• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種基于參數(shù)遞歸的核電機組弱影響參數(shù)辨識模型

    2025-08-09 00:00:00梁倩云徐欣
    四川大學學報(自然科學版) 2025年4期
    關鍵詞:動態(tài)電網(wǎng)模型

    中圖分類號:029 文獻標志碼:A DOI: 10.19907/j.0490-6756.240239

    Anidentificationmodel for weakinfluenceparameters ofnuclearpowerunitbased on parameterrecursion

    LIANGQian-Yun, (1.StateGrid Sichuan Electric PowerCompany,Chengdu 6loo41,China; 2.SchoolofMathematics,SichuanUniversity,Chengdu6lOO65,China)

    Abstract: In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are stil critical for the operation ofsystems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification er rorrate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96% ,for the valve CV decreases by 0.002% ,and for the reference water level decreases by 12% after one recursion. After two recursions,the average identification eror rate for the valve opening decreases by 11.07% ,for the valve CV decreases by 2.601% ,and for the reference water level decreases by 95.79% This method can help to improve the control of the steam generator.

    Keywords: Steam generator; Nuclear power; Parameter identification;Multi-layer perceptron

    1 Introduction

    With the industrial systems such as nuclear reactors becoming increasingly complex,it ismore and more difficult to determine their parameters when establishing dynamic models for these sys tems.Nowadays,the modeling,parameter identification and controller design of complex systems inevitablyrequirenewideaswiththehelpofAI technologies,especially the relevant knowledge of sta tistical pattern recognition combing control theory.

    Many researchers have studied the parameter identification problem of complex systems and many methodswereproposed.Forinstance,Ref.[1]pro posed a parameter identification method based on the overall error degradation index of the successive typeofparametererrorsandbaddata.Ref.[2]used the traditional weighted least squares to identify the lineparameters.Ref.[3] combined the WLS method and residual sensitivity analysis to identify theparameters.In Ref.[4],theamplitude ofvoltagedrop wasusedto identifythe parametersof distribution line impedance using the approximate relationship between voltage drop amplitude and current.In Ref.[5],the mutual covariance between inputsand outputs and the output self-covariance func tion were constructed to identify the structural pa rameters of system. In Ref.[6],a time-frequency domain method was proposed to identify the modal parameters of the time-frequency spectrum in theun steadyvibration signals.In Ref.[7],a method depending only on the time-frequency spectrum of the non-stationary vibration signals was proposed.

    Onthe other hand,few researchers considered theparameter identification problem of nuclear power units.Ref.[8]provided a method to evaluate theparameter in pressurized water reactor.Ref.[9] studied the dynamic parameter model of electrical performance of the reactor control rod drive system. Ref.[1O] proposed a predictive control method based on the linear parameter-varying model combined with the cascade control theory.To our best knowledge,there are veryfewreferences concerning the identification problem of the weak influence parameters.Here“weak influence”means that, given the inputs unchanged,the output changes less oreven does not change with the change of param eters,while the accuratevalueof the parametersare still critical for the operation of the system.In other words,thiskindofparametersare insensitivetothe relationship of input-output,thus they are hard to be recognized.

    Generally,to address this problem,the usual methods require some extra information of param eterortoadd random factorsuchasGaussianwhite noise to the system.For instance,Ref.[11] pointed that the parameter identification needed to distinguish the parameterswith large or small influenceto system.Ref.[12]realizedtheidentification of line parameters by alternating the estimation of theparameterswith strongandweakinfluence.Ref. [13] proposed a weighted minimum absolute value resistance parameter identification method for the cases of parameterswith strong influence and weak influence.

    In this paper,an identification model of the weak influence parameters is proposed based on the parameter recursion.Then the method is applied to identify three parameters,say,the valve opening, thevalve CVand thereferencewaterlevel,of the steam generator of nuclear power units,in which thevalve opening and the reference waterlevel are both weak influence parameters.Simulation results show that,in comparison with the multi-layer per ceptron,the average identification error rate is decreased.In fact,after one recursion,the average identification error rate for the valve opening decreases by 0.96% ,for the valve CV decreases by 0.002% ,and for the reference water level decreases by 12% . After two recursions,the average identification error rate for the valve opening decreasesby 11.07% ,for the valve CV decreases by 2.601% ,and for the reference water level decreasesby 95.79%

    2 Parameterrecursionmodel

    Suppose that there isa system with n outputs

    (204號 z=(z1,z2,…,zn) and m inputs x=(x1,x2,… xm, ,andthe relationship between theseinputsand outputs is

    z=f(x)

    If there are k unidentified parameters …,αk) in the system,then system(1)can be ex- pressed as z=f(x;α) .Suppose that all parameters have weak influence to the outputs z .Toimprove the discrimination accuracy,we can add a positive perturbation to the system.For each Xi the perturbation is increased as Ei , s=(ε1,ε2,…,εm) . Then system (1) canbefurtherexpressed as .In the following,we establish a model to make ε have the positive action to the pa rameteridentification.

