中圖分類號(hào):S482.3 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-4330(2025)04-0929-07
0引言
【研究意義】2023年新疆棉花播種面積236.9×104hm2 ,總產(chǎn)量達(dá) 511.2×104t ,占全國(guó)棉花總產(chǎn)量的 90.9%[1] 。但隨著新疆棉花面積的擴(kuò)大,棉蚜(Aphisgossypii)頻發(fā),制約了棉花的優(yōu)質(zhì)、高效生產(chǎn)。棉蚜是新疆棉花的主要害蟲之一,以成蚜、若蚜在棉花葉背面刺吸汁液,致使葉片卷曲和皺縮,造成蕾鈴脫落[2],嚴(yán)重時(shí)造成的棉花產(chǎn)量損失 30~50kg/667m2[3] ?!厩叭搜芯窟M(jìn)展】傳統(tǒng)的化學(xué)藥劑雖然可在一定程度上可以控制棉蚜的數(shù)量,但同時(shí)也引發(fā)了環(huán)境問題[4-5] 。近年來,隨著植保無人機(jī)技術(shù)的快速發(fā)展[6-7],無人機(jī)變量施藥技術(shù)備受關(guān)注。目前,已經(jīng)開展了一系列的無人機(jī)變量施藥方面的研究[8-10],但是也依然存在著農(nóng)藥利用率低、霧滴易飄移等問題[11]?!颈狙芯壳腥朦c(diǎn)】噴霧助劑可以通過影響藥液理化性質(zhì)而降低藥液的表面張力、提高潤(rùn)濕滲透性、優(yōu)化霧滴分布的均勻性、降低霧滴在作物表面上的接觸角、增加藥液在作物上沉積量,進(jìn)而提高農(nóng)藥利用率。【擬解決的關(guān)鍵問題】以棉蚜為研究對(duì)象,蕾鈴期通過無人機(jī)噴施添加助劑的藥劑防治棉蚜,篩選出最佳藥劑和助劑的組合,為無人機(jī)變量精準(zhǔn)施藥防治棉蚜提供科學(xué)依據(jù)。
一 材料與方法
1.1 材料
試驗(yàn)設(shè)在實(shí)驗(yàn)基地。棉花品種為塔河2號(hào),2023年4月19日播種,采用1膜4行種植模式,寬窄行,膜寬 2.26m ,株距 10cm ,行距為 (66+10)cm ,種植密度為 15×104~18×104 株 /hm2 ,棉花長(zhǎng)勢(shì)和田間管理均勻一致。供試藥劑: 15% 氟啶蟲酰胺·聯(lián)苯菊酯懸浮劑(青島中達(dá)農(nóng)業(yè)科技有限公司) .22% 噻蟲·高氯氟懸浮劑(天津華宇農(nóng)藥有限公司) .20% 螺蟲·呋蟲胺懸浮劑(山東淄博恒生農(nóng)藥有限公司)。施藥器械:大疆T30植保無人機(jī)(深圳大疆智慧弄農(nóng)業(yè)有限公司),外形尺寸2 858mm×2 685mm×790mm ,藥箱容量 30L 攜帶16個(gè)SX110011VS噴頭,最大作業(yè)飛行速度7m/s ,噴幅寬度 4~9m 。表1
1.2 方法
1. 2.1 試驗(yàn)設(shè)計(jì)
5種噴霧助劑與3種藥劑組合,共設(shè)置18個(gè)處理,3次重復(fù),試驗(yàn)小區(qū)共計(jì)54個(gè)。每個(gè)小區(qū)長(zhǎng) 30m ,寬 25m ,隨機(jī)區(qū)組排列,小區(qū)之間設(shè)立5m 的保護(hù)帶,用藥量 23.5L/hm2 ,于2023年7月8日施藥。設(shè)定無人機(jī)飛行高度為 2.7m ,噴幅寬度為 5m ,飛行速度為 2.4m/s ,平均溫度 24.6qC ,相對(duì)濕度 25.9% ,微風(fēng)。表2
表2 藥劑與助劑組合及用量
1.2.2 測(cè)定指標(biāo)
1. 2. 2. 1 采樣點(diǎn)布置及噴霧霧滴沉積分布測(cè)定
