[摘要]"原發(fā)免疫性血小板減少癥(primary"immune"thrombocytopenia,ITP)是一種病因尚不明確的自身免疫性疾病,以孤立性血小板減少及不同程度的出血為主要臨床特征。磷脂酰肌醇3激酶(phosphoinositide"3-kinase,PI3K)/蛋白激酶B(protein"kinase"B,PKB,又稱Akt)信號通路在多種細胞功能的調(diào)控中發(fā)揮關(guān)鍵作用,涉及基因表達、蛋白質(zhì)合成、細胞生長、細胞增殖等多個生物學過程。研究表明PI3K/Akt信號通路級聯(lián)反應的失衡與人類多種自身免疫性疾病有關(guān),但目前其在ITP中的具體作用機制尚不明確。本文擬探討PI3K/Akt信號通路在ITP作用機制中的研究進展。
[關(guān)鍵詞]"原發(fā)免疫性血小板減少癥;PI3K/Akt信號通路;作用機制;治療
[中圖分類號]"R554""""""[文獻標識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.12.030
原發(fā)免疫性血小板減少癥(primary"immune"thrombocytopenia,ITP)是一種自身免疫性疾病,血小板過度破壞、生成不足導致外周血血小板減少,進而引起ITP"[1]。ITP患者的臨床表現(xiàn)差異較大,大多數(shù)患者表現(xiàn)為皮膚黏膜出血,嚴重時可發(fā)生顱內(nèi)出血,危及患者的生命安全[2]。作為臨床常見出血性疾病,ITP多發(fā)生于兒童、育齡期婦女和中老年人群。ITP在成人中的發(fā)病率為(2~10)/100"000[3];其在兒童中的發(fā)病率為(1.6~5.3)/100"000[4]。成人ITP患者病程慢性化較普遍,病程超過1年的比例可達80%[5];20%~25%的患兒最終進展為慢性ITP[6]。反復的血小板減少所帶來的出血風險常給患者日常生活造成嚴重影響[7]。研究表明磷脂酰肌醇3激酶(phosphoinositide"3-kinase,PI3K)/蛋白激酶B(protein"kinase"B,PKB,又稱Akt)廣泛存在于細胞中,參與疾病發(fā)生并對機體多種生物學功能進行調(diào)控[8]。PI3K/Akt信號通路在多種免疫性疾病中發(fā)揮關(guān)鍵作用,其在不同細胞類型中的激活或抑制作用可影響疾病的發(fā)生及進程[9]。本文擬就PI3K/Akt信號通路在ITP中的研究進展予以綜述。
1""PI3K/Akt信號通路
1.1""PI3K
PI3K根據(jù)結(jié)構(gòu)和底物特異性分為Ⅰ型、Ⅱ型和Ⅲ型。目前,絕大多數(shù)研究將關(guān)注點聚焦于可被細胞表面受體直接激活的Ⅰ型,其又可分為ⅠA與ⅠB亞型[10]。PI3K位于細胞質(zhì)中,是一種同時具有絲氨酸/蘇氨酸蛋白激酶和磷脂激酶雙重活性的磷脂酰肌醇激酶[11]。PI3K可被Toll樣受體(Toll-like"receptor,TLR)、細胞因子、趨化因子及生長因子等激活,繼而催化二磷酸磷脂酰肌醇(phosphatidylinositol"4,5-bisphosphate,PIP2)底物磷酸化生成三磷酸磷脂酰肌醇(phosphatidylinositol"3,4,5-triphosphate,PIP3),PIP3通過與下游含普列克底物蛋白同源(Pleckstrin"homology,PH)結(jié)構(gòu)域的靶分子結(jié)合活化下游通路;第10號染色體上缺失與張力蛋白同源的磷酸酶(phosphatase"and"tensinnbsp;homologue"deleted"on"chromosome"ten,PTEN)作為負性調(diào)控因子,可通過PIP3去磷酸化抑制PI3K活性[12-13]。
1.2""Akt