    Let (ΔZα,i,ΔXα,i) be a set of outputs and inputs, depending on the parameters α ,where i∈I is the setof indicators,where I represents the number of sets of inputs and outputs. Through arbitrary AI methods,we can establish an approximate relationship Let .By arbitrary re gression method,bring (zα,i,xα,i) into the above equation,the following approximate relationship can be established:

    Let

    Wecheck whether or not the accuracy of the identification is satisfied,if not,let and bring (ΔZα,i,δXα,i) into the above equation. By the regression method,the following approximate relationship can be established:

    Let

    Wecheck one more time whether or not the accuracyof identification is satisfied,if not we repeat the above process. Implementing this process repeatedly,the accuracy of identification can be successivelyraised.Therefore,there must existsaninteger s making the following equation holds:

    3 Applications

    Steam generator is the core of nuclear reactor bylinking the primary and the secondary loops of nuclear power units. According to the relationship between the energy and mass conservation,and transfer among these control bodies,its mechanism model can be established,which is divided into primary side single-phase mechanism model,descendingtube mechanism model,secondary side hot watersection mechanism model,secondary side boilingsection mechanism model, phase separator mechanism model,and steam chambermechanism model,etc.These modelscontain hundredsof inter mediate process parameters and variables such as theexit density ofworkmass in the descent section, theenthalpy of recirculationwork mass,theweight offeed water in the descent section,the flow rate in the descent section,the density of work mass in the exitoftheprimary side,the heattransferred from the primary-side fluid to the metal tubes,the exit enthalpy,and so on.

    Most of the parameters and variables in nuclear power units cannot be controlled directly,such as the temperature and pressure.As an application of the parameter recursion model,we choose three key parameters to identify,say,the valve opening, thereference water level andthevalve CV. Through three parameters,the working condition of the steam generator can be reflected,as shown in Fig. 1.

    The outputs used in this paper are the gasphase velocities,the gas-phase flow rates,and the liquid-phase velocities at outlet 1;the liquid-phase velocities,and the gas-phase flow rates,at outlet 2;the above data are composed as Zα,i .Since the system varies with time,the time data is composed of Xα,i .Theoutputsat outlet1 andoutlet2 are influencedbythevalveCVmost.Oncethevalve CVis determined, the gas-phase velocities,the gas-phase flow rates,the liquid-phase velocities at outlet 1;

    Fig.1Schematic structure of the steam generator

    and the liquid-phase velocities,and the gas-phase flow rates at outlet 2 in the vast majority of occa sions has been almost completely determined.The influences of the valve opening and the reference water level are thought to be minor.

    We choose to regress three parameters by MLP with the regression model Zα,i=f(Δxα,i;Δαα) For the training data Xα,i ,there are 2OOl temporal data from the moment O to 2O seconds with a samplinginterval of O.Ol seconds.For the trainingdata Zα,i ,there are 576 different combinations for param eter α ,and the gas-phase velocities,the gas-phase flow rates,and the liquid-phase velocities at outlet 1;and the liquid-phase velocities and the gas-phase flowratesatoutlet2are sampled for 2oOl times for each combination,totaling lO OO5 data.The total data Zα,i used for training contains 57 628 80 data.

    For the testing data Xα,i ,there are 2001 time data from O to 2O seconds with a sampling interval of O.O1 seconds;for the testing data zα,i ,thereare 15different combinations for parameter αa ,each combination includes the gas-phase flow rate,the liquid-phase flow rate,and the gas-phase flow rate at outlet1,and the liquid-phase velocities and the gas-phase flow rates at outlet 2.Moreover,each combination is sampled for 2Ool times,totaling

    10005 data.The total data Zα,i used for training con tains 57 62 88O data.Particularly,the testing data setisnot included in the trainingdata set.

    The MLP is set to train lOoO times,the accuracy is set to 10-6 ,the gradient is set to 10-7 ,and the damping factor is set to 1010 .Before 1000 times havereached,there have been lO consecutive train ingerrors that cannot be reduced,the training task isended.The network isadequately trained with the above settings.After loading the test data,Tab.1 lists the average error level of the valve opening, thevalve CV,and thereference waterlevel relative to the truevalues.