依據(jù)前期生成的試驗(yàn)地處方園,上傳至大疆農(nóng)業(yè)平臺(tái)開展無人機(jī)變量施藥作業(yè)。噴施藥劑為20% 螺蟲·呋蟲胺懸浮劑 + 倍達(dá)通組合。根據(jù)蚜蟲危害程度1級(jí)、2級(jí)、3級(jí)和4級(jí),依次設(shè)用藥量18、21、25.5和 30L/hm2 ,4個(gè)處理區(qū),試驗(yàn)重復(fù)3次。空白對(duì)照區(qū)與試驗(yàn)區(qū)棉蚜數(shù)量減退情況作對(duì)比,空白對(duì)照處理組為不變量,噴灑農(nóng)藥用藥量為21L/hm2 ,編號(hào)為 CK[12] 。每個(gè)處理區(qū)( 100m× 20m )內(nèi)劃分5個(gè)小區(qū),施藥前布置霧滴測(cè)試卡,在小區(qū)之間設(shè)置 20m×10m 矩形保護(hù)行,長(zhǎng)邊與無人機(jī)航向一致。噴霧開始前,將霧滴測(cè)試卡布置在采樣點(diǎn)處的棉花葉片上,每個(gè)采集點(diǎn)對(duì)應(yīng)冠層上、中、下布放3張霧滴測(cè)試卡,其中上部與棉花生長(zhǎng)點(diǎn)平齊,中部與下部分別距離地面0.6、0.3m 夾放霧滴測(cè)試卡。噴灑完成且霧滴測(cè)試卡晾干后戴防水手套收取并做好標(biāo)記,然后放入自封袋保存,帶回實(shí)驗(yàn)室分析。采用霧滴分析儀(深圳市大疆創(chuàng)新科技有限公司生產(chǎn))測(cè)量霧滴測(cè)試卡單位面積的霧滴沉積數(shù)量、霧滴覆蓋率及粒徑。霧滴覆蓋率為霧滴覆蓋面積與水敏紙總面積的比率。試驗(yàn)于2023年7月22日施藥,試驗(yàn)時(shí)設(shè)定無人機(jī)飛行速度為 3.5m/s ,飛行高度2.8m ,噴幅寬度 6.64m ,施藥當(dāng)日平均氣溫 24.6qC ,相對(duì)濕度 25.9% ,微風(fēng)。
1.2.2.2 棉蚜防效調(diào)查
按照國(guó)際標(biāo)準(zhǔn)采用五點(diǎn)法調(diào)查,每點(diǎn)固定選3株,每株取有蚜蟲的上3片葉掛牌,記錄施藥前及藥后1、3、7和14d蚜蟲的數(shù)量,同時(shí)觀察施藥前后作物的生長(zhǎng)狀況。根據(jù)公式計(jì)算蟲口減退率和防治效果,并且使用單因素方差分析和鄧肯多重范圍檢驗(yàn)(鄧肯氏復(fù)極差)法統(tǒng)計(jì)比較[13] 。
式中, R 為蟲口減退率, Qbef 為施藥前蟲數(shù),Qpos 為施藥后蟲數(shù); Rcor 為校正防效, Rtre 為處理區(qū)蟲口減退率, Rcon 為對(duì)照區(qū)蟲口減退率[14]
2 結(jié)果與分析
2.1 噴霧助劑對(duì)藥劑的增效作用
研究表明,施藥后1d,處理5的防效最高,防治效果達(dá)到 45.61% ,其次是處理4,防治效果達(dá)到 38.31% ,2個(gè)處理之間有顯著性差異( Plt; 0.05)。施藥后3d,處理5的防效最高,防治效果達(dá)到 83.38% ;其次是處理6,防治效果達(dá)到80.59% ,2個(gè)處理之間差異不顯著( Pgt;0.05 ),但與其它各處理組均存在顯著差異( Plt;0.05) 。施藥后7d,處理5的防效最高,防治效果達(dá)到86.98% ;其次是處理6,防治效果達(dá)到 81.39% ,2個(gè)處理之間差異不顯著( Pgt;0.05 ),其中處理6與處理4之間也存在不顯著差異( Pgt;0.05, ,但處理5與處理6與其它各處理組均存在顯著差異( Plt;0.05 )。施藥后14d,處理5的防效最高,防治效果達(dá)到 81.97% ;處理6防治效果達(dá)到79.64% ,2個(gè)處理之間差異不顯著( Pgt;0.05, ,但與其它各處理組存在顯著差異( Plt;0.05 )。表3
2.2 無人機(jī)變量施藥對(duì)霧滴沉積特性的影響
2.2.1無人機(jī)變量施藥對(duì)霧滴密度及霧滴密度分布均勻度的影響
