞(如T細(xì)胞或NK細(xì)胞)增強(qiáng)其抗腫瘤能力。常見ACT包括CAR-T和NK細(xì)胞療法等?;剌敂U(kuò)增的特異性T細(xì)胞或NK細(xì)胞可增強(qiáng)對腫瘤的免疫反應(yīng)。冷凍消融過程中釋放的腫瘤抗原為ACT提供額外靶點(diǎn),可顯著提高療效[33]。嵌合抗原受體T細(xì)胞由抗原結(jié)合區(qū)(單鏈可變區(qū)抗體,scFv)、跨膜區(qū)和信號轉(zhuǎn)導(dǎo)區(qū)組成。該細(xì)胞識別腫瘤抗原(如CD19)后,激活T細(xì)胞并啟動細(xì)胞毒性反應(yīng),釋放穿孔素和顆粒酶B,誘導(dǎo)腫瘤細(xì)胞凋亡。冷凍消融術(shù)誘導(dǎo)的抗原釋放可進(jìn)一步增強(qiáng)嵌合抗原受體T細(xì)胞效力[34]。冷凍消融術(shù)聯(lián)合CAR-T為難治性B細(xì)胞惡性腫瘤的治療提供機(jī)會[35]。T細(xì)胞受體-T細(xì)胞通過識別主要組織相容性復(fù)合體Ⅰ類分子呈遞的腫瘤抗原肽,激活磷脂酰肌醇3激酶、核因子κB信號通路,導(dǎo)致T細(xì)胞活化和細(xì)胞毒性反應(yīng)[36]。與嵌合抗原受體T細(xì)胞不同,NK細(xì)胞無需事先免疫即可識別并殺傷腫瘤細(xì)胞,尤其是在腫瘤細(xì)胞下調(diào)主要組織相容性復(fù)合體Ⅰ時(shí)。NK細(xì)胞還可與DC相互作用,增強(qiáng)腫瘤抗原呈遞。冷凍消融術(shù)聯(lián)合同種異體NK細(xì)胞治療肝細(xì)胞癌,可顯著降低患者腫瘤標(biāo)志物甲胎蛋白水平,延長無進(jìn)展生存期,提高患者生活質(zhì)量[37]。研究顯示冷凍消融誘導(dǎo)基因與NK細(xì)胞活化和白細(xì)胞介導(dǎo)的毒性有關(guān),包括IL11ra1和Pfr1基因[38]。在冷凍消融術(shù)聯(lián)合同種異體NK細(xì)胞免疫治療晚期腎細(xì)胞癌的研究中發(fā)現(xiàn),該方法可增強(qiáng)患者免疫功能,改善患者生活質(zhì)量,臨床療效良好[39]。對消融后的肝細(xì)胞癌患者應(yīng)用過繼性細(xì)胞免疫輔助治療,患者的RFS和總生存期得到改善,證實(shí)其是安全的[40]。冷凍消融術(shù)聯(lián)合ACT可延長腫瘤患者的生存時(shí)間。
4.4" 冷凍消融術(shù)聯(lián)合免疫刺激性細(xì)胞因子療法
免疫刺激劑通過與模式識別受體、C型凝集素受體、NOD樣受體和視黃酸誘導(dǎo)基因-Ⅰ樣受體結(jié)合,激活促炎信號通路,啟動DC的抗原呈遞功能,觸發(fā)適應(yīng)性免疫反應(yīng)。TLR9識別病毒或細(xì)菌DNA,可誘導(dǎo)促炎性細(xì)胞因子的釋放。研究顯示TLR9刺激與消融術(shù)的結(jié)合導(dǎo)致VX2腫瘤模型中抗腫瘤T細(xì)胞反應(yīng)和細(xì)胞毒性增強(qiáng)[41]。未甲基化單鏈DNA(CpG- ODN)為TLR9識別的分子。研究表明在冷凍消融術(shù)聯(lián)合DC和CpG-ODN治療中,最佳給藥時(shí)機(jī)為DC注射后12h內(nèi)[42]。GM-CSF是另一免疫刺激劑,通過與髓系祖細(xì)胞受體結(jié)合誘導(dǎo)粒細(xì)胞增殖和分化。研究顯示GM-CSF在膽管癌中通過驅(qū)動腫瘤相關(guān)巨噬細(xì)胞發(fā)揮抗腫瘤免疫作用[43]。在一項(xiàng)前列腺癌前瞻性研究中,GM-CSF可廣泛提高針對前列腺特異性和非特異性抗原的抗體水平,為前列腺癌治療提供可能[44]。冷凍消融術(shù)聯(lián)合GM-CSF被認(rèn)為是轉(zhuǎn)移性激素難治性前列腺癌的替代療法,可誘導(dǎo)腫瘤特異性T細(xì)胞反應(yīng)[45]。小鼠模型研究顯示冷凍消融術(shù)與GM-CSF聯(lián)合治療可增加小鼠脾臟DC數(shù)量和激活率,增強(qiáng)腫瘤特異性細(xì)胞毒性T淋巴細(xì)胞功能,顯著降低肺轉(zhuǎn)移率[46]。此外多糖、激素和膽汁酸等其他免疫刺激物也展現(xiàn)出促進(jìn)免疫反應(yīng)的潛力。冷凍消融術(shù)聯(lián)合蛋白多糖制劑在小鼠模型中可預(yù)防殘留腫瘤生長,抑制IL-4和IL-10的產(chǎn)生,并略增脾細(xì)胞中NK細(xì)胞和細(xì)胞毒性T細(xì)胞的數(shù)量[47]??傊?,冷凍消融術(shù)通過促進(jìn)腫瘤抗原釋放,并聯(lián)合免疫刺激性因子提高抗腫瘤免疫效應(yīng)。