    Tab.1 Average identification error rates of the MLP

    In Tab.1,we notice that the identification ac curacy ishighin recognizing the valve CV with ma jor influence,but the identification accuracy is poor inrecognizing the valve opening and the reference waterlevelwithweakinfluence.Inaccordancewith theparameter recursion method,we utilize the MLP to carry out another recursion. In order to be better reflect the performance of the method,we use the same setting as the first training.After loadingthe testing data,Tab.2 lists the average error levels of the valve opening,the valve CV,and the referencewaterlevel relativetothetruevalue.

    Tab.2Average identification error rate of the proposed model after one recursion

    In Tab.2,we notice that the identification er ror rate decreases relative to the first regression. The average identification error rate of the valve opening decreases by 0.96% ,theaverage identification error rate of the valve CV decreases by 0.002% ,and the average identification error rate of thereference water level decreases by 12%

    In accordance with the parameter recursion model,weutilizetheMLPagain with the same setting as the first training.Tab.3 lists the average identification error levels of the valve opening,the valveCV,and the referencewaterlevel relative to the true value.

    Tab.3Average identification error rate of the proposed model after two recursions

    In Tab.3,we notice that thereisa significant decrease in the identification error rate relative to the first regression. The average identification error rate of the valve opening decreases by 11.07% ,the valve CV decreases by 2.601% ,and the reference water level decreases by 95.79% . That is to say, after two iterations,there is a significant decrease in the identification error rate of the weak influence pa rameters.

    4 Conclusions

    In this paper,we have proposed a parameter recursion model for the identification problem of the weak influence parameters of the complex systems. Asan application,this method is used to identify threeparameters,namely,thevalve opening,the valve CV,and the reference waterlevel of the steam generator of nuclear power units. After two 990

    recursions,the recognition accuracy significantly in creases. The method is expected to help the design of control systems of the steam generator.

    References:

    [1]Hou F D,Zhu T,Zhao C,et al.Network parameter identification method considering gross error reduction index [J].Automation of Electric Power Systems,2016,40:184.[侯方迪,朱濤,趙川,等.考 慮總體誤差下降指標的電網(wǎng)參數(shù)辨識方法[J].電力 系統(tǒng)自動化,2016,40:184.]

    [2] CastilloMRM,LondonJBA,BretasNG,et al. Offline detection,identification,and correctionof branch parameter errors based on several measurement snapshots[J].IEEE Transactions on Power Systems,2011,26:870.

    [3] Williams T L,Sun Y, Schneider K. Ofline tracking of series parameters in distribution systems using AMI data [J].Electric Power Systems Research, 2016,134:205.

    [4]Peppanen J,Grijalva S,Reno M J,et al. Distribution system low-voltage circuit topology estimation using smart metering data [C]// 2O16 IEEE/PES Transmission and Distribution Conference and Expo sition(Tamp;D),Dallas,TX,USA.Piscataway: IEEE,2016.

    [5]Weng JH,Loh C H. Recursive subspace identification for on-line tracking of structural modal parameter [J]. Mechanical Systems and Signal Processing, 2011,25:2923.

    [6]Zhang J, Shi Z,LiL.Modeling and parameter identification of linear time-varying systems based on adaptive Chirplet transform under random excitation [J]. Chinese Journal of Aeronautics,2021,34:56.

    [7] Shen F W,Du C B.An overview of modal identification from ambient responses [J].Electronictest,2013 (5):178.[沈方偉,杜成斌.環(huán)境激勵下結(jié)構(gòu)模態(tài) 參數(shù)識別方法綜述[J].電子測試,2013(5):178.]

    [8] Liu D C,Wang L,Zhao J.Parameter evaluation of pressurized water reactor nuclear power unit's dynamic model [J]. Electric Power Automation Equip ment,2018,38:39.[劉滌塵,王力,趙潔.壓水堆 核電機組動態(tài)模型參數(shù)評價[J].電力自動化設備, 2018,38:39.]

    [9] LiM S,TangSH,ZhengG,et al.Research and implementation of dynamic parameter model of electrical performance of the reactor control rod drive system [J].Nuclear Power Engineering,2O24,45:1. [李夢書,唐詩涵,鄭杲,等.反應堆控制棒驅(qū)動系 統(tǒng)電氣性能動態(tài)參數(shù)模型研究[J].核動力工程, 2024,45:1.]

    [10]MaQ,Sun PW,WeiXY.Study on linear parameter varying model predictive control of the space nuclearreactor[J].Journal ofXi'anJiaotongUniver sity,2024,58:1.[馬騫,孫培偉,魏新宇.空間堆 線性變參數(shù)模型預測控制方法研究[J].西安交通大 學學報,2024,58:1.]

