中圖分類號:X792 文獻標志碼:A 文章編號:2096-6717(2025)04-0208-11
Comparison of hydrogenation catalysis and hydrothermal catalysis for the preparation of second-generation biodiesel from waste cooking oil
LIANG Zhijie ?1 ,LINYukai,ZHANGJing2,MAJun2 (1. College of Environment and Ecology,Chongqing University, Chongqing 4Ooo45,P.R. China; 2.Collegeof Environment,Harbin Institute of Technology,Harbin15oo9o,P.R.China)
Abstract:The annual output of waste cooking oil(WCO) in China exceeds 5 milion tons,and its main component is faty acid glycerides.Through appropriate chemical conversion,it can be prepared into secondgeneration biodiesel with fatty hydrocarbons as the main component. Compared with traditional biodiesel (main components: fatty acid methyl esters or fatty acid ethyl esters),second-generation biodiesel can be blended with petrochemical diesel in any ratio for better combustion performance.Currntly,research on preparing secondgeneration biodiesel from WCO mainly includes the hydrogenation catalytic process and the hydrothermal catalytic process.This article compares the reaction mechanisms and reaction parameters of the two processes, and focuses on the research and development of catalyst and carrier selection,temperature,gas and other reaction conditions. It summarizes the applicable scope of each process and provides a basis for selecting suitable processes. At the same time,it also looks forward to the future development direction of the two processes: hydrogenation catalytic process is relatively mature in commercial use,and the focus of future research is to improve the stability of catalysts and process economics;hydrothermal catalytic process,as an emerging technology capable of in-situ hydrogen production,should focus on in-depth research on green and effcient hydrothermal catalysts and continuous flow hydrothermal reactions in the future,so as to promote the industrial application of hydrothermal catalytic process.
Keywords: wastecooking oil;second-generation biodiesel; hydrogenation;hydrothermal deoxygenation;insitu hydrogen production
當今世界面臨化石能源枯竭和環(huán)境污染的雙重壓力,目前全球一次性能源消費中,石油、煤炭和天然氣分別占據(jù)了能源結(jié)構(gòu)的 37.5%.25.5% 和24.3%[1] ,隨著化石能源的消耗,尋找新的可再生能源,以維持人類生存和社會可持續(xù)發(fā)展勢在必行。在眾多替代能源類型中,生物柴油因能直接提供氣體和液體形態(tài)的燃料,同時具有生物質(zhì)或動植物油等廣泛的原料來源及良好的減排性能等優(yōu)點,扮演著重要角色。
生物柴油按組分可分為酯類為主的一代生物柴油及烴類為主的二代生物柴油,二代生物柴油因具有更好的使用性能而成為當前生物柴油研發(fā)與應(yīng)用的重點。制備二代生物柴油的油脂原料主要有植物油(大豆油、棕櫚油及微藻油等)動物油(牛油)及餐廚廢油等,其中中國每年的餐廚廢油產(chǎn)量較大,利用餐廚廢油制備二代生物柴油對固廢利用、環(huán)境治理及能源出口具有重大意義2。作為二代生物柴油研究中最常用的工藝,油脂加氫催化工藝技術(shù)研發(fā)成熟,同時原料的適用范圍廣,當前已在大型石化公司實現(xiàn)商業(yè)化應(yīng)用[3]。然而加氫催化工藝需要外加大量的氫氣參與反應(yīng),在活化催化劑時加入有機物,無疑增加了工藝的經(jīng)濟成本與環(huán)境負擔4。水熱催化工藝作為新興工藝,可利用自身反應(yīng)的副產(chǎn)物產(chǎn)生氫氣,將油脂轉(zhuǎn)化為二代生物柴油,同時,采用更加綠色高效的高溫液態(tài)水參與反應(yīng),具備更經(jīng)濟及可持續(xù)的優(yōu)勢,近年來成為柴油加工領(lǐng)域的研究熱點[5]。
當前關(guān)于二代生物柴油的研究主要集中于單項工藝的反應(yīng)機理探索、工藝參數(shù)優(yōu)化及催化劑的篩選等方面,筆者系統(tǒng)地綜述傳統(tǒng)加氫催化工藝及新興水熱催化工藝的制備機理及反應(yīng)參數(shù),對比及總結(jié)不同工藝的適用范圍,對兩項工藝的未來發(fā)展提出展望,為傳統(tǒng)工藝節(jié)能增效及新興工藝深入應(yīng)用提供參考。