研究表明,用藥量為 30L/hm2 時(shí)對(duì)霧滴密度的影響在與其余3個(gè)用藥量相比存在顯著差異( Plt;0.05) ,用藥量為 30L/hm2 的處理平均液滴密度高達(dá)26.28個(gè) ?/cm2 ,重度為20個(gè) /cm2 ,用藥量為 時(shí)平均液滴密度變化范圍為7~13 個(gè) 'cm2 ,隨著用藥量由低到高,平均液滴密度也隨之增加。圖1\~2
2.2.2無人機(jī)變量施藥對(duì)霧滴覆蓋率及覆蓋分布均勻度的影響
研究表明,不同處理霧滴覆蓋分布均勻度、平均覆蓋率分別為 57.17%~132.77%,1.33% )30.44% ,隨著危害程度的不斷加重呈上升趨勢(shì)。圖3\~4
2.3 無人機(jī)變量施藥對(duì)棉蚜田間防效的影響
研究表明,當(dāng)無人機(jī)變量噴施 20% 螺蟲乙酯·呋蟲胺懸浮劑和倍達(dá)通組合后,隨著時(shí)間的推移,棉蚜防效逐漸提高,藥后7d達(dá)到最高,各等級(jí)蟲口減退率分別為 76.34% ! 81.92% !88.03% 和91. 14% ;藥后 14d 略有下降,蟲口減退率分別為 67.27% 、 71.55% 、 80.27% 和84.03% 。其中蚜害為4級(jí)、用藥量為 30L/hm2 時(shí)的防效最佳,藥后7d達(dá)到91. 14% 。表4
3討論
于寧等[15]沙帥帥等[16]報(bào)道了FR-200 型、MG-1S型、P20型等不同類型植保無人機(jī)防治棉蚜的作業(yè)參數(shù)和防治效果,篩選了無人機(jī)防治棉蚜的藥劑篩選及助劑[17-18],進(jìn)行了不同風(fēng)洞條件下植保無人機(jī)噴霧單元霧滴飄移特性試驗(yàn)并對(duì)比結(jié)果[19]。
研究結(jié)果表明,添加助劑可有效增強(qiáng)殺蟲劑的沉積特性及田間防效。不同助劑和殺蟲劑組合在用藥量及其他條件相同的情況下,對(duì)棉蚜的防效均有一定程度的增效作用。其中,倍達(dá)通與3種殺蟲劑組合處理對(duì)棉蚜的防效最高,且添加倍達(dá)通能夠有效提高植株冠層的霧滴密度、霧滴覆蓋率和霧滴沉積量;農(nóng)建飛、奇功、倍倍加對(duì)3種殺蟲劑的增效均較佳,混合橙精油助劑的增效作用低于這3種助劑,但未達(dá)到顯著水平。說明不同類型的飛防助劑對(duì)研究所使用的3種殺蟲劑的增效作用不同,與殺蟲劑本身的理化性質(zhì)及飛防助劑的特性有關(guān)[20]。其中,倍達(dá)通助劑對(duì)3種殺蟲劑的增效顯著優(yōu)于其他4種助劑,究其原因可能是倍達(dá)通同時(shí)具備滲透性、潤(rùn)濕展著性、沉降性、耐蒸發(fā)等性能,能顯著提高藥液抗飄移能力,從而提高農(nóng)藥利用率[21]
4結(jié)論
殺蟲劑添加助劑對(duì)棉蚜的防效均有一定程度的增效作用,在藥劑用量、用藥量、飛行高度相同的情況下, 20% 螺蟲·呋蟲胺與倍達(dá)通組合處理對(duì)棉蚜的防效最高, 22% 噻蟲·高氯氟與倍達(dá)通組合次之,且棉花冠層上、中、下3個(gè)層面霧滴密度、霧滴覆蓋率和霧滴沉積量顯著增加。在生產(chǎn)中,無人機(jī)施藥防治棉蚜可優(yōu)先選用噻蟲·高氯氟 1.15mL 與倍達(dá)通 15mL/L 組合及螺蟲·呋蟲胺 0.45mL/L 與倍達(dá)通 30mL/L 組合。
參考文獻(xiàn)(References)
[1]胡春雷,李孝華,王瑞霞,等.2023年棉花加工行業(yè)產(chǎn)業(yè)發(fā)展報(bào)告(下)[J].中國(guó)棉花加工,2024,(2):4-11.HUChunlei,LIXiaohua,WANGRuixia,et al.Report on In-dustrial Development of Cotton Processing Industry in 2O23(be-low)[J].China CottonProcessing,2024,(2):4-11.