    [11]HeH,Gu Q,WeiZN,etal.Identification of pa rameter estimation feasibility based on dominant parameter and non-dominant parameter[J].Automa tionofElectricPowerSystems,2007(11):49.[何 樺,顧全,衛(wèi)志農(nóng),等.基于主導和非主導參數(shù)的參 數(shù)可估計性辨識[J].電力系統(tǒng)自動化,2007 (11):49.]

    [12]ZhuJQ,LiuF,HeGY,et al.Branch parameter es timation based on dominance assessment in power systems[J].Automation ofElectric Power Systems, 2011,35:36.[朱建全,劉鋒,何光宇,等.基于主 導性評估的電網(wǎng)支路參數(shù)估計[J].電力系統(tǒng)自動 化,2011,35:36.]

    [13]Yan QC,WeiZN,Xu TS,eta.Nonlinear weighted absolute leastvalue parameter estimation based on dominant and non-dominant parameter[J]. Automation of Electric Power Systems,2Ol3,37: 71.[顏全椿,衛(wèi)志農(nóng),徐泰山,等.基于主導與非主 導參數(shù)的非線性加權(quán)最小絕對值參數(shù)估計[J].電力 系統(tǒng)自動化,2013,37:71.]

    (責任編輯:周興旺)

    猜你喜歡
    動態(tài)電網(wǎng)模型
    乘“峰”而上 為夏而行
    能源新觀察(2025年7期)2025-08-19 00:00:00
    貴州:水火風光發(fā)電足 今夏用電有保障
    能源新觀察(2025年7期)2025-08-19 00:00:00
    量子材料平臺實現(xiàn)光學模式動態(tài)切換
    科學導報(2025年54期)2025-08-19 00:00:00
    維吾爾語語態(tài)類型與語態(tài)重疊研究
    V2G來了,誰還沒有準備好?
    不同轉(zhuǎn)速下機織物動態(tài)懸垂行為分析
    智能電網(wǎng)中的輸配電技術(shù)的運用研究
    科技資訊(2025年13期)2025-08-18 00:00:00
    一半模型
    重要模型『一線三等角』
    重尾非線性自回歸模型自加權(quán)M-估計的漸近分布
    欧美精品高潮呻吟av久久| 少妇人妻久久综合中文| 两个人看的免费小视频| 一二三四在线观看免费中文在| 亚洲美女搞黄在线观看| 捣出白浆h1v1| 国产精品偷伦视频观看了| 日韩三级伦理在线观看| 男男h啪啪无遮挡| 另类精品久久| 国产精品香港三级国产av潘金莲 | 久久精品国产亚洲av天美| 日韩在线高清观看一区二区三区| 国产极品天堂在线| 免费av中文字幕在线| 2021少妇久久久久久久久久久| 国产成人欧美| 精品人妻熟女毛片av久久网站| 婷婷色麻豆天堂久久| 一级片'在线观看视频| 国语对白做爰xxxⅹ性视频网站| 999久久久国产精品视频| 国产毛片在线视频| 亚洲色图 男人天堂 中文字幕| 黑人猛操日本美女一级片| 欧美国产精品va在线观看不卡| 日日啪夜夜爽| 肉色欧美久久久久久久蜜桃| 在线观看三级黄色| 欧美日韩av久久| 精品亚洲乱码少妇综合久久| 亚洲欧美一区二区三区黑人 | h视频一区二区三区| 肉色欧美久久久久久久蜜桃| 少妇的丰满在线观看| 午夜91福利影院| 伊人久久大香线蕉亚洲五| 久久精品国产亚洲av涩爱| 亚洲精品久久久久久婷婷小说| 国产精品免费大片| a 毛片基地| 欧美97在线视频| 在线天堂最新版资源| 少妇人妻 视频| 