1餐廚廢油制備二代生物柴油概述
1. 1 餐廚廢油概述
餐廚廢油是指餐飲服務(wù)、食品加工等活動中產(chǎn)生的廢棄動植物油脂和各類油水混合物,包括煎炸廢棄油、經(jīng)油水分離器和隔油池等分離處理后產(chǎn)生的泄水油、地溝油[6]。據(jù)統(tǒng)計,中國一年的動植物油消費總量超過2500萬t,餐廚廢油的量達500萬t以上,而其中大量廢棄油脂通過非法渠道流通。這些廢棄油脂普遍會產(chǎn)生不同程度的水解、氧化、聚合等反應(yīng),導(dǎo)致油脂本身的流動性、色澤、酸度、過氧化值等物化指標發(fā)生劇變,生成帶有刺激性氣味的醛、酮等化合物及毒性較大的黃曲霉素。在環(huán)境層面,餐廚廢油的排放會導(dǎo)致土壤污染,影響農(nóng)作物生長和土壤健康,對大氣環(huán)境產(chǎn)生負面影響,加劇空氣污染。在社會層面,餐廚廢油的存在和使用會對人們的健康造成威脅,一旦通過非法渠道流通,其中的有害物質(zhì)會通過食物鏈進入人體,對人體健康造成危害,導(dǎo)致食品安全問題,損害消費者權(quán)益,影響社會穩(wěn)定。
在過去,餐廚廢油只能作為污染物進行處理和處置8,而近年來以餐廚廢油為原料煉制生物燃料的技術(shù)和工藝逐步發(fā)展,通過化學(xué)加工將其轉(zhuǎn)化為生物柴油等生物燃料,不僅可以減少餐廚廢油對環(huán)境與人體健康的危害,還能在一定程度上替代化石燃料,減輕環(huán)境污染。本著“不與人爭糧,不與糧爭地”的宗旨2,實現(xiàn)資源、環(huán)境與社會效益的多贏,助力中國“雙碳”目標。從原料供應(yīng)看,中國是全球最主要的餐廚廢油產(chǎn)銷國,生物柴油的生產(chǎn)單位9多以餐廚廢油為原料。據(jù)統(tǒng)計,2021年中國生物柴油產(chǎn)量約150萬t,其中約110萬t用于出口,幾乎全部出口至歐洲市場[10]。2022年6月,國家發(fā)改委、國家能源局等九部委發(fā)布的《“十四五\"可再生能源發(fā)展規(guī)劃》中指出“加強可再生能源多元直接利用,持續(xù)推進燃料乙醇、生物柴油等清潔液體燃料商業(yè)化應(yīng)用,支持生物柴油、生物航空煤油等先進技術(shù)裝備研發(fā)和推廣使用。\"經(jīng)過20a的發(fā)展,中國共有生物柴油企業(yè)30余家,生物柴油實際產(chǎn)能230萬 t/a[10] 在原料供應(yīng)結(jié)構(gòu)向非糧資源轉(zhuǎn)型的大趨勢下,預(yù)計以歐盟為首的生物燃料高需求國家與地區(qū)對廢棄油脂所制備的二代生物柴油需求量持續(xù)上升,同時,由于一代生物柴油在使用時存在缺陷,二代生物柴油的發(fā)展和應(yīng)用為大勢所趨[11],近些年在歐盟生物柴油產(chǎn)量中的占比逐年增加,市場滲透率有望進一步提高。中國作為以餐廚廢油制備二代生物柴油的核心供應(yīng)國,相關(guān)產(chǎn)業(yè)鏈有望充分受益,未來的全球生物柴油市場擁有廣闊的前景。
1.2餐廚廢油制備二代生物柴油的機理
傳統(tǒng)的一代(酯基)生物柴油具有綠色環(huán)保、十六烷值高和可再生等優(yōu)點,但低溫流動性差、氧含量高、穩(wěn)定性差且熱值低,無法完全取代石化柴油,只能以 5%~20% 摻混使用[12]。鑒于一代生物柴油的不足,研究者們開發(fā)了與化石柴油性能更接近的二代生物柴油,其主要成分與石化柴油相近,與一代生物柴油相比,硫氧含量更低、密度和黏度較低、十六烷值較高和凝點較低、穩(wěn)定性好,可與石化柴油以任意比例摻混[13]。石化柴油與兩代生物柴油的性質(zhì)對比見表1。
餐廚廢油的主要成分是甘油三酯,如圖1所示,在餐廚廢油制備二代生物柴油的反應(yīng)機理中,甘油三酯首先會水解成飽和脂肪酸、不飽和脂肪酸和甘油[14]。在加氫催化中,不飽和脂肪酸先通過加氫反應(yīng)生成飽和脂肪酸,再通過加氫脫氧、加氫脫羧和加氫脫3種基本反應(yīng)路徑轉(zhuǎn)化為長鏈烴混合物,即二代生物柴油。其中,加氫脫氧路徑產(chǎn)生的烴類與脂肪酸碳原子數(shù)相同,同時生成水分子,加氫脫羧和加氫脫羰路徑生成的烴類碳原子數(shù)比脂肪酸少一個,并且分別生成了 CO2 和 CO[15] 。
在水熱催化中,水解產(chǎn)物之一的丙三醇(甘油)通過水相重整產(chǎn)生氫氣,為不飽和脂肪酸的加氫飽和及下一步飽和脂肪酸的加氫脫氧、加氫脫羧和加氫脫炭提供 H2 來源[16]。二者的轉(zhuǎn)化路徑與主要產(chǎn)物基本一致,不同之處在于:加氫催化中 H2 源于外部添加,水熱催化中的 H2 可通過反應(yīng)體系內(nèi)部的水相重整、水汽轉(zhuǎn)換或蒸汽重整產(chǎn)生,反應(yīng)式見式(1)~式(3)。
C3H8O3+3H2O3CO2+7H2 (水相重整)(1)
因此,相較于加氫催化中有機溶劑的重復(fù)提取和多次加熱,水熱催化體系中的水不僅是甘油三酯水解的溶劑,同時也是原位產(chǎn)氫的反應(yīng)物[14],在經(jīng)濟性和環(huán)境友好性上更具優(yōu)勢。
2 加氫催化與水熱催化的工藝對比
2.1 催化劑及載體的對比分析
在加氫催化油脂制備二代生物柴油的反應(yīng)中,常見的催化劑有貴金屬催化劑和過渡金屬催化劑(表2)。負載貴金屬的催化劑性能優(yōu)異,其中常用的貴金屬催化劑有Pd、Pt、Rh和Ru等,催化活性順序為Pd、Pt、Rh、 Ru[17] 。Pd系催化劑主要吸附RCOO基團,更有利于加氫脫羧; Pt 系催化劑表面易吸附RCO基團,更利于加氫脫炭反應(yīng)[18],Kim等[19]使用 Pd/Al2O3 加氫催化大豆油和預(yù)處理后的地溝油,烷烴產(chǎn)率分別為 91% 和 85% 。Sanchez-Cardenas等2使用 加氫催化油酸,油酸轉(zhuǎn)化率達 98% ,且十七烷產(chǎn)率達 76.6% 。然而,貴金屬成本較高,相比之下,過渡金屬更具經(jīng)濟優(yōu)勢。負載在催化劑上的過渡金屬以Ni、Mo和Co等最為常見。Kubicka等[2]研究硫化的 NiMo/γ?Al2O3,Ni/
和 Co/γ-Al2O3 對菜籽油的加氫催化發(fā)現(xiàn),硫化的Ni系催化劑對加氫脫羧及加氫脫羰的選擇性更高,Mo系催化劑對加氫脫氧的選擇性更高。由于常用硫化劑 H2S?CS2 和DMDS在使用時極易污染環(huán)境[22],且S的流失會導(dǎo)致催化活性降低及產(chǎn)物二代生物柴油污染[23],因此,非硫化過渡金屬催化劑在具備經(jīng)濟性的同時,更具有環(huán)境友好性。Kiatkittipong等[24]使用 NiMo/Δγ-Al2O3 和 Pd/C 催化劑對棕櫚油和棕櫚脂肪酸餾出物進行加氫處理,結(jié)果證明,在加氫催化反應(yīng)中, NiMo/γ-Al2O3 比 Pd/C 具有更高的柴油產(chǎn)率。Veriansyah等[25研究了 Pt? Ni、CoMo和NiMo等催化劑,發(fā)現(xiàn)Ni、NiMo、CoMo是最適合甘油三酯加氫處理的催化劑之一。與CoMo催化劑相比,因Ni基催化劑可防正烯烴生成而更適合加氫脫氧反應(yīng)[26]。