[2]張永孝,趙之剛,曹赤陽(yáng).棉蚜為害損失與防治指標(biāo)的研究[J].植物保護(hù)學(xué)報(bào),1982(4):229-236.
ZHANG Yongxiao,ZHAO Zhigang,CAO Chiyang. Studies on the damage of cotton caused by Aphis gossypii Glover and the thresholdforcontrol[J].ActaPhytophylacica Ainica,1982(4):229- 236
[3]陳文靜,李海江,吳文忠,等.苦參堿與常規(guī)化學(xué)農(nóng)藥對(duì)棉蚜 的綜合防控效果比較[J].新疆農(nóng)業(yè)科學(xué),2020,57(6):1081 -1089. CHEN Wenjing,LI Haijiang,WU Wenzhong. et al. Comparison of comprehensive control effects of matrine and conventional chemical pesticides on Aphis gossypii Glover in northern Xinjiang[J]. Xinjiang Agricultural Sciences,2020,57(6):1081-1089.
[4]裴娟,宋榮,李曉旭.5種新型農(nóng)藥對(duì)棉蚜的田間防效[J].新 疆農(nóng)墾科技,2024,47(2):51-53. PEI Juan,SONG Rong,LI Xiaoxu.Field control effct of five newpesticides on cotton aphid[J]. Xinjiang Agricultural ReclamationScienceand Technology,2024,47(2):51-53.
[5]朱九生,喬雄梧,樊建斌,等.新農(nóng)藥防治抗性棉蚜試驗(yàn)[J]. 山西農(nóng)業(yè)科學(xué),1996,(2):44-47. ZHU Jiusheng,QIAO Xiongwu,F(xiàn)AN Jianbin,et al. Experiment on new pesticides to control resistant cotton aphid[J].Shanxi Agricultural Science,1996,(2):44-47.
[6]葉樹才,董易之,柳浩.植保無人機(jī)噴施納米農(nóng)藥制劑對(duì)水稻 害蟲的防效研究[J].現(xiàn)代農(nóng)業(yè)科技,2024(1):67-68,71. YE Shucai,DONG Yizhi,LIU Hao. Study on the efectiveness of nano -pesticide spraying on rice pests[J]. Modern Agricultural Science and Technology,2024(1):67-68,71.
[7]蔣小新.植保無人機(jī)在農(nóng)業(yè)生產(chǎn)中的推廣應(yīng)用[J].現(xiàn)代農(nóng) 機(jī),2023(3) :3 -5. JIANG Xiaoxin.Popularization and application of plant protection UAV in agricultural production[J].Modern Agricultural Machinery,2023(3) :3 -5.
[8]李勝,郭瑞俊.無人機(jī)精準(zhǔn)噴施技術(shù)在農(nóng)業(yè)植保病蟲草害防 治方面的應(yīng)用[J].農(nóng)業(yè)工程技術(shù),2023,43(26):40-41. LI Sheng,GUO Ruijun. The application of UAV precision sprayingtechnologyin the control of agricultural plant protection diseases and insect pests[J]. Agricultural Engineering Information, 2023,43(26) :40-41.