亚洲 欧美一区二区三区| 免费看av在线观看网站| 国产一区二区三区综合在线观看| 亚洲欧洲国产日韩| 9191精品国产免费久久| 国产在线一区二区三区精| 美女高潮到喷水免费观看| 亚洲激情五月婷婷啪啪| 欧美国产精品一级二级三级| 中文乱码字字幕精品一区二区三区| 免费黄频网站在线观看国产| 高清黄色对白视频在线免费看| 99久久中文字幕三级久久日本| 丝袜美足系列| 如何舔出高潮| 两个人免费观看高清视频| 国产福利在线免费观看视频| 多毛熟女@视频| 丝袜脚勾引网站| 美女中出高潮动态图| 久久精品国产亚洲av高清一级| 成人国语在线视频| 欧美日韩精品网址| 亚洲男人天堂网一区| 大香蕉久久成人网| 日日摸夜夜添夜夜爱| 久久人人97超碰香蕉20202| 岛国毛片在线播放| 日韩不卡一区二区三区视频在线| 有码 亚洲区| 91久久精品国产一区二区三区| 人人妻人人添人人爽欧美一区卜| 久久国产亚洲av麻豆专区| 久久精品国产综合久久久| 777久久人妻少妇嫩草av网站| 香蕉精品网在线| 日本欧美视频一区| 亚洲,欧美,日韩| 叶爱在线成人免费视频播放| 母亲3免费完整高清在线观看 | 黄色怎么调成土黄色| 人妻人人澡人人爽人人| 精品少妇一区二区三区视频日本电影 | 日本av免费视频播放| 91久久精品国产一区二区三区| 日韩一区二区三区影片| 久久久久久久久久久免费av| av又黄又爽大尺度在线免费看| 不卡av一区二区三区| 欧美在线黄色| 永久免费av网站大全| 午夜激情久久久久久久| 亚洲国产色片| 深夜精品福利| 亚洲国产av影院在线观看| 丝袜美足系列| 久久这里有精品视频免费| 1024视频免费在线观看| 免费观看无遮挡的男女| 一个人免费看片子| 亚洲精品日韩在线中文字幕| 国产成人精品久久二区二区91 | 亚洲av福利一区| 99久久精品国产国产毛片| 一级爰片在线观看| 亚洲av国产av综合av卡| 久久 成人 亚洲| 老熟女久久久| 日韩一本色道免费dvd| 亚洲精品国产色婷婷电影| 国产精品免费视频内射| 久久鲁丝午夜福利片| 看十八女毛片水多多多| 菩萨蛮人人尽说江南好唐韦庄| 9191精品国产免费久久| 欧美精品高潮呻吟av久久| 亚洲精品aⅴ在线观看| 国产精品三级大全| 男人舔女人的私密视频| 亚洲av日韩在线播放| 国产精品三级大全| 久久久久久久国产电影| 国产成人精品久久二区二区91 | 啦啦啦中文免费视频观看日本| 中文字幕亚洲精品专区| 免费观看在线日韩| 国产视频首页在线观看| www.自偷自拍.com| 一级,二级,三级黄色视频| 久久久久久久久免费视频了| 日日啪夜夜爽| 亚洲精品日韩在线中文字幕| 久久午夜福利片| 丝袜喷水一区| 成人黄色视频免费在线看| 国产免费视频播放在线视频| 波多野结衣av一区二区av| 永久免费av网站大全| 两个人看的免费小视频| 国产精品麻豆人妻色哟哟久久| 天天操日日干夜夜撸| 伦理电影免费视频| 999精品在线视频| 国产免费现黄频在线看| 国产亚洲最大av| 另类精品久久| 国产福利在线免费观看视频| 国产成人免费无遮挡视频| av在线老鸭窝| 街头女战士在线观看网站| 免费观看无遮挡的男女| 少妇精品久久久久久久| 只有这里有精品99| 热99国产精品久久久久久7| 成人午夜精彩视频在线观看| 日韩伦理黄色片| 咕卡用的链子| 人人妻人人爽人人添夜夜欢视频| 一本色道久久久久久精品综合| 777久久人妻少妇嫩草av网站| 国产精品二区激情视频| 亚洲精品乱久久久久久| 热re99久久精品国产66热6| 日韩熟女老妇一区二区性免费视频| av又黄又爽大尺度在线免费看| 亚洲五月色婷婷综合| 日韩,欧美,国产一区二区三区| 亚洲综合色惰| 青春草国产在线视频| 欧美激情极品国产一区二区三区| 亚洲综合色网址| 三级国产精品片| 亚洲中文av在线| 又粗又硬又长又爽又黄的视频| 欧美成人午夜精品| 人体艺术视频欧美日本| 久久久久久久久免费视频了| 一个人免费看片子| 日本午夜av视频| 亚洲欧美清纯卡通| 在线天堂中文资源库| 欧美日韩精品成人综合77777| 午夜福利影视在线免费观看| 1024香蕉在线观看| 