水熱催化工藝中常用的催化劑同樣可以分為貴金屬與非貴金屬兩種(見表3)。負載在催化劑上的貴金屬以Pt、Pd、Ru為主。在 N2 下進行水熱催化時,催化活性依次為 Pt/CΩ,Ru/C,Pd/C[32] 。Pt基催化劑不僅表現(xiàn)出最佳脫氧活性[33],同時還具有較好的脫氮和脫硫活性。Liu等[34]用 Pt/C 水熱催化棕櫚酸,通過甲酸(HCOOH)的原位水熱分解產(chǎn)生 H2 產(chǎn)物以十五烷為主。Pd基催化劑多用于甘油三酯的水熱脫氧[35]; Ru 基催化劑更容易將長鏈烷烴分解成短鏈烷烴,在水熱催化中得到多種不同碳數(shù)的液態(tài)烷烴和氣態(tài)產(chǎn)物[32]。更重要的是, Pt,Pd,Ru 基催化劑都可以將水熱體系內(nèi)部的小分子酸或醇轉(zhuǎn)化為 H2[36] 。除了貴金屬催化劑外,經(jīng)濟性能更佳的非貴金屬催化劑也是水熱催化劑的研究重點[3],其中Ni基、Mo基和Cu基催化劑常用于脂肪酸的水熱脫氧[38]。Ni基催化劑具有氫解和裂化活性,可以將長鏈脂肪酸轉(zhuǎn)化為短鏈脂肪酸[39,同時也具備一定的脫硫[33]和脫氮4活性。除Ni基催化劑外,其他催化劑同樣也具備不錯的活性。有研究使用 Mo/Al2O3 水熱催化油酸,其水熱脫羧率達 92%[16] 。在 Cu/ γ-Al2O3 水熱催化硬脂酸反應(yīng)中,硬脂酸的轉(zhuǎn)化率和烷烴產(chǎn)率得到提高,這是由于催化劑活化了硬脂酸中的C—O鍵,從而促進脫炭反應(yīng)[16]。通過引入第二金屬對非貴金屬催化劑進行改性,也能提高水熱催化性能,Zhang等4以甲醇作為供氫劑,用Cu-Ni雙金屬催化劑水熱催化油酸,反應(yīng)轉(zhuǎn)換率達 100% 。除了單金屬和雙金屬的負載之外,也有研究將多種催化劑組合使用[42],如RANEY-Ni在水熱催化中效能不佳,而RANEY-Ni和 Ru/C 組合在粗藻油脫氧和脫氮卻顯示出良好的活性,使升級后的產(chǎn)物油保留了原粗藻油 86% 的熱值;催化劑組合還可減少水熱脫氧工藝中貴金屬的使用量[43],與單獨 Pd/C (1g)相比, ΔNiO/γ-Al2O3(1Ω g)和 Pd/C(0.5g) 的組合不但減少了Pd的使用量,還增加了二代生物柴油的產(chǎn)量。
催化劑載體也會影響加氫催化與水熱催化反應(yīng)的效果[445],,金屬氧化物和沸石是常用載體,其酸性由強到弱依次為HZSM-5、HY、 Al2O3 、 TiO2 、ZrO2.SiO2[46] 。因成本低、比表面積大、易回收等優(yōu)點,活性炭也常作為貴金屬催化劑的載體[47]。研究表明,催化劑中存在弱酸位點,能夠促進加氫催化生成更多二代生物柴油,Peng等48研究了Ni負載 ZrO2 與 Al2O3 對棕櫚酸的加氫催化,結(jié)果顯示, Ni/ZrO2 的催化性能比Ni/ Al2O3 更好;Sotelo-Boyas等[49]使用Pt/HY 與Pt/HZSM-5催化劑對菜籽油進行加氫處理,與Pt/HZSM-5催化劑相比,酸度更低的 Pt/HY 參與反應(yīng)下的二代生物柴油產(chǎn)量更高[50]。
受反應(yīng)機理與體系的影響,水熱催化中的載體還需考慮其水熱穩(wěn)定性, Ru/C 比 Ru/Al2O3 的水熱脫氧活性更高[32],是因為 Al2O3 的水熱穩(wěn)定性較差,而C載體存在大量含氧基團。載體自身的酸度也會影響催化劑的脫氧活性35,Pt/HZSM-5在水熱催化麻瘋樹油時能夠完全轉(zhuǎn)化為烷烴,而無酸度的 Pt/ CNTs對麻瘋樹油僅有 13.6% 的轉(zhuǎn)化率。HZSM-5沸石提高了棕櫚酸水熱脫氧反應(yīng)中芳烴和烷烴的產(chǎn)量[46]; CeO2 、 Y2O3 和 ZrO2 作為載體也具有一定的水熱脫氧能力[51],但會產(chǎn)生大量的酮類副產(chǎn)物[52]。
2.2 反應(yīng)溫度的對比分析
溫度是加氫催化和水熱催化工藝的重要參數(shù),對不飽和脂肪酸的雙鍵飽和、反應(yīng)物轉(zhuǎn)換率、烷烴產(chǎn)率、雜原子去除等都有影響[56]。加氫脫羧和加氫脫炭兩種路徑是吸熱反應(yīng)[57],加氫脫氧是放熱反應(yīng)[58],在 Pd/C 加氫催化硬脂酸的反應(yīng)中,溫度從300°C 升高到 360°C 時,硬脂酸的轉(zhuǎn)換率增加了4倍[59]。有研究使用 Pt/Al2O3 對油酸進行加氫催化,當溫度從 250°C 的增加到 325°C 時,油酸的轉(zhuǎn)換率從6% 增加到 100%[60] ,表明溫度升高能夠提升加氫反應(yīng)的轉(zhuǎn)換率。隨著溫度的升高,水熱催化反應(yīng)速率也會相應(yīng)提高,但烷烴的轉(zhuǎn)化率略有降低[61]。當溫度從 290°C 升高到 380°C 時, Pt/C 水熱催化棕櫚酸的反應(yīng)速率增加了8倍,而十五烷的選擇性下降了20% 。Verma等2發(fā)現(xiàn),當溫度從 375°C 逐漸升高到 450°C 時,碳氫化合物產(chǎn)量逐漸增加,證實了隨著溫度的升高加氫反應(yīng)產(chǎn)物裂化明顯得到促進。
在水熱催化中,高溫促使產(chǎn)物裂解的現(xiàn)象同樣會發(fā)生[16],將長鏈烷烴轉(zhuǎn)化為短鏈烷烴和 CH4[46] ,在Ru/HZSM-5水熱催化硬脂酸的研究中, 200°C 下產(chǎn)物中的短鏈烷烴占比不到 5% ,在 260°C 下超過了20%[30] 。Liu等[63]用Ni/SAPO-11加氫催化棕櫚酸,溫度從 320°C 逐漸升高時,產(chǎn)物中異構(gòu)化的烷烴含量增加。然而,溫度過高會導(dǎo)致芳香化合物的產(chǎn)生,降低二代生物柴油熱值,導(dǎo)致參與反應(yīng)的催化劑燒結(jié)失活[64]。Cheng等[5]用NiMo/HY加氫催化大豆油時發(fā)現(xiàn),隨著溫度的升高,芳香烴的生成量增加,當溫度超過 390°C 時,芳香烴的含量從 17.6% 增加到 28.7% 。在水熱催化油酸的反應(yīng)中,當溫度超過 380°C 時,產(chǎn)物中檢測到了乙苯和對二甲苯[66],這些副產(chǎn)物可能會導(dǎo)致金屬納米顆粒的焦化和燒結(jié),進而使催化劑失活。
2.3 反應(yīng)氣體與壓力的對比分析