5" 小結(jié)與展望
冷凍消融術(shù)聯(lián)合免疫療法為腫瘤療法提供新的協(xié)同策略,其通過局部消融釋放腫瘤抗原并重塑免疫微環(huán)境,與系統(tǒng)性免疫干預(yù)形成互補(bǔ)效應(yīng),展現(xiàn)出顯著應(yīng)用潛力。然而,該領(lǐng)域仍面臨諸多挑戰(zhàn)。未來研究可從冷凍消融術(shù)誘導(dǎo)的免疫激活機(jī)制、與ICI的協(xié)同機(jī)制及利用納米載體靶向遞送冷凍消融釋放的抗原,或結(jié)合基因編輯技術(shù)增強(qiáng)嵌合抗原受體T細(xì)胞/NK細(xì)胞的腫瘤歸巢能力,提升治療精準(zhǔn)性,最終實(shí)現(xiàn)從“局部消融”到“系統(tǒng)免疫激活”的全面突破,為腫瘤患者帶來更持久的生存獲益。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1]"" CLARKE D M, BAUST J M, VAN BUSKIRK R G," "et al. Addition of anticancer agents enhances freezing- induced prostate cancer cell death: Implications of mitochondrial involvement[J]. Cryobiology, 2004, 49(1): 45–61.
[2]"" KEPP O, GALLUZZI L, MARTINS I, et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy[J]. Cancer Metastasis Rev, 2011, 30(1): 61–69.
[3]"" HANAHAN D, WEINBERG R A. Hallmarks of cancer: The next generation[J]. Cell, 2011, 144(5): 646–674.
[4]"" ZITVOGEL L, KEPP O, KROEMER G. Immune parameters affecting the efficacy of chemotherapeutic regimens[J]. Nat Rev Clin Oncol, 2011, 8(3): 151–160.
[5]"" GALLUZZI L, BUQUé A, KEPP O, et al. Immunogenic cell death in cancer and infectious disease[J]. Nat Rev Immunol, 2017, 17(2): 97–111.
[6]"" SHANKARAN V, IKEDA H, BRUCE A T, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity[J]. Nature, 2001, 410(6832): 1107–1111.
[7]"" TUMEH P C, HARVIEW C L, YEARLEY J H, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528): 568–571.
[8]"" SHARMA P, HU-LIESKOVAN S, WARGO J A, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4): 707–723.
[9]"" GALON J, BRUNI D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019, 18(3): 197–218.
