中圖分類號:TG249;TB331 文獻(xiàn)標(biāo)志碼:B DOI:10.19710/J.cnki.1003-8817.20250063
Liquid-Solid Bimetallic Compound Casting and Its Applications for Manufacturing Lightweight Automotive Components
Zeng Daxin, Xiao Ming, Shi Qiuyue (Schoolof Materials Scienceamp;Engineering,Hubei Universityof Automotive Technology,Shiyan 442002)
Abstract:Bimetallic compound casting combines2 metal materials with diffrent compositionsand properties intoasingleintegralcasting,meting theperformancerequirementsatdiferentpartsof thecomponents thatare diffcult to achieve with asinglemetal material,andachieving automotive lightweight.Thispaper reviews liquid-solid bimetalliccompound casting process,analyzes the bonding mechanismsand formation conditionsof bimetallic interfaces,and summarizes the interface microstructure and performance control technologysuch as surface treatment, insert preheating,adding interlayersandapplicationofphysical fields,italsopresentsthe typicalapplicationsand manufacturing processesof aluminum/castiron,aluminum/steel,aluminum/magnesiumandstel/cast ironbimetallic compound castinginautomotive lightweight manufacturing.The paper finallypresents theresearch directionand development prospect of bimetalliccompound casting,providing a valuable reference for theresearch and its application in automotive manufacturing.
Keywords:Bimetal,Compound casting,Interfacial regulation,Automotive lightweight,Application
1前言
工藝過程簡單、能一次成形復(fù)雜的雙金屬零件等優(yōu)點,近年來越來越受到關(guān)注[1-4]。現(xiàn)代工業(yè)的發(fā)展對材料提出了越來越高的要求,單一材料往往難以滿足汽車及其他機(jī)械零部件的綜合性能需求。雙金屬復(fù)合材料可為單個零件的不同部分提供所需的性能,解決單一材料無法完成的要求。雙金屬復(fù)合材料的制備方法有鑄造、焊接、擠壓、燒結(jié)等,其中,鑄造復(fù)合材料具有
汽車零部件采用多材料結(jié)構(gòu),在兼顧成本、性能的同時實現(xiàn)輕量化,已經(jīng)成為汽車用材的趨勢[5-@。多材料結(jié)構(gòu)存在材料之間的連接問題,而雙金屬復(fù)合鑄造能將2種或以上不同的金屬材料鑄造成為一個完整的鑄件,在汽車輕量化制造中日益受到重視[7-9]。
本文介紹雙金屬復(fù)合鑄件制造的技術(shù)原理、方法,分析雙金屬界面結(jié)合機(jī)制,概述雙金屬界面性能調(diào)控技術(shù)研究進(jìn)展,并總結(jié)雙金屬復(fù)合鑄造在汽車輕量化制造中的典型應(yīng)用及制造工藝,以期為雙金屬鑄件制造技術(shù)及其汽車領(lǐng)域的應(yīng)用研究提供參考。
2液固雙金屬復(fù)合鑄造工藝與界面調(diào)控
2.1液固雙金屬復(fù)合鑄造工藝方法
液固雙金屬復(fù)合鑄造是將一種液態(tài)金屬澆注到已預(yù)制好的另一種固體金屬上,或?qū)㈩A(yù)制好的固體金屬浸于金屬液中,液態(tài)金屬凝固后2種金屬合為一體,從而形成雙金屬復(fù)合材料鑄件。液-固復(fù)合也稱鑲鑄(Cast-inInsert)、包覆鑄造(Overcasting),通常把預(yù)制的固體金屬件稱為鑲嵌件(Insert)。
液固雙金屬復(fù)合鑄造通常在傳統(tǒng)鑄造工藝方法的基礎(chǔ)上增加一定的工序?qū)崿F(xiàn),其工藝流程因鑄件材料、結(jié)構(gòu)、性能要求的差異而不同,如圖1所示。復(fù)合鑄造過程中,首先要預(yù)制固態(tài)金屬件(鑲嵌件),鑲嵌件需要進(jìn)行一定的表面處理,包括表面氧化物與油脂清理、表面活化、涂層制備等;鑄造時鑲嵌件通常要進(jìn)行預(yù)熱,其目的是提高基體金屬與鑲嵌件之間的結(jié)合質(zhì)量、減少收縮應(yīng)力、防止基體金屬收縮開裂。目前,在研究與應(yīng)用中采用的鑄造方法包括砂型鑄造[0-1、金屬型重力鑄造[12]、低壓鑄造[13-14]、擠壓鑄造[15-16]高壓壓鑄[17-19]離心鑄造[20-21]、消失模鑄造[2-23]等,每一種方法都有其特點,其中擠壓鑄造、高壓壓鑄有利于雙金屬界面的結(jié)合。