H2 是加氫催化反應(yīng)體系中的重要條件。Snare等研究了 Pd/C 加氫催化油酸、亞油酸和油酸甲酯,反應(yīng)氣體分別使用 H2 與Ar,結(jié)果表明:每種反應(yīng)物在 H2 中的烷烴產(chǎn)率都比在Ar中更高。Santillan-Jimenez等報道了在 H2 與 N2 下 Ni/C 催化硬脂酸的反應(yīng),結(jié)果表明,在 H2 中的催化性能更高。 H2 壓的增大可提升加氫催化的速率和轉(zhuǎn)換率,但 H2 壓過大也會抑制反應(yīng)。Lee等9研究了 Pd/ SBA-15對油酸甲酯的加氫催化,當 H2 壓從2.5MPa增加到 6MPa 時,底物的轉(zhuǎn)化率達 100% , 選擇性超過 70% 。但當 H2 壓增大到8MPa時,轉(zhuǎn)化率卻有所下降,這源于底物與 H2 對催化劑活性位點的競爭加劇[70]。Yang等[71]發(fā)現(xiàn),在較高的 H2 壓下,異構(gòu)化反應(yīng)減少,同樣是因為催化劑對 H2 的吸附,導(dǎo)致碳氫化合物的可用位點較低而抑制異構(gòu)化。
水熱催化體系中加入少量 H2 同樣能提升反應(yīng)效率[36],增加 N2 壓進而使得原料溶解度增加,也能加快水熱催化的速率[32],但水熱體系原位產(chǎn)氫更為經(jīng)濟[72], H2 可通過小分子有機物的水相重整產(chǎn)生,如甘油[32]、甲醇[41]和甲酸[73]。在 Ni/ZrO2 水熱催化棕櫚酸的反應(yīng)中[7],當 H2 壓力從0增加到 0.69MPa 時,反應(yīng)的轉(zhuǎn)化率和烷烴的產(chǎn)率也顯著增加。水熱催化油酸的反應(yīng)中, 330°C 下加入甲醇作為供氫劑,十七烷的產(chǎn)率從 6.8% 提高到 72.2%[74] 。在 Pd/C 催化麻瘋樹油的反應(yīng)中[36],當甲酸負載量從 1g 增加到 3g 時,烷烴產(chǎn)率從 87% 上升到了 100% ,而芳烴的產(chǎn)量從 10% 逐漸減少至零,提升了產(chǎn)物的燃燒性能。
2.4其他因素的對比分析
底物、溶劑和反應(yīng)設(shè)備等因素同樣會影響加氫催化和水熱催化。飽和脂肪酸、不飽和脂肪酸和酯類[6是研究中常用的3種底物。Maki-Arvela等5觀察到脂肪酸和甲酯在加氫催化時具有不同的反應(yīng)選擇性,使用脂肪酸時,反應(yīng)更傾向加氫脫羧;使用甲酯時,反應(yīng)傾向加氫脫羰。底物預(yù)處理的程度也影響反應(yīng)[76],當反應(yīng)目標物為棕櫚酸時, Pd/C 加氫催化棕櫚酸的效果更佳,而硫化的 NiMo/Δγ-Al2O3 更適合加氫催化甘油三酯型反應(yīng)物[75]。在相同條件的水熱反應(yīng)體系下,飽和脂肪酸比不飽和脂肪酸有更高的烷烴選擇性[77],這是由于不飽和原料中的 C=C 鍵降低碳回收率,形成不需要的產(chǎn)物,如芳烴、大分子和焦炭。而酯類水解迅速,能產(chǎn)生甘油,通過水相重整原位產(chǎn)生 ,因此,在水熱催化中的反應(yīng)速度最快。
加氫催化中使用不同的溶劑也會造成影響。Gosselink等9比較了正十二烷和均三甲苯評估溶劑的效果,結(jié)果表明,在均三甲苯比溶劑下的反應(yīng)效率要比正十二烷溶劑下更好,表明低沸點溶劑可更好調(diào)節(jié)催化劑的活性[80-81];而在水中, Pt/C 加氫催化脂肪酸則比Pd/C更具活性[61],但在有機介質(zhì)中則相反[7]。水熱催化中的水可以過量的水稀釋原料,降低反應(yīng)速率[16]。不同規(guī)模的反應(yīng)設(shè)備也各具優(yōu)勢,與工業(yè)連續(xù)式反應(yīng)器相比,間歇式反應(yīng)器更適合研究優(yōu)化反應(yīng)條件,以簡單、經(jīng)濟的方式生成動力學(xué)數(shù)據(jù)[82]。相較于有傳質(zhì)限制的連續(xù)型反應(yīng)器,半間歇式反應(yīng)器的生產(chǎn)效率更高[]。表4總結(jié)了常見加氫催化與水熱催化工藝的反應(yīng)機理及參數(shù)。
2.5加氫催化與水熱催化工藝對比
加氫催化與水熱催化最常負載的貴金屬都包含Pd、Pt和Rh等,非貴金屬包括Ni、Co和Mo,此外水熱催化會負載 Cu ;二者常用的催化載體包括金屬氧化物(如 TiO2 和 ZrO2 )沸石(如HZSM-5和HY)和C載體等。研究表明,負載于弱酸性或中等酸性載體的加氫或水熱催化劑具備更高的活性,C載體表面因存在的大量含氧基團,具有更好的催化活性,常與貴金屬Pd和Pt等聯(lián)用。其中 Al2O3 更多應(yīng)用于加氫催化,水熱體系下的 Al2O3 穩(wěn)定性較差。相較于水熱催化劑,加氫催化的研究有時會使用硫化的非貴金屬催化劑,如硫化的 NiMo/γ?Al2O3 、Ni/γ-Al2O3 和 Co/γ-Al2O3 等。而在水熱催化體系中,催化劑還需同時將小分子酸或醇轉(zhuǎn)化為 H2 ,實現(xiàn)原位產(chǎn)氫。一般來說,較高的溫度可以提高反應(yīng)速率和選擇性,但過高的溫度可能會導(dǎo)致副產(chǎn)物生成增加或催化劑失活。加氫催化工藝常用的溫度范圍為 300~400°C ,水熱催化工藝常見溫度范圍為300~360°C (見表4)。 H2 是加氫催化工藝中反應(yīng)條件的一部分,相較于其他氣體,油脂在加氫的反應(yīng)條件下具備更好的烷烴轉(zhuǎn)化率,常用的氣體環(huán)境為3~4MPa 的 H2 。水熱催化工藝既能通過自身的反應(yīng)物甘油、甲醇等供氫劑進行原位產(chǎn)氫,也能通過外部加壓提高反應(yīng)速率,在氫氣的使用成本上比加氫催化工藝更具優(yōu)勢。具體的最佳反應(yīng)參數(shù)取決于使用的催化劑及原料等因素,因此,針對不同反應(yīng)體系,探究更加合適的溫度范圍是未來工藝研究的重點優(yōu)化方向,表4總結(jié)了常見加氫催化與水熱催化工藝的反應(yīng)機理及參數(shù)。