[10] FINN O J. A believer’s overview of cancer immuno- surveillance and immunotherapy[J]. J Immunol, 2018, 200(2): 385–391.
[11] T G S. Innate and adaptive immune cells in tumor microenvironment[J]. Gulf J Oncolog, 2021, 1(35): 77–81.
[12] GAGE A A, BAUST J. Mechanisms of tissue injury in cryosurgery[J]. Cryobiology, 1998, 37(3): 171–186.
[13] CALLSTROM M R, WOODRUM D A, NICHOLS F C, et al. Multicenter study of metastatic lung tumors targeted by interventional cryoablation evaluation (SOLSTICE)[J]. J Thorac Oncol, 2020, 15(7): 1200–1209.
[14] CHU K F, DUPUY D E. Thermal ablation of tumours: Biological mechanisms and advances in therapy[J]. Nat Rev Cancer, 2014, 14(3): 199–208.
[15] DEN BROK M H, SUTMULLER R P, NIERKENS S, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity[J]. Br J Cancer, 2006, 95(7): 896–905.
[16] SEIFERT J K, FRANCE M P, ZHAO J, et al. Large volume hepatic freezing: Association with significant release of the cytokines interleukin-6 and tumor necrosis factor a in a rat model[J]. World J Surg, 2002, 26(11): 1333–1341.
[17] SABEL M S. Cryo-immunology: A review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses[J]. Cryobiology, 2009, 58(1): 1–11.
[18] LARKIN H D. Finding ways to improve patients’ cancer immunotherapy response[J]. JAMA, 2022, 328(6): 518.
[19] TANG Q, CHEN Y, LI X, et al. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers[J]. Front Immunol, 2022, 13: 964442.
[20] CAI Q, WARREN S, PIETROBON V, et al. Building smart CAR T cell therapies: The path to overcome current challenges[J]. Cancer cell, 2023, 41(10): 1689–1695.
[21] ABBASI J. Personalized cancer vaccine approach safe in early trial[J]. JAMA, 2021, 325(18): 1825.
[22] SANTOLLANI L, MAIORINO L, ZHANG Y J, et al. Local delivery of cell surface-targeted immunocytokines programs systemic antitumor immunity[J]. Nat Immunol, 2024, 25(10): 1820–1829.
[23] HE X, XU C. Immune checkpoint signaling and cancer immunotherapy[J]. Cell Res, 2020, 30(8): 660–669.
[24] JAIN N, NGUYEN H, CHAMBERS C, et al. Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity[J]. Proc Natl Acad Sci U S A, 2010, 107(4): 1524–1528.
[25] LEACH D R, KRUMMEL M F, ALLISON J P. Enhancement of antitumor immunity by CTLA-4 blockade[J]. Science, 1996, 271(5256): 1734–1736.
[26] HURWITZ A A, FOSTER B A, KWON E D, et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade[J]. Cancer Res, 2000, 60(9): 2444–2448.
[27] KWON E D, FOSTER B A, HURWITZ A A, et al. Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy[J]. Proc Natl Acad Sci U S A, 1999, 96(26): 15074–15079.
[28] WAITZ R, SOLOMON S B, PETRE E N, et al. Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy[J]. Cancer Res, 2012, 72(2): 430–439.
[29] GU C, WANG X, WANG K, et al. Cryoablation triggers type Ⅰ interferon-dependent antitumor immunity and potentiates immunotherapy efficacy in lung cancer[J]. J Immunother Cancer, 2024, 12(1): e008386.
[30] REGEN-TUERO H C, WARD R C, SIKOV W M, et al. Cryoablation and immunotherapy for breast cancer: Overview and rationale for combined therapy[J]. Radiol Imaging Cancer, 2021, 3(2): e200134.
[31] YU Z, WANG D, QI Y, et al. Autologous-cancer- cryoablation-mediated nanovaccine augments systematic immunotherapy[J]. Mater horiz, 2023, 10(5): 1661–1677.
[32] CHANDRA D, JAHANGIR A, CORNELIS F, et al. Cryoablation and Meriva have strong therapeutic effect on triple-negative breast cancer[J]. Oncoimmunology, 2016, 5(1): e1049802.