2.2雙金屬復(fù)合界面結(jié)構(gòu)與性能調(diào)控
液固雙金屬復(fù)合鑄造可以實現(xiàn)鑄鐵-鋼[24-25]鋁-鑄鐵[26-27]、鋁-鋼[28-29]、鎂-鋁[30-31]、鋁-銅[32-33]鋁-鈦[34]、鋁-鋁[35-36]鎂-鈦[37-38]等多種類型金屬之間的復(fù)合,不同鑄造工藝條件下2種金屬之間可能形成宏觀、微觀上不同的結(jié)合界面,影響結(jié)合強(qiáng)度、導(dǎo)電、導(dǎo)熱等性能。因此,2種金屬結(jié)合界面的設(shè)計及界面結(jié)構(gòu)與性能調(diào)控是生產(chǎn)高質(zhì)量雙金屬復(fù)合鑄件的關(guān)鍵技術(shù)。
2.2.1界面結(jié)合形式及形成條件
液固雙金屬復(fù)合鑄件中,2種金屬的結(jié)合有機(jī)械結(jié)合與冶金結(jié)合2種形式。機(jī)械結(jié)合是利用鑲嵌件周圍的液態(tài)金屬冷卻時的收縮力將2種金屬連結(jié)為一體,2種金屬之間沒有反應(yīng),在顯微尺度下2種金屬的接觸也是不連續(xù)的。機(jī)械結(jié)合界面結(jié)合力小,2種金屬之間的熱阻和電阻大,但生產(chǎn)工藝相對簡單。為了提高結(jié)合強(qiáng)度,可以在鑲嵌件表面上設(shè)計、加工一些獨特的凸臺或凹槽[9,39-41]。
冶金結(jié)合是指界面2種金屬之間形成了原子結(jié)合,按其形成機(jī)制可分為2類,即熔合結(jié)合與擴(kuò)散結(jié)合[42]。熔合結(jié)合是基體金屬與鑲嵌件熔點接近,基體金屬澆注溫度較高時,鑲嵌件表面會局部熔化并與金屬液相混合形成合金,液態(tài)金屬凝固與鑲嵌件形成冶金結(jié)合。擴(kuò)散結(jié)合是鑲嵌件熔點高,基體金屬澆注后不能使其表面熔化,但兩者之間能很好潤濕,通過擴(kuò)散作用形成冶金結(jié)合。冶金結(jié)合的結(jié)合強(qiáng)度高,且2種金屬之間的熱阻和電阻小,因此,在大多數(shù)應(yīng)用中希望獲得冶金結(jié)合。
形成冶金結(jié)合有2個重要條件:
a.液態(tài)金屬與固態(tài)金屬能夠密切接觸。要實現(xiàn)兩者密切接觸,應(yīng)清潔鑲嵌件表面,做到無油污、無氧化膜,油污在高溫下會產(chǎn)生氣體,并發(fā)生碳化而形成碳膜,碳膜和氧化膜都難以被澆注的液態(tài)金屬破除,它們將阻礙2種金屬密切接觸,影響冶金結(jié)合的形成。
b.鑲嵌件與液態(tài)金屬有一定的接觸時間。固態(tài)下原子遷移速度慢,在沒有壓力的情況下2種固態(tài)金屬接觸時難以形成冶金結(jié)合,因此,2種金屬接觸處需要有液相存在一定的時間??偟臅r間包括液態(tài)金屬潤濕固態(tài)鑲嵌件所需要的時間和界面冶金反應(yīng)所需要的時間,受鑲嵌件表面狀態(tài)、液態(tài)金屬流動等因素的影響。
2.2.2 界面組織與性能調(diào)控
大多數(shù)異種金屬間的冶金反應(yīng)會形成金屬間化合物,導(dǎo)致雙金屬復(fù)合鑄件界面組織中有金屬間化合物存在。例如,鋁-鐵復(fù)合時界面處會形成Al5Fe2,Al13Fe4 等化合物[1,43-44],鋁硅合金與鋼復(fù)合時還會形成 Al8Fe2Si ( ΩΩΩ?Al4.5FeSi 等化合物[45]。圖2所示為鋁硅合金與鋼的結(jié)合界面的掃描電子顯微鏡(ScanningElectronMicroscope,SEM)圖像與其成分X射線光譜(Energy Dispersive Spectrometer,EDS)線掃描結(jié)果[45],可看出界面處存在3層不同的金屬間化合物。
鋁-鎂復(fù)合會形成 Mg2Al3 、 Mg17Al12 等金屬間化合物[2.4,圖3是其典型的界面組織。
鋁-銅復(fù)合時界面可形成 Al4Cu9 、AlCu、 Al2Cu 等化合物[47-48],圖4為典型的結(jié)合界面SEM圖像,圖中1、2處分別為 Al4Cu9,AlCu,3,5 處為 Al2Cu,4 、6處為 αααααααΛααΛαααΛαααΛααΛαααΛααΛ 。
金屬間化合物具有硬而脆的特點,影響雙金屬復(fù)合鑄件結(jié)合界面的力學(xué)性能。因此,提高界面性能一方面要提高冶金結(jié)合率,另一方面是調(diào)控界面物相組成、物相分布及反應(yīng)層厚度等。國內(nèi)外對此開展了大量的研究工作,其方法可歸納為表面處理、鑲嵌件預(yù)熱與液態(tài)金屬過熱、添加中間層、施加物理場等。
a.表面處理:表面處理包括表面清理和表面活化處理,其主要作用是提高冶金結(jié)合率,配合其他工藝參數(shù)的調(diào)整可調(diào)控界面反應(yīng)層厚度。表面清理可清除鑲嵌件表面油脂與氧化膜,提高冶金結(jié)合率,這是雙金屬復(fù)合鑄造中極為關(guān)鍵的一道工序,所有雙金屬復(fù)合鑄造工藝都不能缺少。
表面活化可改變表面原子狀態(tài),提高液態(tài)金屬對固態(tài)金屬表面的潤濕性,從而促進(jìn)冶金結(jié)合界面的形成,減少界面缺陷、改善界面組織。表面活化可分為化學(xué)法和機(jī)械法。化學(xué)法通過一定的化學(xué)反應(yīng)來改變表面原子狀態(tài),在鋁-鐵[49-51]、鎂-鋁[52等雙金屬復(fù)合鑄造中的研究和應(yīng)用表明,活化處理明顯減少界面缺陷,提高冶金結(jié)合率與結(jié)合強(qiáng)度。李遲等[49研究了表面活化處理對鋁-鋼雙金屬界面的影響,發(fā)現(xiàn)表面活化后界面縫隙率由 10.99% 降至 2.93% ,剪切強(qiáng)度提高13.85% 。
機(jī)械法是采用噴丸、噴砂方法使表面粗化來提高液態(tài)金屬的潤濕性,鋁-鐵雙金屬鑄造的研究表明,噴丸和噴砂可使界面金屬間化合物層厚更薄、更均勻[51,53]