日韩大片免费观看网站| 欧美 日韩 精品 国产| 性高湖久久久久久久久免费观看| av一本久久久久| 三上悠亚av全集在线观看| 免费观看在线日韩| 国产1区2区3区精品| 国产日韩欧美在线精品| 五月伊人婷婷丁香| 欧美精品亚洲一区二区| 国产男女超爽视频在线观看| 亚洲国产精品一区三区| 日韩视频在线欧美| 免费在线观看黄色视频的| 在线观看免费高清a一片| 另类精品久久| 亚洲国产精品999| 欧美精品一区二区大全| 少妇人妻 视频| 最近中文字幕高清免费大全6| 精品国产超薄肉色丝袜足j| 久久av网站| 免费高清在线观看视频在线观看| 9色porny在线观看| 国产乱来视频区| 热99久久久久精品小说推荐| 午夜日本视频在线| 久久ye,这里只有精品| 亚洲精品成人av观看孕妇| 午夜福利一区二区在线看| 边亲边吃奶的免费视频| 亚洲国产欧美在线一区| 国产片特级美女逼逼视频| 男女无遮挡免费网站观看| 如日韩欧美国产精品一区二区三区| 超碰成人久久| videosex国产| 黑人猛操日本美女一级片| 九九爱精品视频在线观看| 天天躁夜夜躁狠狠久久av| 免费观看无遮挡的男女| 午夜福利,免费看| 久久久久视频综合| 自线自在国产av| 久久久久久久久久久久大奶| av卡一久久| av视频免费观看在线观看| 少妇人妻 视频| 亚洲精品第二区| 亚洲av电影在线进入| 一级毛片电影观看| 男人添女人高潮全过程视频| 亚洲国产av影院在线观看| 日韩一区二区三区影片| 日本-黄色视频高清免费观看| 麻豆乱淫一区二区| 欧美xxⅹ黑人| 亚洲成人手机| 中文字幕人妻丝袜一区二区 | 性色avwww在线观看| 亚洲,欧美精品.| av免费在线看不卡| 久久久精品区二区三区| 1024视频免费在线观看| 国产老妇伦熟女老妇高清| 久久久久国产网址| 久久午夜综合久久蜜桃| 美女中出高潮动态图| 日韩不卡一区二区三区视频在线| 啦啦啦啦在线视频资源| 日韩一本色道免费dvd| 国语对白做爰xxxⅹ性视频网站| 伦精品一区二区三区| 亚洲国产欧美在线一区| 18禁观看日本| 国产一区二区三区av在线| 9热在线视频观看99| 看十八女毛片水多多多| av国产精品久久久久影院| 赤兔流量卡办理| 中国三级夫妇交换| 美女视频免费永久观看网站| 久久精品亚洲av国产电影网| 国产成人aa在线观看| 熟女电影av网| 99久久综合免费| 亚洲,欧美精品.| 国产成人精品婷婷| 老熟女久久久| 一区在线观看完整版| 亚洲欧美中文字幕日韩二区| 国产免费福利视频在线观看| 亚洲国产最新在线播放| 亚洲中文av在线| 青春草亚洲视频在线观看| 男人添女人高潮全过程视频| 日韩一卡2卡3卡4卡2021年| 丰满饥渴人妻一区二区三| 寂寞人妻少妇视频99o| 免费观看无遮挡的男女| 亚洲精品美女久久av网站| 国产亚洲最大av| 国产免费又黄又爽又色| 国产97色在线日韩免费| 三上悠亚av全集在线观看| av在线观看视频网站免费| 日本欧美国产在线视频| 久久精品国产亚洲av涩爱| 日本vs欧美在线观看视频| 我的亚洲天堂| 国产亚洲最大av| 亚洲欧美日韩另类电影网站| 国产成人午夜福利电影在线观看| freevideosex欧美| 91在线精品国自产拍蜜月| videos熟女内射| 老鸭窝网址在线观看| av天堂久久9| 中文字幕制服av| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦在线观看免费高清www| 国产精品国产三级国产专区5o| 成年人免费黄色播放视频| 美女国产视频在线观看| 亚洲精品日本国产第一区| 亚洲,欧美精品.