在實際工業(yè)應(yīng)用中,油脂加氫催化工藝當前已實現(xiàn)商用,如芬蘭Neste公司的NExBTL工藝、美國UOP公司的Ecofining工藝及中國中石化開發(fā)的RN-OIL工藝等[83]。以荷蘭的NExBTL工藝為例(工藝路線如圖2所示),其使用 NiMoSx/Al2O3 或CoMoSx/Al2O3 作為催化劑,在 200~500°C 與2\~15MPa氫氣反應(yīng)條件下對油脂進行脫氧,制備正構(gòu)烷烴,其次,使用 Pt/SAPO-11-Al2O3 或 Pt/ZSM-22. Al2O3 等催化劑對產(chǎn)物進行異構(gòu)化,制備異構(gòu)烷烴,以提升柴油組分的性能[3]。從大型石化公司的催化劑選擇上看,當前加氫催化工藝的首選催化劑仍然是貴金屬催化劑或硫化過渡金屬催化劑,貴金屬較高的經(jīng)濟成本及硫化型催化劑較低的環(huán)境友好性仍然是當前油脂加氫催化工藝的待優(yōu)化方向,因此,開發(fā)低成本、高效能且具備經(jīng)濟性的催化劑成為當前加氫催化的主要研究趨勢及挑戰(zhàn)[4。當前研究中,以Ni、Co和Mo為代表的非硫化過渡金屬催化劑也已表現(xiàn)出了令人滿意的性能,未來可繼續(xù)探索以MOF、ZIF-67為代表的新型載體,以提高催化活性和穩(wěn)定性[18]。其中Ni基催化劑活性高,成本低,是油脂加氫工業(yè)的常用催化劑,未來可更多關(guān)注Ni基加氫催化劑體系,以代替成本高昂的貴金屬催化劑,同時,加強對加氫脫氧及加氫異構(gòu)化的反應(yīng)機理研究,提升加氫催化工藝的經(jīng)濟性,降低反應(yīng)副產(chǎn)物[84]。
與加氫催化工藝相比,水熱催化工藝采用高溫水作為反應(yīng)物,能夠參與多種水相重整反應(yīng),以產(chǎn)生氫氣,實現(xiàn)原位產(chǎn)氫;同時,高溫液態(tài)水的密度比大部分有機溶劑高,因此水作為溶劑可以提高有機物的溶解度7。另一方面,水作為反應(yīng)物也可能產(chǎn)生負面影響,在催化過程中,水與油脂中的含氧化合物對催化劑的吸附點位可能會發(fā)生競爭,引發(fā)水熱催化劑的失活[15]。其中,非均相催化劑在提高二代生物柴油產(chǎn)量和選擇性的同時,負載金屬的浸出和燒結(jié)、載體的不穩(wěn)定以及不飽和有機物的中毒等失活機理會導(dǎo)致水熱催化劑活性的持續(xù)下降[32.85]。盡管部分催化劑,如 Pt[86] 和 Pd[87] 表現(xiàn)出較好的穩(wěn)定性,但Ru等金屬催化劑的活性受到較大影響。載體穩(wěn)定性方面,活性炭和 Al2O3,ZrO2 等金屬氧化物載體在水熱條件下穩(wěn)定性較差,容易結(jié)焦和崩塌[88]。煅燒和洗滌是恢復(fù)催化劑活性的常用方法,但對于金屬浸出和燒結(jié)等不可逆的催化劑失活,再生效果有限。想要實現(xiàn)水熱催化工藝的商業(yè)化,未來必須著重考慮催化劑的脫氧活性、水熱穩(wěn)定性和價格[15]。水熱體系下原位產(chǎn)氫的反應(yīng)機理是未來研究的重點,以此開發(fā)綠色高效的水熱脫氧催化劑[。此外,還需進一步探究催化劑再生方法,以減緩催化劑失活[14]。
3 結(jié)論與展望
系統(tǒng)介紹了加氫催化與水熱催化餐廚廢油制備二代生物柴油的反應(yīng)機理,通過對比兩項工藝的催化劑及載體選擇、溫度、氣體等反應(yīng)條件,綜述了不同反應(yīng)參數(shù)對于催化制備二代生物柴油的影響,評述了加氫催化與水熱催化工藝目前的發(fā)展現(xiàn)狀及未來研發(fā)趨勢,為餐廚廢油制備二代生物柴油的工業(yè)化提供參考。
當前,加氫催化工藝已經(jīng)實現(xiàn)商用,未來的研究可集中在:1)進一步研究加氫脫氧與加氫異構(gòu)化的反應(yīng)機理,提升反應(yīng)的經(jīng)濟性;2)開發(fā)高效環(huán)保的商用催化劑,如Ni基加氫催化劑,以提高反應(yīng)轉(zhuǎn)換率和二代生物柴油產(chǎn)物的選擇性;3)為催化劑研究適宜的反應(yīng)條件,降低反應(yīng)能耗,或?qū)ふ腋h(huán)保的 H2 來源,提高加氫催化工藝的可持續(xù)性。
與此同時,作為制備二代生物柴油的新興技術(shù),水熱催化工藝盡管還未實現(xiàn)商用,未來的研究可集中在:1)深入探究水熱脫氧和原位產(chǎn)氫的反應(yīng)機理,尋找經(jīng)濟性較好且易得的供氫劑;2)針對水熱催化劑進行優(yōu)化,包括研發(fā)更穩(wěn)定的載體材料或設(shè)計具有更高活性和選擇性的負載金屬催化劑,以減緩失活速率并提高催化效率;3)探究及優(yōu)化水熱反應(yīng)的條件,通過控制溫度、壓力和供氫劑的種類及劑量,以提高二代生物柴油的產(chǎn)量和質(zhì)量。
隨著對綠色、低碳及可持續(xù)能源的追求,利用餐廚廢油制備二代生物柴油的工藝將更加注重資源的高效利用和環(huán)境友好性,這將推動相關(guān)研究朝著更綠色、更可持續(xù)的方向發(fā)展。未來可通過生命周期環(huán)境分析及經(jīng)濟性分析深度對比水熱工藝與傳統(tǒng)加氫工藝的差異,立足環(huán)境影響及經(jīng)濟成本,進一步研究水熱催化的連續(xù)流反應(yīng)工藝,推動其工業(yè)化及商業(yè)化,形成更完善的市場體系。
參考文獻
[1]胡徐騰,齊泮侖,付興國,等.航空生物燃料技術(shù)發(fā)展 背景與應(yīng)用現(xiàn)狀[J].化工進展,2012,31(8):1625-1630. HUXT,QI PL,F(xiàn)UXG,et al. Technology develop ment background and application status on aviation biofuel [J]. Chemical Industry and Engineering Progress,
2012,31(8): 1625-1630.(in Chinese)
[2]隋健茹.基于補貼與碳抵消機制的餐廚廢棄油脂制生 物柴油的政策研究[D].遼寧大連:東北財經(jīng)大學(xué),
2022. SUIJR.Policyresearch onbiodieselproduction from waste kitchen oils based on subsidy and carbon offset mechanism [D]. Dalian,Liaoning: Dongbei University of Finance and Economics,2022. (in Chinese)
[3]黃寬,馬永德,蔡鎮(zhèn)平,等.油脂催化加氫轉(zhuǎn)化制備第 二代生物柴油研究進展[J].化工學(xué)報,2023,74(1): 380-396. HUANG K,MA Y D,CAI Z P,et al.Research progress in catalytic hydroconversion of lipid to secondgeneration biodiesel [J]. CIESC Journal, 2023,74(1): 380-396.(in Chinese)
[4]PATTANAIK B P,MISRA R D.Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels:Areview [J]. Renewable and Sustainable Energy Reviews,2017,73:545-557.