b.鑲嵌件預(yù)熱與液態(tài)金屬過熱:根據(jù)前述形成冶金結(jié)合的第2個條件,鑲嵌件與液態(tài)金屬需要一定的接觸時間,這也就是說界面溫度需要保持在合金液相線以上一定的時間。界面溫度與鑲嵌件的預(yù)熱溫度、液態(tài)金屬的澆注溫度有關(guān),鑲嵌件預(yù)熱和液態(tài)金屬過熱溫度高,界面的溫度越高,保持為液固接觸的時間越長。因此,調(diào)控鑲嵌件預(yù)熱與液態(tài)金屬過熱溫度可以改變冶金反應(yīng)條件,即可調(diào)控界面組織。值得指出的是,影響界面溫度的因素還有液固體積比,液固體積比小,液態(tài)金屬帶入的熱量少,界面溫度保持在液相線溫度的時間就短,液固體積比過小難以形成冶金結(jié)合[54-56]
c.添加中間層:添加中間層是在鑲嵌件表面制備金屬涂層,其作用可分為兩大類:一是防止鑲嵌件表面氧化,提高潤濕性,促進(jìn)界面形成冶金結(jié)合;二是調(diào)整界面組織。
目前,研究及應(yīng)用的中間層材料很多,有純金屬 SnΔ,Zn,Cu,Ni,Cr 等[57-62],也有合金或復(fù)合中間層[463-65]。制備中間層的方法有電鍍[4,58,62,6]、化學(xué)鍍[33]、熱浸鍍[67]、噴涂[68-69]等。
等低熔點金屬中間層在復(fù)合鑄造過程中發(fā)生熔化,能增加潤濕性,促使界面產(chǎn)生熔合與擴(kuò)散結(jié)合。BAKKE等[在研究鋁-銅雙金屬復(fù)合鑄造時,對銅鑲嵌件進(jìn)行熱浸鍍Sn,發(fā)現(xiàn)Sn中間層顯著提高了潤濕性,界面抗拉強(qiáng)度最高達(dá)到90.8MPa 。
高熔點中間層,如Cu、Ni、Cr等,在復(fù)合鑄造過程中不發(fā)生熔化,通過擴(kuò)散與澆注的金屬形成冶金結(jié)合,它們的作用主要是阻止或減少脆性金屬間化合物的形成。LIU等5研究在鐵鑲嵌上電鍍Cu后進(jìn)行鋁-鐵雙金屬復(fù)合鑄造,表明Cu中間層能阻止金屬間化合物的形成,使界面剪切強(qiáng)度從未添加中間層的 31.20MPa 提高到77.65MPa 。
復(fù)合中間層中各層的作用不同,例如,在鋁一鎂復(fù)合鑄造中采用 ΔNi-Cu 復(fù)合中間層時,Ni層的作用是阻止Al-Mg金屬間化合物形成,Cu層的作用則是與Mg通過擴(kuò)散形成冶金結(jié)合,LI等的研究表明,用電鍍方法制備Ni-Cu復(fù)合中間層可使A356鋁合金-AZ91D鎂合金界面結(jié)合強(qiáng)度提高20.3% 。
d.施加物理場:在鑄造過程中施加振動可以提高雙金屬界面冶金結(jié)合質(zhì)量,近年來受到了許多關(guān)注[70-73]。GUO等[70]、SUI等[7]及LIU等[72]研究超聲振動對鋁-鐵雙金屬復(fù)合鑄造的影響,發(fā)現(xiàn)超聲振動能夠改善冶金結(jié)合質(zhì)量,大幅提升其界面結(jié)合強(qiáng)度。GUAN等3研究超聲振動對鋁-鎂雙金屬界面組織與性能的影響,發(fā)現(xiàn)超聲振動消除了界面連續(xù)氧化夾雜,細(xì)化了組織,結(jié)合強(qiáng)度顯著提高。GUAN等74的研究還發(fā)現(xiàn)機(jī)械振動也能減少界面氧化物、細(xì)化晶粒。
添加磁場也能對液固復(fù)合界面的原子擴(kuò)散行為產(chǎn)生影響,從而調(diào)控界面組織與性能。YU等[75]對鋁-鋼復(fù)合鑄造的研究表明,添加磁場后界面物相沒有變化,但界面處金屬間化合物厚度的減少,緩解了變形過程中界面處的應(yīng)力集中,剪切強(qiáng)度從(41±7)MPa增加到 (56±2)MPa 。
對鑄型中的鑲嵌件進(jìn)行感應(yīng)加熱也可實現(xiàn)界面組織與性能調(diào)控,這種方法在特定條件與需求下有應(yīng)用前景[76-77]
3液固雙金屬復(fù)合鑄造在汽車輕量化制造中的應(yīng)用
雙金屬復(fù)合鑄造將2種金屬材料連接為一體,滿足汽車零部件輕量化或某些特殊性能要求。一些雙金屬復(fù)合鑄件已應(yīng)用于汽車零部件,如發(fā)動機(jī)缸體、活塞、副車架、制動盤、制動鼓、車身部件中的門框、連接支架等。
3.1鋁(鎂)-鐵雙金屬復(fù)合鑄造
鋁、鎂的密度小,比強(qiáng)度高,是重要的輕量化金屬材料。但是,鋁、鎂合金的強(qiáng)度比鋼鐵材料低,特別是其耐磨、耐熱性能遠(yuǎn)不及鋼鐵材料,將鋁(鎂)-鐵結(jié)合制成雙金屬復(fù)合鑄件既可實現(xiàn)輕量化,又能滿足零部件一些部位的耐磨、耐熱性能要求。
鋁(鎂)-鐵雙金屬復(fù)合鑄件已在汽車上得到應(yīng)用,比如,汽車發(fā)動機(jī)缸體采用鋁合金可實現(xiàn)輕量化,但一般鋁合金滿足不了汽缸對耐磨性、耐熱性要求,采用雙金屬復(fù)合鑄造技術(shù)制備鋁-鐵雙金屬復(fù)合缸體,如圖5所示氣缸部分采用鑄鐵材料,很好地滿足了輕量化與性能要求。這種缸體采用壓力鑄造、低壓鑄造或重力鑄造方法生產(chǎn),其生產(chǎn)過程一般是將預(yù)先制備好的鑄鐵氣缸套除油、除銹,預(yù)熱至 500~580°C 后放入鑄型中,然后合型澆注鋁合金液。
為提高鋁合金缸體與鑄鐵缸套的結(jié)合質(zhì)量,鑄鐵缸套外壁可設(shè)計加工出凹槽或凸點,或噴砂使表面粗化,以增加結(jié)合面積和機(jī)械鎖合力,圖6所示為鑄態(tài)粗糙表面及開有螺紋凹槽的缸套表面及其與鋁合金結(jié)合界面。在缸套外表面采用電鍍、熱浸鍍等方法制備合金中間層[78-79],可以實現(xiàn)冶金結(jié)合,提高鑄鐵缸套與鋁缸體之間的導(dǎo)熱性能。高壓鑄造及工藝優(yōu)化可使鑄鐵缸套與鋁合金缸體間的氣隙減小[14.80]