| 国产麻豆69| 九色亚洲精品在线播放| 国产伦理片在线播放av一区| 久久久久精品久久久久真实原创| 欧美人与性动交α欧美软件| 国产伦理片在线播放av一区| 国产一区二区 视频在线| 国产av一区二区精品久久| 亚洲综合色网址| 在线观看人妻少妇| 各种免费的搞黄视频| 欧美成人午夜免费资源| 精品国产乱码久久久久久小说| 丰满饥渴人妻一区二区三| 久久久亚洲精品成人影院| 国产老妇伦熟女老妇高清| 欧美日韩一区二区视频在线观看视频在线| 精品卡一卡二卡四卡免费| 欧美日本中文国产一区发布| 亚洲精品久久午夜乱码| 国产探花极品一区二区| av在线播放精品| 91精品三级在线观看| 久久影院123| 久久这里有精品视频免费| 自拍欧美九色日韩亚洲蝌蚪91| 熟妇人妻不卡中文字幕| 久久久久精品久久久久真实原创| 黑人巨大精品欧美一区二区蜜桃| 精品久久久久久电影网| 乱人伦中国视频| 人人妻人人澡人人看| 纯流量卡能插随身wifi吗| 中文欧美无线码| 国产精品一二三区在线看| 久久免费观看电影| 午夜激情av网站| 成人毛片a级毛片在线播放| 女性被躁到高潮视频| 一级毛片黄色毛片免费观看视频| 亚洲四区av| 丝袜美腿诱惑在线| 久久午夜福利片| 国产精品一区二区在线观看99| 国产av国产精品国产| 亚洲成av片中文字幕在线观看 | 9191精品国产免费久久| 久久亚洲国产成人精品v| 高清av免费在线| av在线老鸭窝| 婷婷色综合大香蕉| 黄色视频在线播放观看不卡| 亚洲内射少妇av| 国产1区2区3区精品| 久久精品夜色国产| 亚洲精华国产精华液的使用体验| 国产国语露脸激情在线看| 老司机影院成人| 欧美日本中文国产一区发布| 欧美日韩亚洲国产一区二区在线观看 | 久久99热这里只频精品6学生| 国产日韩欧美在线精品| av福利片在线| 国产精品99久久99久久久不卡 | 成人亚洲欧美一区二区av| 欧美另类一区| 久久精品国产a三级三级三级| 国产精品 国内视频| 国产精品久久久久成人av| 99国产综合亚洲精品| 国语对白做爰xxxⅹ性视频网站| 叶爱在线成人免费视频播放| 久久午夜福利片| 最近中文字幕2019免费版| 一区二区三区乱码不卡18| 色94色欧美一区二区| 国产精品久久久久久av不卡| videosex国产| 王馨瑶露胸无遮挡在线观看| 国产白丝娇喘喷水9色精品| 人人妻人人添人人爽欧美一区卜| 久久av网站| 久久久久人妻精品一区果冻| 国产精品国产av在线观看| 欧美中文综合在线视频| 久久毛片免费看一区二区三区| 又粗又硬又长又爽又黄的视频| 国产日韩欧美在线精品| 啦啦啦在线观看免费高清www| 欧美av亚洲av综合av国产av | 另类精品久久| 五月伊人婷婷丁香| 久久久久久久大尺度免费视频| 亚洲色图 男人天堂 中文字幕| 天堂俺去俺来也www色官网| 亚洲精品久久久久久婷婷小说| 少妇熟女欧美另类| 在线观看免费日韩欧美大片| 精品国产超薄肉色丝袜足j| 亚洲美女黄色视频免费看| 黄网站色视频无遮挡免费观看| a级毛片在线看网站| 欧美精品亚洲一区二区| 午夜日本视频在线| 麻豆精品久久久久久蜜桃| a级毛片在线看网站| 久久精品夜色国产| 免费高清在线观看视频在线观看| 蜜桃国产av成人99| 日韩伦理黄色片| 狠狠精品人妻久久久久久综合| 如日韩欧美国产精品一区二区三区| 老汉色∧v一级毛片| 少妇被粗大猛烈的视频| 三上悠亚av全集在线观看| 欧美日韩一级在线毛片| 黑人巨大精品欧美一区二区蜜桃| 99热网站在线观看| 欧美精品高潮呻吟av久久| 国产一区亚洲一区在线观看| 巨乳人妻的诱惑在线观看| 国产成人免费观看mmmm| 欧美av亚洲av综合av国产av | 综合色丁香网| 精品一区二区三卡| 亚洲美女视频黄频| 亚洲国产欧美网| 色播在线永久视频| 欧美97在线视频| 色婷婷av一区二区三区视频| 麻豆乱淫一区二区| 香蕉丝袜av| 日韩成人av中文字幕在线观看| 日韩欧美一区视频在线观看| 又大又黄又爽视频免费| a 毛片基地| 狠狠婷婷综合久久久久久88av| 久久久久久久精品精品| 美女中出高潮动态图| 精品一区二区免费观看| 婷婷色av中文字幕| 男女啪啪激烈高潮av片| 高清欧美精品videossex| 在线天堂中文资源库| 国产精品一区二区在线不卡| 美女午夜性视频免费| 欧美变态另类bdsm刘玥| 91久久精品国产一区二区三区| 99国产精品免费福利视频| 毛片一级片免费看久久久久| 亚洲欧美精品自产自拍| 美女视频免费永久观看网站| 久久这里只有精品19| 一级爰片在线观看| 国产高清国产精品国产三级| 国产一区二区三区综合在线观看| 午夜福利视频精品| 亚洲第一区二区三区不卡| 