[5]張靜,馬慧玲,曾得福,等.水熱催化制備綠色柴油工 藝中催化劑的失活與再生[J].化工進展,2022,41(2): 682-689. ZHANGJ,MAHL,ZENGDF,et al.Deactivation and regeneration of heterogeneous catalysts in green diesel production by hydrothermal process [J]. Chemical Industry and Engineering Progress,2O22,4l(2): 682- 689. (in Chinese)
[6]李劍穎,付春雨,任曉靈,等.我國餐廚廢棄油脂處理 體系技術(shù)標準研究[J].再生資源與循環(huán)經(jīng)濟,2023,16 (7): 12-16. LIJY,F(xiàn)UCY,RENXL,etal.Studyontechnical standards of kitchenwaste oil treatment system in China [J]. Recyclable Resources and Circular Economy,2023, 16(7):12-16.(in Chinese)
[7]姚瀟毅.非臨氫水熱催化脂肪酸脫氧制備綠色柴油的 研究[D].重慶:重慶大學(xué),2021. YAO X Y. Preparation of green diesel oil by hydrother mal catalytic deoxidation of fatty acids in the presence of hydrogen [D]. Chongqing:ChongqingUniversity,2021. (in Chinese)
[8]杜澤學(xué),唐忠,王海京,等.廢棄油脂原料 SRCA生物 柴油技術(shù)的研發(fā)與工業(yè)應(yīng)用示范[J].催化學(xué)報,2013, 34(1): 101-115. DU Z X, TANG Z, WANG H J,et al. Research and development of a sub-critical methanol alcoholysis process for producing biodiesel using waste oils and fats [J]. Chinese Journal of Catalysis,20l3,34(1):101-115. (in Chinese)
[9]王曉輝.國內(nèi)生物柴油發(fā)展的態(tài)勢與思考[J].中國糧食 經(jīng)濟,2022(7):61-64. WANG X H. The development trend and thinking of biodiesel in China [J]. China Grain Economy,2022(7): 61-64.(in Chinese)
[10]李頂杰.推動廢棄油脂制生物燃料產(chǎn)業(yè)發(fā)展[N].中國 石油報,2021-09-28. LI X J,LV B.Promote the development of the biofuel industry from waste cooking oil[N]. China Petroleum Daily,2021-09-28.(in Chinese)
[11]岳文強,趙耀平,張凱.第二代生物柴油技術(shù)現(xiàn)狀及發(fā) 展趨勢[J].科技與創(chuàng)新,2023(8):20-21. YUE W Q, ZHAO Y P,ZHANG K. Current status and development of second-generation biodiesel [J]. Science and Technology amp;. Innovation,2023(8): 20-21.
[12] KALNES T,MARKER T, SHONNARD D R. Green diesel:A second generation biofuel [J]. International Journalof Chemical Reactor Engineering,2007,5: 142007.
[13]程瑾,李瀾鵬,王兆程,等.油脂加氫脫氧制備第二代 生物柴油催化劑研究進展[J].中國油脂,2024,49(4): 77-82. CHENG J,LI L P,WANG Z C,et al. Research progress in catalysts for hydrodeoxygenation of oils to produce second generation biodiesel [J] China Oils and Fats,2024,49(4): 77-82.
[14]馬慧玲.地溝油中共存雜質(zhì)對水熱催化脫氧制備綠色 柴油的影響[D].重慶:重慶大學(xué),2022. MA H L. Efect of coexisting impurities in waste oil on preparation of green diesel oil by hydrothermal catalytic deoxidation [D]. Chongqing:Chongqing University, 2022.(in Chinese)
[15] LIU X,GUO Y,XU D H,et al. A review on recent advances in clean microalgal bio-oil productionvia catalytic hydrothermal deoxygenation [J].Journal of Cleaner Production,2022,366: 132978.
[16]YAO X Y,STRATHMANN T J,LI Y L,et al. Catalytic hydrothermal deoxygenation of lipids and fatty acids to diesel-like hydrocarbons:A review [J].Gren Chemistry,2021,23(3): 1114-1129.
[17] GURSAHANI K I, ALCALA R, CORTRIGHT R D, et al.Reaction kinetics measurements and analysis of reaction pathwaysfor conversionsof aceticacid, ethanol,and ethyl acetate over silica-supported Pt [J]. Applied Catalysis A: General, 200l,222(1/2): 369-392.
[18] CHEN S,ZHOUGL,MIAO C X. Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism [J]. Renewable and Sustainable Energy Reviews,2019, 101: 568-589.
[19]KIM S K,HAN JY,HONG S A,et al. Supercritical CO2 -purification of wastecookingoil forhigh-yield diesel-like hydrocarbons via catalytic hydrodeoxygenation [J].Fuel,2013,111: 510-518.
[20] SANCHEZ-CARDENAS M, MEDINA-VALTIERRA J,KAMARAJ S K, et al. Physicochemical effect of Pt nanoparticles/ Δγγ-Al2O3 on the oleic acid hydrodeoxygenation to biofuel [J]. Environmental Progress 8. Sus tainable Energy,2017,36(4): 1224-1233.
[21] KUBICKA D,KALUZA L. Deoxygenation of vegetable oils over sulfided Ni,Mo and NiMo catalysts [J]. Applied Catalysis A: General,2010,372(2): 199-208.
[22] GE H,LI X K,QIN ZF,et al.Highly active Mo/ (204號 Al2O3 hydrodesulfurization catalyst presulfided with ammonium thiosulfate [J]. Catalysis Communications, 2008,9(15): 2578-2582.
[23] KUBICKA D,BEJBLOVA M,VLK J. Conversion of vegetable oils into hydrocarbons over CoMo/MCM-41 catalysts [J]. Topics in Catalysis,2OlO, 53(3): 168-178.
[24] KIATKITTIPONG W, PHIMSEN S, KIATKITTIPONG K,et al. Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil [J]. Fuel Processing Technology, 2013,116: 16-26.
[25]VERIANSYAH B,HANJY,KIM S K,et al. Production of renewable diesel by hydroprocessing of soybean oil: Efct of catalysts [J].Fuel,2012,94: 578-585.