汽車發(fā)動機(jī)活塞通常用鋁硅合金整體鑄造,大功率發(fā)動機(jī)活塞的第一環(huán)槽處工作溫度高,此時鋁合金的耐磨性不能滿足要求,故將耐高溫、耐磨的鑄鐵和鋁合金結(jié)合,在活塞的第一環(huán)槽處鑲一鐵圈,制成鋁-鐵雙金屬復(fù)合鑄造活塞(簡稱鑲?cè)钊?,如圖7所示。為保證鐵圈與鋁有相近的熱膨脹系數(shù),鐵圈采用高鎳奧氏體鑄鐵;為使鐵圈與鋁基體之間具有良好的導(dǎo)熱性和足夠的粘結(jié)強(qiáng)度,要求鐵圈和活塞鋁基體之間具有冶金結(jié)合,生產(chǎn)上采用超聲波檢驗冶金結(jié)合率,一般要求達(dá)到85% 以上。目前生產(chǎn)上普遍采用Al-fin工藝[81-82],這種工藝是先將經(jīng)過表面清理的鐵鑲嵌件在鋁液中浸泡 2~5min ,使鋁液與鐵界面發(fā)生擴(kuò)散反應(yīng);然后將鐵鑲嵌件從鋁液中取出放入鑄型,澆注基體金屬液,隨后基體金屬液與鑲嵌件表面的鋁液熔合、凝固,兩者形成冶金結(jié)合。
汽車制動盤一般采用灰口鑄鐵制造,鋁合金的摩擦性能不能滿足制動盤的要求。為滿足制動盤輕量化需要,可選用鋁合金作為盤帽材料,用灰口鑄鐵作為摩擦環(huán)材料,如圖8所示。鋁合金盤帽與灰口鑄鐵摩擦環(huán)可采用螺栓螺母連接或鉚釘連接,也可采用復(fù)合鑄造技術(shù)制成一個整體,以減少盤帽和摩擦環(huán)裝配工序。復(fù)合鑄造生產(chǎn)過程中先將已鑄造成型的灰鑄鐵摩擦環(huán)放入鑄型內(nèi),然后澆注鋁合金形成盤帽[83-84]
制動鼓也可采用鋁-鐵雙金屬復(fù)合鑄造,制動鼓的內(nèi)圈采用灰鑄鐵,外圈采用鋁合金,與傳統(tǒng)灰鑄鐵制動鼓比較可減重 40%[85] L
近年來人們開始探索將鋁-鐵雙金屬復(fù)合鑄造用于制造承載結(jié)構(gòu)件[86-88],Cosma開發(fā)了鋁-鋼雙金屬復(fù)合鑄造發(fā)動機(jī)托架,BMW研究了鋁-鋼復(fù)合鑄造車身縱梁[8],WEIHE等[88研究了鋁-鋼復(fù)合鑄造車頂橫梁。
鎂-鐵雙金屬復(fù)合鑄造在汽車上也有應(yīng)用,例如BMW一款發(fā)動機(jī)的下缸體采用鎂-鋼復(fù)合鑄造,其中鋼質(zhì)鑲嵌件作為曲軸軸承[89]。為減輕儀表板橫梁的質(zhì)量,又不顯著增加成本,研究人員探索了用鎂合金與鋼管復(fù)合鑄造儀表板橫梁,如圖9所示[7,13]
3.2鋁-鎂雙金屬復(fù)合鑄造
鋁與鎂都是重要的輕量化金屬材料,鎂的密度比鋁低 30% ,比強(qiáng)度、比剛度更高,但其耐熱性差、蠕變強(qiáng)度低,作為結(jié)構(gòu)件工作溫度不能超過120°C 。因此,鋁與鎂復(fù)合能進(jìn)一步發(fā)揮其輕量化效果,近年來受到許多研究者的關(guān)注。BMW率先將鋁-鎂雙金屬復(fù)合鑄造用于生產(chǎn)發(fā)動機(jī)缸體[89]。在該缸體的材料設(shè)計中,考慮到鎂合金不適合用于缸筒接觸表面和冷卻流體通道,采用過共晶鋁合金做缸體內(nèi)襯,鎂合金做外殼,如圖10所示。生產(chǎn)工藝為:先鑄鋁合金內(nèi)襯鑲嵌件,其表面用電弧噴涂方法噴一層共晶鋁合金,然后采用壓鑄方法鋁合金鑲嵌件與鎂合金復(fù)合。這種鋁鎂復(fù)合缸體比鋁合金缸體減重 24%(10kg) 。
3.3鋼-鑄鐵復(fù)合鑄造
鋼與鑄鐵因化學(xué)成分、處理工藝不同,性能有很大差異。一般而言,鋼的強(qiáng)度高、韌性好,鑄鐵具有耐磨性好、導(dǎo)熱性好、減振性好等特點。將2種不同的鋼鐵材料用鑄造方法結(jié)合起來制成雙金屬復(fù)合鑄件,既能滿足零部件不同部位的性能要求,又可實現(xiàn)輕量化。
鋼-鑄鐵復(fù)合鑄造在汽車制造中的典型應(yīng)用是生產(chǎn)重型汽車上的制動鼓[90-91]。鋼-鐵復(fù)合制動鼓采用鋼制外殼,內(nèi)圈是灰鑄鐵,鋼制外殼采用鋼板經(jīng)沖壓、旋壓成形,再經(jīng)表面清理、涂刷溶劑、加熱烘烤等處理工序,用離心鑄造或砂型鑄造方法完成鋼與灰鑄鐵的復(fù)合,兩者形成冶金結(jié)合,圖11所示為制動鼓及其截面與結(jié)合區(qū)組織。雙金屬復(fù)合制動鼓比傳統(tǒng)灰鐵鑄造制動鼓質(zhì)量減輕 20% \~30% ,并能延長制動鼓的使用壽命,增加汽車行駛的安全性[9]。
4結(jié)束語
雙金屬復(fù)合鑄件可解決單一材料鑄件無法滿足的綜合性能問題,近年來正吸引著越來越多研究者的關(guān)注,國內(nèi)外研究人員在復(fù)合工藝、界面組織與性能調(diào)控等方面做了大量的研究,在雙金屬復(fù)合鑄件的應(yīng)用上也有很大發(fā)展,但還有些問題需要研究:
a.界面反應(yīng)及其控制。界面反應(yīng)形成的微觀組織結(jié)構(gòu)決定了2種金屬間的結(jié)合強(qiáng)度與物理化學(xué)性能,因此需進(jìn)一步研究界面原子擴(kuò)散行為、界面組織的形成規(guī)律,研究表面處理、中間層元素對界面反應(yīng)與組織形成的影響。
b.鑄造工藝。雙金屬復(fù)合鑄造比單一金屬鑄造的工藝過程復(fù)雜,控制要求更高,因此要加強(qiáng)工藝過程數(shù)值模擬的研究,優(yōu)化工藝參數(shù),避免鑄造缺陷;另外要研究利用外加超聲波、外加磁場等工藝手段來提高界面結(jié)合質(zhì)量、減少界面缺陷。
c.雙金屬復(fù)合鑄件的設(shè)計。2種金屬通常具有不同的物理性質(zhì),鑄件成形過程中產(chǎn)生應(yīng)力、變形的情況更加復(fù)雜,因此要研究雙金屬復(fù)合鑄件的優(yōu)化設(shè)計方法,鑄件在滿足輕量化與綜合性能要求的同時,考慮減少應(yīng)力、變形、開裂傾向。
輕量化與高性能是汽車材料及零部件發(fā)展的趨勢,雙金屬復(fù)合鑄造是發(fā)展輕量化與高性能復(fù)合材料及零部件的重要技術(shù)之一。隨著該技術(shù)的不斷完善,將在汽車輕量化與高性能零部件制造中獲得越來越廣泛的應(yīng)用。