人妻少妇偷人精品九色| 黄片无遮挡物在线观看| 狠狠精品人妻久久久久久综合| 18禁裸乳无遮挡动漫免费视频| 久久久精品免费免费高清| 在线观看美女被高潮喷水网站| 久久女婷五月综合色啪小说| 欧美日韩av久久| 亚洲色图 男人天堂 中文字幕| 精品亚洲乱码少妇综合久久| 国产精品欧美亚洲77777| 精品少妇黑人巨大在线播放| 亚洲精品国产av成人精品| 男女啪啪激烈高潮av片| 亚洲精品国产av蜜桃| 国产一区亚洲一区在线观看| 久久av网站| 亚洲国产欧美网| 亚洲av欧美aⅴ国产| 婷婷成人精品国产| 亚洲一级一片aⅴ在线观看| 欧美变态另类bdsm刘玥| 少妇猛男粗大的猛烈进出视频| 国产免费福利视频在线观看| 热re99久久精品国产66热6| 日韩一卡2卡3卡4卡2021年| 亚洲精品久久成人aⅴ小说| 校园人妻丝袜中文字幕| 黄频高清免费视频| 秋霞在线观看毛片| 国产一区二区在线观看av| 亚洲精品久久成人aⅴ小说| xxxhd国产人妻xxx| 永久网站在线| 韩国高清视频一区二区三区| 国产成人免费观看mmmm| 亚洲视频免费观看视频| 国产欧美日韩综合在线一区二区| 成年女人毛片免费观看观看9 | 国产一区亚洲一区在线观看| 欧美老熟妇乱子伦牲交| 大片免费播放器 马上看| 亚洲av欧美aⅴ国产| 黄色 视频免费看| 亚洲一级一片aⅴ在线观看| 精品一品国产午夜福利视频| 亚洲精品av麻豆狂野| 精品国产露脸久久av麻豆| 777久久人妻少妇嫩草av网站| 久久久亚洲精品成人影院| 亚洲精品第二区| 精品国产露脸久久av麻豆| av在线观看视频网站免费| 99久国产av精品国产电影| 亚洲成人av在线免费| 精品国产国语对白av| 免费高清在线观看日韩| 男男h啪啪无遮挡| 久久久久精品人妻al黑| 日本爱情动作片www.在线观看| 捣出白浆h1v1| 国产1区2区3区精品| 亚洲成色77777| 国语对白做爰xxxⅹ性视频网站| av.在线天堂| 欧美国产精品va在线观看不卡| 午夜福利网站1000一区二区三区| 午夜激情av网站| 亚洲人成电影观看| 亚洲四区av| 亚洲精品国产av蜜桃| 久久久精品国产亚洲av高清涩受| 久久久久久人人人人人| 久久精品久久久久久噜噜老黄| 久久久久久人妻| 精品国产一区二区久久| 自线自在国产av| 日日撸夜夜添| 国产色婷婷99| 欧美另类一区| 黄色配什么色好看| 日韩免费高清中文字幕av| 看十八女毛片水多多多| 一区二区三区乱码不卡18| 久久久久久久久久人人人人人人| 王馨瑶露胸无遮挡在线观看| 一级毛片黄色毛片免费观看视频| 一本大道久久a久久精品| 叶爱在线成人免费视频播放| 韩国高清视频一区二区三区| 精品久久蜜臀av无| 久久久久精品人妻al黑| a 毛片基地| 久久久精品国产亚洲av高清涩受| 国产不卡av网站在线观看| 9191精品国产免费久久| 日韩一本色道免费dvd| 日日啪夜夜爽| 综合色丁香网| 欧美精品一区二区大全| 国产深夜福利视频在线观看| 青春草亚洲视频在线观看| 免费观看在线日韩| 亚洲国产成人一精品久久久| 免费av中文字幕在线| 欧美日韩综合久久久久久| 亚洲欧美精品综合一区二区三区 | 久久精品国产综合久久久| 在线观看免费日韩欧美大片| 自线自在国产av| 男女国产视频网站| 香蕉丝袜av| 如何舔出高潮| 丰满乱子伦码专区| 国产有黄有色有爽视频| 飞空精品影院首页| 久久久精品94久久精品| 国产男女超爽视频在线观看| 免费看av在线观看网站| 亚洲内射少妇av| 性高湖久久久久久久久免费观看| 欧美精品亚洲一区二区| 国产成人91sexporn| 99国产精品免费福利视频| 欧美日韩av久久| 美女国产视频在线观看| 精品少妇黑人巨大在线播放| 97人妻天天添夜夜摸| 成人国产麻豆网| 尾随美女入室| 欧美国产精品va在线观看不卡| 国产国语露脸激情在线看| 熟女av电影| 美国免费a级毛片| 国产 一区精品| 成年女人在线观看亚洲视频| 亚洲成人手机| 两性夫妻黄色片| 午夜免费观看性视频| 王馨瑶露胸无遮挡在线观看| 日本av免费视频播放| 精品人妻在线不人妻| 最近手机中文字幕大全|