Akt是一種絲氨酸/蘇氨酸蛋白激酶,作為PI3K下游的關(guān)鍵靶激酶,由3個結(jié)構(gòu)域構(gòu)成,分別為N-末端PH結(jié)構(gòu)域、中央激酶結(jié)構(gòu)域及含有疏水基序的C-末端結(jié)構(gòu)域[14]。PH結(jié)構(gòu)域與PIP3結(jié)合,在磷酸肌醇依賴性激酶-1(phosphoinositide-dependent"kinase-1,PDK1)的蘇氨酸蛋白Thr308位點發(fā)生磷酸化并部分激活Akt,哺乳動物雷帕霉素復合物2(mammalian"target"of"rapamycin"complex-2,mTORC2)催化絲氨酸Ser473位點的磷酸化并完全激活Akt[15];后者可活化大量下游信號分子,繼而發(fā)揮調(diào)控細胞生長、增殖、代謝和凋亡的功能[16]。
2""PI3K/Akt信號通路與ITP的發(fā)病機制
2.1""自噬
細胞將需要降解的細胞器、蛋白質(zhì)等成分包裹在囊泡中形成自噬小體并與溶酶體融合形成自噬溶酶體,隨后囊泡內(nèi)的物質(zhì)被降解,實現(xiàn)細胞代謝的調(diào)節(jié)和細胞器的更新,此過程稱為自噬[17]。既往研究發(fā)現(xiàn)相較于健康對照者,ITP患者血小板的自噬功能明顯減低,而血小板的凋亡率明顯增高[18]。當ITP患者經(jīng)雷帕霉素治療后,PI3K/Akt/哺乳動物雷帕霉素靶蛋白(mammalian"target"of"rapamycin,mTOR)信號通路被抑制,血小板自噬功能明顯改善,血小板凋亡率明顯減少[18]。綜上,PI3K/Akt/mTOR信號通路通過抑制血小板的自噬過程參與ITP患者血小板的過度破壞。
2.2""基因表達
微RNA(microRNA,miRNA)通過與靶基因信使RNA(messenger"RNA,mRNA)的3端非翻譯區(qū)結(jié)合調(diào)節(jié)基因表達[19]。研究發(fā)現(xiàn)miR-557在ITP患者血漿中呈現(xiàn)特異性高水平表達,miR-557抑制劑可通過PI3K/Akt信號通路促進Akt、胞外信號調(diào)節(jié)激酶(extracellular"signal-regulated"kinase,ERK)磷酸化,增強血小板生成素(thrombopoietin,TPO)誘導的巨核細胞產(chǎn)板,并通過動物實驗進一步證明miR-557抑制劑可通過激活PI3K/Akt抑制巨核細胞凋亡,改善出血癥狀[20]。骨髓間充質(zhì)干細胞(bone"marrow"mesenchymal"stem"cell,BMMSC)通過分泌生長因子及細胞因子調(diào)節(jié)巨核細胞的增殖和分化[21];而ITP患者BMMSC的分泌功能顯著受損[22]。miR-98-5p通過下調(diào)胰島素樣生長因子-2(insulin-like"growth"factor-2,IGF-2)抑制PI3K/Akt信號通路,發(fā)揮促BMMSC"凋亡作用[23]。對初診ITP患者的骨髓單個核細胞提取基因組DNA,并進行全外顯子測序及分子遺傳分析,發(fā)現(xiàn)與ITP發(fā)病機制相關(guān)的基因突變包括PTEN、胰島素受體(insulin"receptor,INSR)、凝血因子C同源蛋白;上述突變基因通過影響PI3K/Akt信號通路及其下游分子的表達參與ITP的發(fā)病機制[24]。在蛋白質(zhì)合成方面,ITP患者中低表達蛋白與骨髓細胞凋亡有關(guān),而PI3K/Akt信號通路是富含這些低表達蛋白的重要途徑,提示PI3K/Akt信號通路參與ITP患者的骨髓細胞凋亡,與其發(fā)病機制密切相關(guān)[25]。
2.3""免疫調(diào)節(jié)
目前普遍認為ITP的發(fā)病是由于多種因素作用下患者體內(nèi)產(chǎn)生自身抗體,與血小板表面膜糖蛋白(glycoprotein,GP)相結(jié)合形成抗原-抗體復合物,隨后血小板在脾臟中被巨噬細胞識別并破壞,引起外周血血小板數(shù)量減少[26]。PI3K/Akt信號通路在抗GP"Ⅰbα抗體誘導的血小板清除中發(fā)揮重要作用。抗GPⅠbα抗體的聚集可誘導PI3K/Akt信號通路活化繼而激活信號通路下游的蛋白激酶A(protein"kinase"A,PKA)和促凋亡蛋白,促進鈣動員,參與血小板清除[27-28]。除PI3K/Akt信號通路外,PI3K還通過磷脂酶Cγ2(phospholipase"C"gamma"2,PLCγ2)激活Akt[28];抑制或基因敲除抑制Akt調(diào)節(jié)的凋亡信號保護血小板免受清除[27]。