參考文獻(xiàn):
[1]ROHLWINGA,RANEKK,KORDIJAZIA,etal.Cast"in Inserts, Including MMC Inserts in Aluminum Compound Castings[J]. Transactions of the American Foundrymen's Society,2022,130:57-73.
[2] LI GY, JINGWM, GUANF, et al. Preparation,Interfacial Regulation and Strengthening of Mg/Al Bimetal Fabricated by Compound Casting: A Review[J]. Journal of Magnesium and Alloys,2023,11(9): 3059-3098.
[3]PAPISKJM,LOEFFLERJF,UGGOWITZERPJ.Light Metal Compound Casting[J]. Science in China Series E: Technological Sciences,2010,52(4): 46-51.
[4] HAN Q Y.A Modified Cast-on Method for the Reinforcement of Aluminum Castings with Dissimilar Metals[J]. Metallurgical amp; Materials Transactions B,2016,55: 1-8.
[5]李永兵,馬運五,樓銘,等.輕量化多材料汽車車身連接 技術(shù)進(jìn)展[J].機(jī)械工程學(xué)報,2016,52(24):1-23.
[6] BLALAH,PENGZHI C, SHENGLUN Z, et al. Innovative Hybrid High-Pressure Die-Casting Process for LoadBearing Body-in-White Structural Components[J].International Journal of Metalcasting,2024:18(4): 3460-3481.
[7] LUO A A, SACHDEV A K,POWELL BR.Advanced Casting Technologies for Lightweight Automotive Applications[J]. China Foundry,2010,7(4): 463-469.
[8] LUO A A, SACHDEV A K, APELIAN D. Alloy Development and Process Innovations for Light Metals Casting[J]. Journal of Materials Processing Technology,2022,306.
[9] SOARESE,REJOWSKI E,MAURIZI M. Cast-in Cylinder Iiners Designs to Improve Bonding and Shear Strength for Aluminum Block[R]. Societyof Automotive Engineers,Technical Paper No.2012-36-0449,2012.
[10] FANG X, GUNDLACH J, SCHIPPERGES J J, et al. On the Steel-Aluminum Hybrid Casting by Sand Casting[J]. Journal of Materials Engineering and Performance, 2018, 27: 6415-6425.
[11]陳忠士,傅高升,程超增,等.雙金屬汽車剎車轂復(fù)合 鑄造工藝的研究[J].鑄造,2012,61(1):101-105.
[12] CHEMEZOV D, SMIRNOVA L, BOGOMOLOVA E. Metal Mold Casting of Cast Iron and Aluminium Pistons[J]. ISJ Theoretical amp; Applied Science,2018,61(5):132- 141.
[13] CHIESA F, MORIN G, TOUGAS B,et al. Hybrid Metal Castings-Low Pressure Permanent Pold Overcasting Optimizes Part Characteristics[J]. Modern Casting,2014, 104(2): 48-55.
[14]杯雪冬,何,戶建波,寺.全鋁反動機(jī)缸套-缸體的成 形技術(shù)及其導(dǎo)熱性能[J].特種鑄造及有色合金,2016, 36(4): 345-348.
[15] LIU T,WANGQ,SUI Y,et al. An Investigation into Interface Formation and Mechanical Properties of Aluminum - copper Bimetal by Squeeze Casting[J]. Materials amp; Design,2016,89:1137-1146.
[16]ALI MA,ISHFAQK,RAZA MH,et al.Mechanical Characterization of Aged AA2026-AA2026 Overcast Joints Fabricated by Squeeze Casting[J].The International Journal of Advanced Manufacturing Technology,2020, 107: 3277-3297.