[26] TOBA M,ABEY,KURAMOCHI H, et al.Hydrodeoxygenation of waste vegetable oil over sulfide catalysts [J]. Catalysis Today,201l,164(1): 533-537.
[27] CHEN R X, WANG W C. The production of renewable aviation fuel from waste cooking oil.Part I:Bio-akane conversion through hydro-processing of oil [J].Renewable Energy,2019,135: 819-835.
[28] SRIFA A, FAUNGNAWAKIJ K, ITTHIBENCHAPONG V,et al. Roles of monometalic catalysts in hydrodeoxygenation of palm oil to green diesel [J]. Chemical Engineering Journal, 2Ol5, 278: 249-258.
[29] JEONG H, SHIN M, JEONG B,et al. Comparison of activity and stability of supported Ni2Pand Pt catalysts in the hydroprocessing of palm oil into normal paraffins [J]. Journal of Industrial and Engineering Chemistry,2020, 83: 189-199.
[30] CHEN JZ, XU Q Y. Hydrodeoxygenation of biodieselrelated fatty acid methyl esters to diesel-range alkanes over zeolite-supported ruthenium catalysts [J]. Catalysis Science amp; Technology,2016,6(19): 7239-7251.
[31]THONGKUMKOONS, KIATKITTIPONGW, HARTLEY U W,et al. Catalytic activity of trimetalic sulfided Re-Ni-Mo/ ?Al2O3 toward deoxygenation of palm feedstocks [J].Renewable Energy,2019,140: 111-123.
[32] ZHANG J,HUO X C,LI Y L,et al.Catalytic hydrothermal decarboxylation and cracking of fatty acids and lipids over Ru/C [J]. ACS Sustainable Chemistry amp;. Engineering,2019,7(17): 14400-14410.
[33] DUAN P G, SAVAGE P E. Upgrading of crude algal bio-oil in supercritical water[J].Bioresource Technology,2011,102(2): 1899-1906.
[34] LIU X,YANG M,DENG Z H,et al.Hydrothermal hydrodeoxygenation of palmitic acid over Pt/C catalyst: Mechanism and kinetic modeling [J]. Chemical Engineering Journal,2021,407: 126332.
[35]MURATAK,LIUY Y,INABA M,et al. Production of synthetic diesel by hydrotreatment of jatropha oils using Pt-Re/H-ZSM-5 catalyst [J]. Energy amp;Fuels, 2010,24(4): 2404-2409.
[36]HWANG KR,CHOI IH,CHOI HY,et al. Bio fuel production from crude Jatropha oil;addition effect of formic acid as an in situ hydrogen source [J]. Fuel, 2016,174: 107-113.
[37] MIAO C,MARIN-FLORES O,DAVIDSON S D,et al.Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst[J]. Fuel,2016,166: 302-308.
[38] KORDULIS C,BOURIKAS K,GOUSI M,et al. Development of nickel based catalysts for the transforma tion of natural triglycerides and related compounds into green diesel: A critical review [J].Applied Catalysis B: Environmental,2016,181: 156-196.
[39] MIAO C,MARIN-FLORES O,DONG T,et al. Hydrothermal catalytic deoxygenation of fatty acid and bio-oil with in situ H2 [J]. ACS Sustainable Chemistry amp; Engineering,2018,6(4): 4521-4530.
[40] XU D H,GUO S W,LIU L,et al. Ni-Ru/CeO 12 catalytic hydrothermal upgrading of water-insoluble biocrude from algae hydrothermal liquefaction [J].BioMed Research International, 2018,2018: 8376127.
[41] ZHANG Z H,YANG Q W,CHEN H,et al. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu-Ni alloy catalyst using methanol as a hydrogen carrier [J]. Green Chemistry,2Ol8,20(1): 197-205.
[42] XU Y P, DUAN P G,WANG B. Catalytic upgrading of pretreated algal oil with a two-component catalyst mixture in supercritical water[J].Algal Research,2015, 9:186-193.
[43] CHOI IH,HWANG KR,CHOI HY,et al. Catalytic deoxygenation of waste soybean oil over hybrid catalyst for production of bio-jet fuel: In situ supply of hydrogen byaqueous-phase reforming (APR)of glycerol [J]. Research on Chemical Intermediates,20l8,44(6):3713- 3722.
[44]PENG B X,ZHAO C,KASAKOV S,et al. Cover picture: Manipulating catalytic pathways: Deoxygenation of palmitic acid on multifunctional catalysts (Chem. Eur. J.15/2013)[J]. Chemistry,2013,19(15): 4645.
[45]PENG B X,YAO Y,ZHAO C,et al. Towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts [J]. Angewandte Chemie International Edition,20l2,51(9): 2072-2075. al.A review on reaction mechanisms of metal-catalyzed deoxygenation process in bio-oil model compounds [J]. Applied Catalysis A: General, 2017,541: 87-106.
[47] BREYSSE M,AFANASIEV P,GEANTET C,et al. Overview of support effects in hydrotreating catalysts [J]. Catalysis Today,2003,86(1/2/3/4): 5-16.
[48] PENG B X, ZHAO C,KASAKOV S, et al. Manipulating catalytic pathways: Deoxygenation of palmitic acid on multifunctional catalysts [J]. Chemistry-A European Journal,2013,19(15): 4732-4741.
[49] SOTELO-BOYAS R,LIU Y Y, MINOWA T. Renewable diesel production from the hydrotreating of rapeseed oil with Pt/zeolite and NiMo/ Al2O3 catalysts [J].Industrial amp;.Engineering Chemistry Research, 2011,50(5):2791-2799.
[50] TWAIQ F A, ZABIDI N A M, BHATIA S. Catalytic conversion of palm oil to hydrocarbons: Performance of various zeolite catalysts [J]. Industrial amp;.Engineering Chemistry Research,1999,38(9): 3230-3237.
[51] AYSU T,MAROTO-VALER M M, SANNA A. Ceria promoted deoxygenation and denitrogenation of Thalassiosira weissflogii and its model compounds by catalytic in situ pyrolysis [J].Bioresource Technology, 2016,208: 140-148.
[52] ZHANG Z H, CHEN H,WANG C X,et al. Efficient and stable Cu-Ni/ZrO catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor [J].Fuel,2O18,230: 211-217.
[53]BAI XJ,DUAN PG,XUYP,et al.Hydrothermal catalytic processing of pretreated algal oil: A catalyst screening study [J]. Fuel,2014,12O: 141-149.
[54]KONWAR L J,MIKKOLA JP. Carbon support effects on metal(Pd,Pt and Ru) catalyzed hydrothermal decar boxylation/deoxygenation of triglycerides [J]. Applied Catalysis A: General, 2022,638: 118611.
[55] SHIM JO,JEONG D W,JANG WJ,et al. Optimization of unsupported CoMo catalysts for decarboxylation of oleic acid [J]. Catalysis Communications,2O15,67: 16-20.
[56] SONTHALIA A, KUMAR N. Hydroprocessed vegetable oil as a fuel for transportation sector: A review [J]. Journal of the Energy Institute,2O19,92(1): 1-17.