除GP特異性免疫球蛋白G自身抗體外,在慢性ITP患者中??蓹z測到抗αvβ3整合素自身抗體。研究表明抗αvβ3整合素抗體通過在分子水平上抑制Akt的磷酸化阻止巨核細胞的遷移,繼而加劇血小板的減少[29]。分析ITP患者的B細胞發(fā)現(xiàn),除記憶性B細胞外,所有B細胞亞群的PTEN表達水平均低于健康對照組。PTEN被認為通過負調(diào)控PI3K信號通路介導B細胞活化,ITP患者PTEN表達水平降低導致PI3K信號通路被激活,繼而導致B細胞高反應性和動態(tài)平衡紊亂,而PTEN修復可為ITP提供新的治療思路[30]。
2.4""巨噬細胞極化
巨噬細胞在不同微環(huán)境誘導下可極化為經(jīng)典M1型或替代M2型。M1型巨噬細胞可分泌促炎因子,參與病原體清除;M2型巨噬細胞分泌抗炎因子,發(fā)揮免疫調(diào)節(jié)作用[31]。巨噬細胞的極化影響淋巴細胞亞群的分化方向,在多種自身免疫性疾病的致病機制中占據(jù)重要地位[32]。研究表明ITP患者體內(nèi)M2型巨噬細胞水平顯著低于健康人群,經(jīng)大劑量地塞米松治療后血小板升至正常范圍患者的M2型巨噬細胞數(shù)量增加,提示巨噬細胞極化參與ITP致病機制[33]。激活PI3K/Akt信號通路可促進巨噬細胞向M2型極化,并促進M2型巨噬細胞分泌轉(zhuǎn)化生長因子-β(transforming"growth"factor-β,TGF-β),繼而上調(diào)PI3K/Akt下游相關(guān)信號通路促進巨核細胞成熟及產(chǎn)板[34]。因此,靶向PI3K/Akt信號通路可調(diào)控巨噬細胞的極化,達到治療ITP的目的。
2.5""細胞因子網(wǎng)絡(luò)
細胞因子方面,白細胞介素(Interleukin,IL)-35及IL-37均通過Akt參與ITP的發(fā)病。IL-35通過激活Akt信號通路促進巨核細胞分化和血小板生成,而ITP患者中IL-35表達水平降低及巨核細胞上IL-35受體水平下調(diào)可導致巨核細胞分化受損和血小板生成減少[35]。此外,ITP患者的血小板計數(shù)水平及出血程度與IL-37表達水平相關(guān),提示IL-37可能是反映ITP疾病嚴重程度的指標。IL-37通過下調(diào)絲裂原活化蛋白激酶(mitogen-activated"protein"kinase,MAPK)、Akt和核因子-κB(nuclear"factor-κB,NF-κB)信號通路磷酸化抑制機體炎癥反應,并通過調(diào)節(jié)免疫球蛋白G"Fc受體表達平衡影響巨噬細胞的吞噬功能[36]。綜上,提高巨核細胞的IL-35受體表達可促進巨核細胞分化和血小板生成,控制ITP患者疾病進展,補充IL-37亦對ITP的治療有益。
3""基于PI3K/Akt信號通路的ITP相關(guān)治療
3.1""免疫治療
ITP患者的CD4+T細胞中PI3K/Akt信號通路過度激活,導致CD4+效應T細胞過度活化,而CD4+調(diào)節(jié)性T細胞(regulatory"T"cell,Treg細胞)數(shù)量和功能受損[37]。Treg細胞的缺乏可導致CD4+效應T細胞不受限制增殖和功能亢進,繼而導致機體免疫穩(wěn)態(tài)的破壞和自身免疫性疾病的發(fā)生[38]。靛玉紅可恢復ITP患者CD4+T細胞中的PTEN表達,PTEN的激活可抑制Akt磷酸化,通過增加Treg細胞數(shù)量和功能調(diào)節(jié)CD4+T細胞的動態(tài)平衡[39]。作為PI3K/Akt信號通路的負性調(diào)節(jié)因子,casitas"B系淋巴瘤同源物b基因(casitas"B-lineage"lymphoma-b,CBLB)通過下調(diào)PI3K活性抑制Akt磷酸化和CD4+效應T細胞過度活化。小劑量地西他濱治療可顯著提高ITP患者CD4+T細胞中CBLB表達水平,抑制PI3K/Akt信號通路活性[37]。