[17] NOLTE N, LUKASCZYK T, MAYER B. Investigation of the Microstructure and Properties of Aluminum -Copper Compounds Fabricated by the High-Pressure Die Casting Process[J].Metals,2022,12(8):1314.
[18] WU M, YANG J,HUANG F, et al. Bonding of Cast IronAluminum in Bimetallic Castings by High-pressure Die Casting Process[J]. The International Journal of Advanced Manufacturing Technology,2022,120(1): 537- 549.
[19] MARTINS, SULIKD,F(xiàn)ANG XF,et al. Steel-Aluminum Hybrid Die Casting:Microstructures Related to the Applied Al-Si Bond Coating[J]. Intermetallics,2022, 151.
[20] SARVARI M,GHAEMI KHIAVI S,DIVANDARI M,et al.Dissimilar Joining of Al/Mg Light Metals by Centrifugal Compound Casting Process[J]. International Journal of Metalcasting,2023,17(2): 998-1007.
[21] GHOLAMI M, GHAEMI KHIAVI S, DEHHAGHI A, et al. Microstructure and Mechanical Properties of the Interface of Aluminum-Brass Bimetals Produced via Vertical Centrifugal Casting (VCC)[J]. International Journal of Metalcasting,2024,18(2):1204-1216.
[22]HEJAZI MM,DIVANDARI M, TAGHADDOS E. Effect of Copper Insert on the Microstructure of Gray Iron Produced via Lost Foam Casting[J]. Materials amp; Design, 2009,30(4): 1085-1092.
[23] JIANG W M,LIG Y,F(xiàn)AN Z T,et al. Investigation on the Interface Characteristics of Al/Mg Bimetallic Castings Processed by Lost Foam Casting[J]. Metallurgicalamp; Materials Transactions A,2016,47(5): 2462-2470. 博迫僅不,z0U5,Z4(J): 4U0-410.
[25]HANNA MD, SCHROTH JG, DESSOUKI O S. Bi-Metal Disc Brake Rotor and Method of Manufacturing: US8820491[P].[2014-09-02].
[26] KIMJM, SHIN K,SHINJS. Microstructural Evolution andGrowth ofIntermetallic Compoundsatthe Interface Between Solid Cast Iron and Liquid Al-Si Alloy[J]. Metals,2020,10(6): 759.
[27] GUO Z L,LIU M, BIAN XF,et al. An Al-7Si Alloy/Cast Iron Bimetallic Composite with Super-High Shear Strength[J]. Journal of Materials Research and Technology,2019,8(3): 3126-3136.
[28] JIANG W M, FAN Z T,LI C. Improved Steel/Aluminum Bonding in Bimetalic Castings bya Compound Casting Process[J]. Journal of Materials Processing Technology, 2015,226: 25-31.
[29] MOODISPAW M P, CHEN B, LUO A A, et al. Achieving Metallurgical Bonding in Aluminum/Steel Bimetallic Castings[J]. International Journal of Metalcasting, 2024, 18: 2832-2840.
[30] HAJJARI E,DIVANDARI M, RAZAVI SH, et al. Dissimilar Joining of Al/Mg Light Metals by Compound Casting Process[J].Journal of Materials Science,2011,46 (20): 6491-6499.
[31] LI GY,JIANGWM, YANGWC,et al. New Insights into the Characterization and Formation of the Interface of A356/AZ91D Bimetallic Composites Fabricated by Compound Casting[J]. Metallurgical and Materials Transactions A,2019, 50: 1076-1090.
[32] PINTORE M, WOLCK J, MITTLER T, et al. Composite Casting and Characterization of Cu-Al Bilayer Compounds[J]. International Journal of Metalcasting,2020, 14: 155-166.
[33] YUAN H U, CHEN YQ,LI L I, et al. Microstructure and Properties of Al/Cu Bimetal inLiquid-Solid Compound Casting Process[J]. Transactions of Nonferrous Metals Society of China,2016,26(6): 1555-1563.
[34] NIE X Y, LIU JC,LI H X,et al.An Investigation on Bonding Mechanism and Mechanical Properties of Al/Ti Compound Materials Prepared by Insert Moulding[J]. Materialsamp; Design,2014,63:142-150.
[35] SCHWANKL M, WEDLER J, KORNER C. Wrought AlCast Al Compound Casting Based on Zincate Treatment ForAluminum Wrought Alloy Inserts[J]. Journal of Materials Processing Technology,2016,238:160-168.
[36] RUBNER M, GUNZL M, KORNER C, et al. Aluminiumaluminium Compound Fabrication by High Pressure Die Casting[J]. Materials Science and Engineering:A,2011, 528(22/23): 7024-7029.
[37] WENFL, ZHAO JF,F(xiàn)ENG KQ, et al. Investigation of Cu Interlayeron Joint Formation of Ti/Mg Bimetal Fabricated by Liquid-Solid Compound Casting Process[J]. Metalsand Materials International,2022,28(7):1711- 1724.
[38] CHENG J, ZHAO JH, WANG C, et al. Effect of HEA/Al Composite Interlayer on Microstructure and Mechanical Propertyof Ti/Mg Bimetal Composite by Solid-liquid Compound Casting[J]. China Foundry,2023,20(1): 1-11.
[39]KODAMA H,F(xiàn)UKUMOTO T.Cast-Iron Insert and Method of Manufacturing Same:US7226667[P]. [2007-06- 05].
[40] BRUCKMEIER L, RINGEL A, VROOMEN U,et al. Influence of High-Pressure Die Casting Process Parameters on the Compound Strength of Hybrid Components with Undercut Sheet Metal[J].Metals,2023,13(10): 1717.
[41] HORIGOME M, SAITO G.Cylinder Liner for Insert Casting Use: US9089893[P].[2015-07-28].
[42]劉耀輝,劉海峰,于思榮.液固結(jié)合雙金屬復(fù)合材料界 面研究[J].機(jī)械工程學(xué)報,2000,36(7):81-85.
[43] BAKKE AO,ARNBERG L,LOLAND JO, et al. Formation and Evolution of the Interfacial Structure in Al/Steel Compound Castings During Solidification and Heat Treatment[J]. Journal of Alloys and Compounds,2020, 849.