[9]李鴻鵠.無人機(jī)在農(nóng)業(yè)植保中的應(yīng)用研究[J].農(nóng)場(chǎng)經(jīng)濟(jì)管 理,2023,(7) :52-53. LIHonghu.Research on theapplication of UAV inagricultural plant protection[J]. Nongchang Jingji Guanli,2023,(7) :52- 53.
[10]王正寶.農(nóng)業(yè)機(jī)械智能化技術(shù)在農(nóng)業(yè)生產(chǎn)中的應(yīng)用策略 [J].南方農(nóng)機(jī),2024,55(2):85-87. WANG Zhengbao.Application strategy of intelligent technology of agricultural machinery in agricultural production[J]. Agricultural Machinery and Agronomy,2024,55(2) :85-87.
[11]蘭玉彬,單常峰,王慶雨,等.不同噴霧助劑在植保無人機(jī)噴 施作業(yè)中對(duì)霧滴沉積特性的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2021, 37(16) :31 -38. LANYubin,DANChangfeng,WANG Qingyu,etal.Effectsof different spray additives on droplet deposition characteristics during plant protection UAV spraying operations[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(16) :31 - 38.
[12]田志偉,薛新宇,崔龍飛,等.植保無人機(jī)晝夜作業(yè)的霧滴沉 積特性及棉蚜防效對(duì)比[J].農(nóng)業(yè)工程報(bào),2020,36(5):69- 77. TIAN Zhiwei,XUE Xinyu,CUI Longfei.Comparison of droplet deposition characteristics and Cotton aphid control effect of plant protection UAV working during theday and night[J].Transactionsofthe Chinese Society of Agricultural Engineering(Transactions of the CSAE),2020,36(5):69-77.
[13]鹿秀云,商俊燕,邵美琪,等.棉鈴疫病人工接種方法優(yōu)化及 應(yīng)用[J].棉花學(xué)報(bào),2021,33(1):1-12. LU Xiuyun,SHANG Junyan,SHAO Meiqi,et al. Optimization andapplication of an artificial inoculation method for Cotton boll blight[J].Cotton Science,2021,33(1):1-12.
[14]華登科,鄭曉斌,張友軍,等.六種殺蟲劑在保護(hù)地黃瓜冠層 的沉積分布及其對(duì)蚜蟲防治效果的影響[J].農(nóng)藥學(xué)學(xué)報(bào), 2020,22(2) :353-361. HuaDengke,Zheng Xiaobin,Zhang Youjun,et al.Deposition and distribution of six insecticides in greenhouse cucumber canopies and the impact on the control efficacy to Aphis gossypii[J].Chinese Journal of Pesticide Science,2020,22(2) :353-361.
[15]于寧,沙帥帥,李國(guó)君.FR-200 型植保無人機(jī)施藥防治棉 蚜效果試驗(yàn)[J].新疆農(nóng)墾科技,2019,42(5):19-20. YUNing,SHA Shuaishuai,LI Guoojun. Experimental studyon the effect of FR-2OO plant protection drone spraying pesticides to control cotton aphid[J].Xinjiang Farm Research of Science and 1ecnwtugy,zU1y,4z(J) :1y - ∠U.
[16]沙帥帥,王喆,肖海兵,等.P20植保無人機(jī)作業(yè)參數(shù)優(yōu)化及 其施藥對(duì)棉蚜防效評(píng)價(jià)[J].中國(guó)棉花,2018,45(1):6-8. SHA Shuaishuai, WANG Zhe, XIAO Haibing,et al. Optimizing operation parameters of an unmanned aerial vehicle P2O and its application effects for spaying insecticides to control Cotton aphid [J].China Cotton,2018,45(1) :6-8.
[17]吳金龍,馮宏祖,馬小艷,等.棉田棉蚜飛防藥劑篩選及農(nóng)藥 減量增效藥效分析[J].新疆農(nóng)業(yè)科學(xué),2020,57(1):167- 172. WU Jinlong,F(xiàn)ENG Hongzu,MA Xiaoyan,et al.Screening of fly control agents for cottonaphid incotton fields in Xinjiang and preliminary report of pesticide reduction and efficiency improvement [J].Xinjiang Agricultural Sciences,2020,57(1) :167-172.