[57] PINTO F,VARELA F T,GONCALVES M, et al. Production of bio-hydrocarbons by hydrotreating of pomace oil[J].Fuel,2014,116:84-93.
[58] HUBER G W,O'CONNOR P,CORMA A. Processing biomass in conventional oil refineries:Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures [J]. Applied Catalysis A: General,2007,329:120-129.
[59] SNARE M, KUBICKOVA I, MAKI-ARVELA P, et al.Production of diesel fuel from renewable feeds: Kinetics of ethyl stearate decarboxylation [J].Chemical Engineering Journal,2007,134(1/2/3): 29-34.
[60] MADSEN A T,AHMED E H,CHRISTENSEN C H,et al.Hydrodeoxygenation of waste fat for diesel production: Study on model feed with Pt/alumina catalyst [J]. Fuel, 2011, 90(11): 3433-3438.
[61] FU J, LU X Y, SAVAGE P E. Catalytic hydrothermal deoxygenation of palmitic acid [J]. Energy amp; Environmental Science,2010, 3(3): 311-317.
[62]VERMAD,RANA B S,KUMAR R,et al. Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supportedon hierarchical mesoporousSAPO-1l [J]. Applied Catalysis A: General,2015,49O: 108-116.
[63] LIU QY, ZUO HL,WANG T J, et al. One-step hy drodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-1l catalysts [J]. Applied Catalysis A:General,2O13,468: 68-74.
[64]PATEL M,KUMAR A. Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil:A review [J].Renewable and Sustainable Energy Reviews,2016,58:1293-1307.
[65]CHENG J,LI T,HUANG R,et al.Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality [J]. Bioresource Technology,2014,158: 378-382.
[66] POPOV S, KUMAR S. Rapid hydrothermal deoxygen ation of oleic acid over activated carbon in a continuous flow process [J]. Energy amp;. Fuels,2015,29(5): 3377- 3384.
[67] SNARE M,KUBICKOVA I,MAKI-ARVELA P,et al.Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons [J]. Fuel,2008,87(6): 933-945.
[68]SANTILLAN-JIMENEZ E,MORGAN T,LACNY J, et al. Catalytic deoxygenation of triglycerides and fatty acids to hydrocarbons over carbon-supported nickel [J]. Fuel,2013,103:1010-1017.
[69]LEE S P,RAMLI A. Methyl oleate deoxygenation for production of diesel fuel aliphatic hydrocarbons over Pd/ SBA-15 catalysts [J]. Chemistry Central Journal,2013, 7(1): 149.
[70] IMMER JG,KELLY MJ,LAMB HH. Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids [J]. Applied Catalysis A: General,2010, 375(1): 134-139.
[71]YANG YH,WANG QF,ZHANG X W,etal. Hydrotreating of C18 fatty acids to hydrocarbons on sulphided NiW/ SiO2 -AlO[J]. Fuel Processing Technology,2013,116: 165-174.
[72] GAI X K,ARANO H,LU P,et al. Catalytic bitumen cracking in sub- and supercritical water [J]. Fuel Processing Technology,2016,142:315-318.
[73]LIU C Z,KONGL P,WANG Y Y,et al.Catalytic hydrothermal liquefaction of spirulina to bio-oil in the presence of formic acid over palladium-based catalysts [J].Algal Research,2018,33:156-164.
[74] KIM T H,LEE K,KIM M Y,et al. Effects of fatty acid compositions on heavy oligomer formation and catalyst deactivation during deoxygenation of triglycerides [J].ACS Sustainable Chemistryamp; Engineering,2018,6 (12): 17168-17177.
[75] MAKI-ARVELA P,KUBICKOVA I, SNARE M,et al. Catalytic deoxygenation of fatty acids and their derivatives[J].Energyamp; Fuels,2007,21(1): 30-41.
[76]KIATKITTIPONG W,PHIMSEN S,KIATKITTIPONG K,et al. Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil [J]. Fuel Processing Technology,20l3,116: 16-26.
[77]FUJ,LU XY,SAVAGE P E.Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C [J].ChemSusChem,2011,4(4): 481-486.
[78] YEH T M, HOCKSTAD R L,LINIC S,et al. Hydrothermal decarboxylation of unsaturated fatty acids over PtSnx/C catalysts[J].Fuel,2015,156:219-224.
[79]GOSSELINK R W,HOLLAK S A W,CHANG S W,et al. Reaction pathways for the deoxygenation of vegetable oilsandrelatedmodel compounds[J]. ChemSusChem,2013,6(9):1576-1594.
[80]XINH,GUO K,LI D,et al. Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts [J]. Applied CatalysisB: Environmental,2016,187: 375-385.
[81]ARDIYANTIAR,KHROMOVA SA,VENDERBOSCH R H,et al. Catalytic hydrotreatment of fast-py rolysis oil using non-sulfided bimetallic Ni-Cu catalysts ona δΦ-Al2O3 support [J].Applied CatalysisB:Environmental,2012,117/118: 105-117.
[82] NORIEGA A K,TIRADO A,MENDEZ C,et al. Hydrodeoxygenation of vegetable oil in batch reactor: Experimental considerations [J]. Chinese Journal of Chemical Engineering,2020,28(6): 1670-1683.
[83]王東軍,姜偉,趙仲陽,等.油脂制備生物柴油工業(yè)化 技術(shù)進展[J].天然氣化工(C1化學(xué)與化工),2017,42(5): 114-119. WANGD J, JIANGW,ZHAO ZY,et al.Progress in industrialization technologies for preparation of biodiesel from oils and fats[J]. Natural Gas Chemical Industry, 2017,42(5): 114-119.(in Chinese)
[84]谷婷婷,宋煥玲,丑凌軍.油脂加氫催化劑研究進展 [J].分子催化,2020,34(3):242-251. GU T T,SONG HL,CHOU L J. Research progress of vegetable oil hydrogenation catalyst [J]. Journal of Molecular Catalysis,2020,34(3): 242-251.(in Chinese)
[85]XUGY,ZHANGY,F(xiàn)UY,et al.Efficient hydrogena tion of various renewable oils over Ru-HAP catalyst in water[J].ACS Catalysis,2017,7(2): 1158-1169.
[86]YEHT,LINICS,SAVAGEPE.Deactivationof Pt catalysts during hydrothermal decarboxylation of butyric acid [J]. ACS Sustainable Chemistry amp;.Engineering, 2014,2(10): 2399-2406.
[87]HOLLAKSAW,ARIENSMA,DEJONGKP,et al.Hydrothermal Deoxygenation of Triglyceridesover Pd/C aided by in situ hydrogen production from glycerol reforming[J].ChemSusChem,2014,7(4):1057-1062.
[88]XIONGHF,PHAMHN,DATYE AK.Hydrother mally stable heterogeneous catalysts for conversion of biorenewables [J].Green Chemistry,2O14,16(11): 4627-4643.
(編輯 王秀玲)