[44] VIALA JC, PERONNET M, BARBEAU F, et al. Interface Chemistry in Aluminium Alloy Castings Reinforced with Iron Base Inserts[J].Composites Part A:Applied Science amp; Manufacturing,2002,33(10): 1417-1420.
[45] SPRINGER H, KOSTKA A,PAYTON E J, et al. On the Formation and Growth of Intermetallic Phases During Interdiffusion Between Low-Carbon Steel and Aluminum Allys[J].Acta Materialia,2011,59(4): 1586-1600.
[46]HAJJARI E, DIVANDARI M, RAZAVI S H, et al. Intermetallic Compounds and Antiphase Domains in Al/Mg Compound Casting[J]. Intermetallics,2012, 23:182-186.
[47] AHMADZADEH SALOUT S, MIRBAGHERI S M H. Microstructural and Mechanical Characterization of Al/Cu Interface in a Bimetallic Composite Produced by Compound Casting[J]. Scientific Reports,2024,14(1): 7529.
[48] JIANG W M, GUAN F,LI G, et al. Processing of Al/Cu Bimetal Bia a Novel Compound Casting Method[J]. Materials and Manufacturing Processes, 2019, 34(9): 1016- 1025.
[49]李遲,樊自田,蔣文明,等.表面處理對鋼/鋁雙金屬鑄 件組織性能的影響[J].特種鑄造及有色合金,2015,35 (05): 516-519.
[50]張元好,曾大新,張紅霞,等.鑄鐵鑲?cè)钊罨瘽B鋁 工藝及其活化處理設(shè)備:201410024492.8[P].2014, 2014-05-28.
[51] SUNL,LICA,TUJW,et al. Efect of Surface Treatmentto Inserted Ringon Al-Fe Bonding Layer of Aluminium Piston with Reinforced Cast Iron Ring[J]. Journal of Central South University,2014,21(8): 3037-3042.
[52] ZHANG H, CHEN Y Q, LUO A A. A Novel Aluminum Surface Treatment for Improved Bonding in Magnesium/ Aluminum Bimetallic Castings[J].Scripta Materialia, 2014,86: 52-55.
[53] SHIN J,KIMT,LIMK,et al.Effects of Steel Type and Sandblasting Pretreatment on the Solid-liquid Compound Casting Characteristics of Zinc-coated Steel/AluminumBimetals[J]. Journal of Alloys and Compounds, 2019, 778: 170-185.
[54] SARVARI M, DIVANDARI M, SAGHAFIAN H, et al. Effect of Melt-to-solid Volume Ratio and Preheating Temperature on Mg/Al Bimetals Interface by Centrifugal Casting[J]. China Foundry,2023,20(3): 234-240.
[55] JIANG W M,F(xiàn)AN Z T,Li G Y, et al. Effects of Melt-tosolid Insert Volume Ratio on the Microstructures and Mechanical Properties of Al/Mg Bimetallic Castings Produced by Lost Foam Casting[J].Metallurgical and Materials Transactions A,2016,47(12): 6487-6497.
[56] LIU G P, WANG Q D,ZHANG L, et al. Effects of Meltto-solid Volume Ratio and Pouring Temperature on Microstructures and Mechanical Properties of Cu/Al Bimetals in Compound Casting Process[J].Metallurgical and Materials Transactions A,2019,50: 401-414.
[57] BAKKE A O, ARNBERG L, LI Y J. Achieving HighStrength Metallurgical Bonding Between A356 Aluminumand CopperThroughCompound Casting[J].Materials Science and Engineering: A,2021,810: 140979.
[58] TAVAKOLI A M, NAMI B,MALEKAN M, et al. Influences of Coating Type on Microstructure and Strength of Aluminum-steel Bimetal Composite Interface[J]. InternationalJournal ofMetalcasting,2022,16(2): 689-698.
[59] LIU S Y, XUH, ZHANG BH, et al. The Effect of the Cu Interlayer on the Interfacial Microstructure and MechanicalProperties of Al/Fe Bimetal by Compound Casting[J]. Materials,2023,16(15): 5469.
[60] FENG J, YE B,ZUO L J, et al. Bonding of Aluminum Alloys in Compound Casting[J].Metallurgical amp; Materials Transactions A,2017,48(10):4632-4644.
[61]WEN K, ZHANG GW, ZHANG Z C, et al. Enhanced Bonding Strength of Al/Fe Bimetal byNi-based InterlayerPrepared by Laser Cladding Technique[J]. Materials Today Communications,2024,38:107906.
[62] ZHANG D, ZHANG G W, YU H, et al. Controlling Interfacial Composition and Improvement in Bonding Strength of Compound Casted Al/Steel Bimetal Via Cr Interlayer[J]. Journal of Materials Research and Technology,2023,23: 4385-4395.
[63] ZHAO JH, ZHANGYQ,HE JS,et al. Interfacial Microstructure in Joining of Arc Sprayed Al-Zn Coating to AZ91D by Solid-liquid Compound Casting[J]. Surface and Coatings Technology,2016,307: 301-307.
[64]陳達(dá),陳翌慶,徐光晨,等.ZL109/Q235液-固復(fù)合工 藝及其界面組織性能[J].特種鑄造及有色合金,2013, 33(7):665-668.
[65] SUI D, CHEN Y C, HANQ Y. Reducing Macroscopic Defects at the Aluminum/Steel Interface in Bimetal Castings Made by the Cummins Process[J]. Metallurgical and Materials TransactionsB,2023,54(3):1483-1498.
[66]LIGY, JIANG W M,GUANF,et al. Microstructure,Mechanical Properties and Corrosion Resistance of A356 Aluminum/AZ91D Magnesium Bimetal Prepared by a Compound Casting Combined with a Novel Ni-Cu Composite Interlayer[J]. Journal of Materials Processing Technology,2021,288: 116874.
[67] JIANG W M, JIANG H X, LI G Y,et al. Microstructure, Mechanical Properties and Fracture Behavior of Magnesium/Steel Bimetal Using Compound Casting Assisted withHot-dip Aluminizing[J].Metalsand Materials International,2021,27: 2977-2988.