[33] KIM K S, KIM D H, KIM D H. Recent advances to augment NK cell cancer immunotherapy using nano- particles[J]. Pharmaceutics, 2021, 13(4): 525.
[34] DABAS P, DANDA A. Revolutionizing cancer treatment: A comprehensive review of CAR-T cell therapy[J]. Med Oncol, 2023, 40(9): 275.
[35] ZHANG X, WU J, QIAO L, et al. Case report: Cryoablation as a novel bridging strategy prior to CAR-T cell therapy for B cell malignancies with bulky disease[J]. Front Oncol, 2023, 13: 1008828.
[36] AARTS B M, KLOMPENHOUWER E G, RICE S L, "et al. Cryoablation and immunotherapy: An overview of evidence on its synergy[J]. Insights Imaging, 2019, 10(1): 53.
[37] LIN, M, LIANG S, WANG X, et al. Cryoablation combined with allogenic natural killer cell immunotherapy improves the curative effect in patients with advanced hepatocellular cancer[J]. Oncotarget, 2017, 8(47): 81967– 81977.
[38] SARDELA DE MIRANDA F, MARTINEZ-MARIN D, BABCOCK R L, et al. Cryoablation of primary breast cancer tumors induces a systemic abscopal effect altering TIME (tumor immune microenvironment) in distant tumors[J]. Front Immunol, 2024, 15: 1498942.
[39] LIN M, XU K, LIANG S, et al. Prospective study of percutaneous cryoablation combined with allogenic NK cell immunotherapy for advanced renal cell cancer[J]. Immunol Lett, 2017, 184: 98–104.
[40] KITAHARA M, MIZUKOSHI E, TERASHIMA T, et al. Safety and long-term outcome of intratumoral injection of OK432-stimulated dendritic cells for hepatocellular carcinomas after radiofrequency ablation[J]. Transl Oncol, 2020, 13(7): 100777.
[41] WANG K, WANG C, JIANG H, et al. Combination of ablation and immunotherapy for hepatocellular carcinoma: Where we are and where to go[J]. Front Immunol, 2021, 12: 792781.
[42] ZHANG M, YIN T, LU Y, et al. The application of cytidyl guanosyl oligodeoxynucleotide can affect the antitumor immune response induced by a combined protocol of cryoablation and dendritic cells in Lewis lung cancer model[J]. Med Sci Monit, 2016, 22: 1309–1317.
[43] RUFFOLO L I, JACKSON K M, KUHLERS P C, et al. GM-CSF drives myelopoiesis, recruitment and polarisation of tumour-associated macrophages in cholangiocarcinoma and systemic blockade facilitates antitumour immunity[J]. Gut, 2022, 71(7): 1386–1398.
[44] BARQAWI A B, RODRIGUES PESSOA R, CRAWFORD E D, et al. Boosting immune response with GM-CSF optimizes primary cryotherapy outcomes in the treatment of prostate cancer: A prospective randomized clinical trial[J]. Prostate Cancer Prostatic Dis, 2021, 24(3): 750–757.
[45] SI T, GUO Z, HAO X. Combined cryoablation and GM-CSF treatment for metastatic hormone refractory prostate cancer[J]. J Immunother, 2009, 32(1): 86–91.
[46] 司同國, 郭志, 王海濤, 等. 冷凍聯(lián)合GM-CSF治療對前列腺癌小鼠脾臟樹突狀細(xì)胞免疫功能影響的實(shí)驗(yàn)觀察[J]. 中華醫(yī)學(xué)雜志, 2011, 91(17): 1184–1187.
[47] URANO M, TANAKA C, SUGIYAMA Y, et al. Antitumor effects of residual tumor after cryoablation: The combined effect of residual tumor and a protein- bound polysaccharide on multiple liver metastases in a murine model[J]. Cryobiology, 2003, 46(3): 238–245.
(修回日期:2025–03–20)
基金項(xiàng)目:昆明醫(yī)學(xué)大學(xué)2024年碩士研究生創(chuàng)新基金項(xiàng)目(2024S384)
通信作者:李立,電子信箱:qgyzlili@163.com