[18]劉明云,魏書艷,紀(jì)蓮蓮,等.無人機(jī)噴霧防治棉蚜藥劑篩選 及助劑增效作用研究[J].中國(guó)棉花,2020,47(2):9-12,17. LIU Mingyun,WEI Shuyan,JI Lianlian,et al. Study on synergistic effect and efficacy of insecticides for controlling cotton aphids using unmanned aerial vehicle[J].China Cotton,2020,47(2):9 -12,17.
[19]王昌陵,曾愛軍,何雄奎,等.風(fēng)洞條件下植保無人機(jī)噴霧單 元霧滴飄移特性試驗(yàn)[J].農(nóng)業(yè)工程技術(shù),2020,40(33):85. WANG Changling,ZENG Aijun,HE Xiongkui,et al.Spray drift characteristics test of unmanned aerial vehicle spray unit under wind tunnel conditions[J].Int JAgricamp; Biol Eng,2020;13 (3):13 - 21.
[20]張靖.噴霧助劑提高農(nóng)藥對(duì)靶沉積性能與增效作用研究 [D].甘肅農(nóng)業(yè)大學(xué),2015. ZHANG Jing. Research on mechanism of enhancing deposition and synergistic effct of the spray adjuvants on pesticide[D]. Gansu Agricultural University,2015.
[21]資樂,臧禹,黃俊浩,等.植保無人機(jī)飛防助劑與殺蟲劑配伍 方式對(duì)其防治稻縱卷葉螟效果的影響[J].植物保護(hù)學(xué)報(bào), 2023,50(2) :538-544. ZI Le,ZANG Yu,HUANG Junhao,et al.Effect of the compatibility of the flying control adjuvantand insecticideonthe control effct of rice leaf roller[J].Acta Plant Protection,2023,50(2): 538 -544.
Abstract:【Objective】 This project aims to screen the optimal combination of pesticides and adjuvants for coton aphid control in Xinjiang coton fieldand its impact on the variable application by plant protection unmanned aerial vehicles (UAV).【Methods】Throughthe field eficacy experiment,thecontrol efect of five spray auxiliaries added to different pesticides on Aphis gosspi was compared,and the physicochemical properties of 20% spirotetramat ·dinotefuran suspension concentrate added with Beidatong and the control effect of UAV variable application on coton aphids were measured.【Results】After adding 5types of adjuvants ,the control effect on Aphis gossypii was improved. Among them, 20% spirotetramat ·dinotefuran suspension concentrate added with Beidatong had the strongest control effect,and the reduction rate of insect population reached 86% after7 days of treatment,followedby the addition of 22% thiamethoxam ? lambda-cyhalothrin suspension concentrate added with Beidatong,which was 81% . The difference between the two was not significant ( Plt;0.05 ). According to the prescription map generated by the experimental site,the cotton field unmaned aerial vehicle variable spraying operation was caried out.The results showed that the combination of 20% spirotetramat ·dinotefuran suspension concentrate added with Beidatong showed good control effects in four aphid infestation levels by UAV variable spraying.The optimal control efect was achieved when the level of harm was 4 and the dosage was 30L/hm2 . After 7 days of treatment,the insect population reduction rate reached 91.14% ,and the drug coverage rate,droplet density distribution uniformity,and droplet density were 133% , 87% ,and 26.28 number/cm2, respectively,with significant differences compared to other treatments ( Plt;0.05, .【Conclusion】 The optimal combination of insecticides and adjuvants for the control of Aphis gossypii is 20% spirotetramat ·dinotefuran suspension concentrate added with Beidatong by UAV. The variable operation with a hazard level of 4 has the best effect on the control of coton aphids.The research results provide scientific basis for the precise application to control cotton aphids of variable pesticides by UAV variable spraying.
Key words:Aphis gossypii;adjuvants; pesticide;control effct;plant protection unmanned aerial vehicle (UAV) ;variable spraying