[68] HE K, ZHAO JH, LI P,et al. Investigation on MicroStructures and Properties of Arc-sprayed-Al/AZ91D Bimetallic Material by Solid- liquid Compound Casting[J]. Materials amp; Design,2016,112:553-564.
[69] CHENG J, ZHAO JH, ZHENG D Z, et al. Investigation on the Microstructure and Mechanical Properties of Arcspray-coated Q235/AZ91D by Solid-liquid Compound casting[J]. International Journal of Metalcasting,2020, 14: 518-527.
[70] GUO R, ZENG D X,LI FG. Promoting of Metallurgical Bonding by Ultrasonic Insert Process in Steel -aluminum Bimetallc Castings[J]. High Temperature Materials and Processes,2022,41(1): 289-295.
[71] SUI D, HAN Q Y. Ultrasound-assisted Cast-on Method: Obtaining High-quality Metallurgical Bonds Between A Bare Steel Insert and A354 Aluminum Alloy Within a Composite Casting[J].Journal of Materials Processing Technology,2023,311: 117783.
[72] LIU X T, SUI D,SUN D, et al. Ultrasonic Cast Bonding of Sheet Steel toAluminuminA Metal Mold[J]. International Journal of Metalcasting,2024,18:3496- 3505.
[73] GUANF,JIANG WM,WANGJL,et al.Developmentof High Strength Mg/Al Bimetal byA Novel Ultrasonic Vibration Aided Compound Casting Process[J]. Journal of Materials Processing Technology,2022, 300: 117441.
[74] GUANF,JIANGWM,LIGY,et al.Effect of Vibration on Interfacial Microstructure and Mechanical Properties of Mg/Al Bimetal Prepared by A Novel Compound Casting[J].Journal of Magnesium and Alloys,2022,10(8): 2296-2309.
[75] YU H, ZHANG G W,LV W Z, et al. Improved Microstructure and Shear Strength of the Al/Steel Bimetal Prepared by Compound Casting under Magnetic Field[J]. Journal of Alloys and Compounds,2023,932: 167343.
[76] LOCKE C,GUGGEMOS M, MAIER L, et al. Hybrid Joining of Cast Aluminum and Sheet Steel Through Compound Sand Casting and Induction Heating to Enable thin-walled Lightweight Structures[J]. Journal of Materials Processing Technology,2024,324: 118261.
[77] LOCKE C,PICHLER R, GUGGEMOS M, et al. Expanding Lightweight Design Potential by Hybrid Joining of Aluminum Sheets with Aluminum Casting through Compound Sand Casting and Induction Heating[J]. Advanced Engineering Materials,2024,26(21): 2400549.
[78] KAMYAB M,HAJIALIMOHAMMADI A, MOTALEBI S, etal.Investigating the Effect of the CoatingProcess on Improving the Qualityof Mechanical Bonding in the Casting of Aluminum Cylinder Block with Cast-in Iron Liner[J]. The Journal of Engine Research,2023, 70(2): 80-98.
[79]REJOWSKI E,DE SOUZA JP,RABELLO R B. New Coated Cast-In Liner to Improve Heat Transfer on Aluminum Blocks[R]. SAE Technical Paper, 2016,2016- 36-0262.
[80] BALACHANDAR D, NATARAJ N. Process Improvements to Reduce Bonding Gap between Aluminum Cylinder Block and Cast-In Liner and Evaluation through Non-Destructive Techniques[R]. SAE Technical Paper, 2023,2023-01-0880.
[81] SZWAJKA K,ZIELINSKA-SZWAJKA J,TRZEPIECINSKI T. Influence of the Duration and Temperature of theAl-FinProcess for the Cast Iron Insert on the Microstructure of the Bimetallic Joint Obtained in the Piston Casting Process[J]. Metals,2023,13(5): 897.
[82] MANASIJEVIC S, RADISA R, BRODARAC Z Z, et al. Al-Fin Bond in Aluminum Piston Alloy amp; Austenitic Cast Iron Insert[J]. International Journal of Metalcasting, 2015,9: 27-32.
[83] KIM YC, KIM S J, LEE J, et al. Improvementof Manufacturingand Evaluation Technology fortheLight Weight Brake Disc Composed of Hybrid Type Material [R]. SAE Technical Paper,2014,2014-01-1009.
[84] KIM YC,HANJM,RHEEYJ,et al.Method of Manufacturing Brake Disc of Heterogeneous Materialsand Brake Disc of Heterogeneous Materials Manufactured Using the Same:US10598237. 2020-3-24.
[85] RAJ S,SHANKAR S R. Design and Development of Bimetal Brake Drum to Improve Heat Dissipation and Weight Reduction[R]. SAE Technical Paper,2014, 2014-01-2284.
[86] SENFF M, VOLK W. Hybrid Joining of Cast Aluminum and Steel by Compound Casting and Friction Stir Welding[J].Production Engineering,2023,17(3): 521-534.
[87] LEHMHUS D, VON HEHL A, HAUSMANN J, et al. New Materials and Processes for Transport Applications: Going Hybrid and Beyond[J].Advanced Engineering Materials,2019,21(6).
[88]WEIHE S,ERNST A,ROTH T,et al.AluminiumSteel Composite Casting in Commercial Vehicle Manufacturing[J].ATZWorldwide,2013,115(4):52-56.
[89] HOESCHL M, WAGENER W, WOLF J. BMW's Magnesium-Aluminium Composite Crankcase,State-of-theArtLightMetal CastingandManufacturing[J].SAE Technical Paper,2006-01-0069,2006.
[90]宋軍.重型汽車雙金屬制動鼓的旋壓成型與離心澆鑄 復(fù)合成型技術(shù)研究[D].鎮(zhèn)江:江蘇大學(xué),2017.
[91]河南恒久制動系統(tǒng)有限公司.產(chǎn)品技術(shù)[EB/OL]. (2025-01-09)[2025-03-13]. http://www.hengjiumech. com/ Composite.html.