CD8+T細胞異常在ITP發(fā)病機制中同樣發(fā)揮重要作用[40]。ITP患者體內(nèi)CD8+T細胞中程序性死亡受體1(programmed"death-1,PD-1)及其程序性死亡受體配體1(programmed"death-ligand"1,PD-L1)的表達降低,小劑量地西他濱作為甲基化酶抑制劑可恢復ITP患者CD8+T細胞的甲基化水平和PD-1的表達,并促進巨噬細胞向M2型極化,進而抑制下游PI3K/Akt信號通路,抑制細胞毒性T淋巴細胞(cytotoxic"T"lymphocyte,CTL)的細胞毒作用,糾正ITP患者的免疫失衡[33,41]。
研究發(fā)現(xiàn)全反式維甲酸可通過下調(diào)miR-98-5p的表達激活PI3K/Akt信號通路,保護BMMSC免于凋亡[23]。對常規(guī)治療效果不佳的激素耐藥型ITP,其骨髓內(nèi)皮祖細胞(bone"marrow"endothelial"progenitor"cell,BMEPC)的比例明顯低于激素敏感型,同時BM"EPC表現(xiàn)為遷移能力和血管生成能力降低,活性氧水平和細胞凋亡水平升高。在體外實驗中,阿托伐他汀或N-乙酰-L-半胱氨酸(N-acetyl-L-cysteine,NAC)通過下調(diào)腫瘤蛋白53、MAPK和上調(diào)Akt,改善激素耐藥型ITP患者的BMEPC數(shù)量和功能,恢復BM"EPC支持巨核細胞生成的功能,進而提高血小板數(shù)量[42]?;赑I3K/Akt信號通路改善ITP患者的骨髓細胞功能或許可使更多一線治療效果不佳的患者受益,為慢性及難治性ITP的治療提供新思路。
3.2""TPO受體激動劑
TPO受體激動劑(TPO"receptor"agonist,TPO-RA)通過模擬內(nèi)源性TPO發(fā)揮治療作用,推薦用于一線治療無效患者。凋亡介質(zhì)受TPO介導的信號調(diào)節(jié),血小板生成素受體(thrombopoietin"receptor,TPO-R)相關(guān)信號的激活可減少血小板和巨核細胞的凋亡,增加血小板計數(shù)[43]。研究表明作為當前應用較為廣泛的TPO-RA,羅米司亭和艾曲波帕可在初始治療階段使血小板對凋亡敏感度一過性降低,同時伴隨Akt的一過性激活[44]。另有研究表明艾曲波帕和羅米司亭的作用機制不同,前者以劑量依賴方式促進巨核細胞的成熟和增殖使血小板生成增加,并伴隨Akt和ERK的磷酸化增加;而后者只激活Akt,促進未成熟巨核細胞的增殖,使巨核細胞形成前的血小板能力受損[45]。上述研究證明TPO-RA的治療與PI3K/Akt信號通路中的Akt相關(guān),更具體化的作用機制仍待探究。
4""小結(jié)與展望
PI3K/Akt信號通路是一個重要且復雜的調(diào)控網(wǎng)絡(luò),包含多個調(diào)節(jié)因子和效應分子,廣泛參與機體多個生理學過程。ITP作為臨床常見出血性疾病,其發(fā)病機制復雜,且目前尚未完全明確,如不能有效控制病情,將嚴重影響患者的生命質(zhì)量。作為PI3K/Akt信號通路下游因子mTOR的特異性抑制劑,西羅莫司對難治性ITP及復發(fā)ITP患者的療效已在單中心臨床研究中被證實[46]。但目前在ITP中直接靶向PI3K/Akt信號通路的臨床藥物研究暫缺,需進一步探索。越來越多的研究證明ITP的發(fā)病機制與PI3K/Akt信號通路相關(guān)。深入闡明PI3K/Akt信號通路在ITP發(fā)病中的具體分子機制及與其他信號通路間的反饋調(diào)控,可為ITP的治療提供新靶點。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] MILTIADOUS"O,"HOU"M,"BUSSEL"J"B."Identifying"and"treating"refractory"ITP:"Difficulty"in"diagnosis"and"role"of"combination"treatment[J]."Blood,"2020,"135(7):"472–490.
[2] COOPER"N,"GHANIMA"W."Immune"thrombocytopenia[J]."N"Engl"J"Med,"2019,"381(10):"945–955.
[3] WEYCKER"D,"HANAU"A,"HATFIELD"M,"et"al."Primary"immune"thrombocytopenia"in"US"clinical"practice:"Incidence"and"healthcare"burden"in"first"12"months"following"diagnosis[J]."J"Med"Econ,"2020,"23(2):"184–192.
[4] HIGASHIGAWA"M,"MAEYAMA"T,"YOSHINO"A,"et"al."Incidence"of"childhood"primary"immune"thrombocytopenic"purpura[J]."Pediatr"Int,"2015,"57(5):"1041–1043.
[5] 王蕾,"賀小寧,"李正翔,"等."原發(fā)免疫性血小板減少癥患者真實世界治療現(xiàn)狀與疾病負擔研究[J]."中國醫(yī)院藥學雜志,"2023,"43(14):"1602–1607.
[6] SHAW"J,"KILPATRICK"K,"EISEN"M,"et"al."The"incidence"and"clinical"burden"of"immune"thrombocytopenia"in"pediatric"patients"in"the"United"States[J]."Platelets,"2020,"31(3):"307–314.
[7] COOPER"N,"CUKER"A,"BONNER"N,"et"al."Qualitative"study"to"support"the"content"validity"of"the"immune"thrombocytopenia"(ITP)"life"quality"index"(ILQI)[J]."Br"J"Haematol,"2021,"194(4):"759–766.
[8] WANG"J,"HU"K,"CAI"X,"et"al."Targeting"PI3K/Akt"signaling"for"treatment"of"idiopathic"pulmonary"fibrosis[J]."Acta"Pharmaceutica"Sinica"B,"2022,"12(1):"18–32.
[9] WANG"S,"HUANG"Z,"LEI"Y,"et"al."Celastrol"alleviates"autoimmune"hepatitis"through"the"PI3K/Akt"signaling"pathway"based"on"network"pharmacology"and"experiments[J]."Front"Pharmacol,"2022,"13:"816350.
[10] VANHAESEBROECK"B,"PERRY"M"W"D,"BROWN"J"R,"etnbsp;al."PI3K"inhibitors"are"finally"coming"of"age[J]."Nat"Rev"Drug"Discov,"2021,"20(10):"741–769.
[11] YU"M,"CHEN"J,"XU"Z,"et"al."Development"and"safety""of"PI3K"inhibitors"in"cancer[J]."Arch"Toxicol,"2023,"97(3):"635–650.
[12] SAVOVA"M"S,"MIHAYLOVA"L"V,"TEWS"D,"et"al."Targeting"PI3K/Akt"signaling"pathway"in"obesity[J]."Biomed"Pharmacother,"2023,"159:"114244.
[13] SHI"L,"ZHU"W,"HUANG"Y,"et"al."Cancer-associated"fibroblast-derived"exosomal"microRNA-20a"suppresses"the"PTEN/PI3K-Akt"pathway"to"promote"the"progression"and"chemoresistance"of"non-small"cell"lung"cancer[J]."Clin"Transl"Med,"2022,"12(7):"e989.
[14] GUERAU-DE-ARELLANO"M,"PIEDRA-QUINTERO"Z"L,"TSICHLIS"P"N."Akt"isoforms"in"the"immune"system[J]."Front"Immunol,"2022,"13:"990874.
[15] WADHWA"B,"MAKHDOOMI"U,"VISHWAKARMA"R,"et"al."Protein"kinase"B:"Emerging"mechanisms"of"isoform-"specific"regulation"of"cellular"signaling"in"cancer[J]."Anticancer"Drugs,"2017,"28(6):"569–580.
[16] MANNING"B"D,"TOKER"A."Akt/PKB"signaling:"Navigating"the"network[J]."Cell,"2017,"169(3):"381–405.
[17] TONG"C,"WU"Y,"ZHANG"L,"et"al."Insulin"resistance,"autophagy"and"apoptosis"in"patients"with"polycystic"ovary"syndrome:"Association"with"PI3K"signaling"pathway[J]."Front"Endocrinol"(Lausanne),"2022,"13:"1091147.
[18] WANG"C,"MA"S,"BI"S,"et"al."Enhancing"autophagy"protects"platelets"in"immune"thrombocytopenia"patients[J]."Ann"Transl"Med,"2019,"7(7):"134.
[19] BARTEL"D"P."Metazoan"microRNAs[J]."Cell,"2018,"173(1):"20–51.
[20] WANG"Y,"GUO"Y,"ZHANG"X,"et"al."The"role"and"mechanism"of"miR-557"in"inhibiting"the"differentiation"and"maturation"of"megakaryocytes"in"immune"throm-"bocytopenia[J]."RNA"Biology,"2021,"18(11):"1953–1968.
[21] WANG"J"Y,"YE"S,"ZHONG"H."The"role"of"bone"marrow"microenvironment"in"platelet"production"and"their"implications"for"the"treatment"of"thrombocytopenic"diseases[J]."Hematology,"2017,"22(10):"630–639.
[22] ZHANG"D,"LI"H,"MA"L,"et"al."The"defective"bone"marrow-derived"mesenchymal"stem"cells"in"patients"with"chronic"immune"thrombocytopenia[J]."Autoimmunity,"2014,"47(8):"519–529.
[23] WANG"Y,"ZHANG"J,"SU"Y,"et"al."MiRNA-98-5p"targeting"IGF2BP1"induces"mesenchymal"stem"cell"apoptosis"by"modulating"PI3K/Akt"and"p53"in"immune"thrombocytopenia[J]."Mol"Ther"Nucleic"Acids,"2020,"20:"764–776.
[24] RUAN"J"S,"SUN"R"J,"WANG"J"P,"et"al."Gene"mutations"in"the"PI3K/Akt"signaling"pathway"were"related"to"immune"thrombocytopenia"pathogenesis[J]."Medicine"(Baltimore),"2023,"102(7):"e32947.
[25] LIU"S"Y,"YUAN"D,"SUN"R"J,"et"al."Significant"reductions"in"apoptosis-related"proteins"(HSPA6,"HSPA8,"ITGB3,"YWHAH,"and"PRDX6)"are"involved"in"immune"thrombocytopenia[J]."J"Thromb"Thrombolysis,"2021,"51(4):"905–914.
[26] HE"Y,"JI"D,"LU"W,"et"al."The"mechanistic"effects"and"clinical"applications"of"various"derived"mesenchymal"stem"cells"in"immune"thrombocytopenia[J]."Acta"Haematol,"2022,"145(1):"9–17.
[27] CHEN"M,"YAN"R,"ZHOU"K,"et"al."Akt-mediated"platelet"apoptosis"and"its"therapeutic"implications"in"immune"thrombocytopenia[J]."Proc"Natl"Acad"Sci"U"S"A,"2018,"115(45):"E10682–E10691.
[28] ZHANG"S,"SUN"C,"HUANG"Q,"et"al."The"role"of"protein"kinase"C"and"the"glycoprotein"Ibα"cytoplasmic"tail"in"anti-glycoprotein"Ibα"antibody-induced"platelet"apoptosis"and"thrombocytopenia[J]."Thromb"Res,"2024,"244(12):"109210.
[29] ZENG"D"F,"CHEN"F,"WANG"S,"et"al."Autoantibody"against"integrin"αv"β3"contributes"to"thrombocytopenia"by"blocking"the"migration"and"adhesion"of"megakaryocytes[J]."J"Thromb"Haemost,"2018,"16(9):"1843–1856.
[30] WANG"S,"GUAN"Y,"WANG"Y,"et"al."Reduced"PTEN"involved"in"primary"immune"thrombocytopenia"via"contributing"to"B"cell"hyper-responsiveness[J]."Mol"Immunol,"2018,"93:"144–151.
[31] YANG"S,"ZHAO"M,"JIA"S."Macrophage:"Key"player"in"the"pathogenesis"of"autoimmune"diseases[J]."Front"Immunol,"2023,"14:"1080310.
[32] ZHANG"K,"GUO"J,"YAN"W,"et"al."Macrophage"polarization"in"inflammatory"bowel"disease[J]."Cell"Commun"Signal,"2023,"21(1):"367.
[33] HAN"P,"YU"T,"HOU"Y,"et"al."Low-dose"decitabine"inhibits"cytotoxic"T"lymphocytes-mediated"platelet"destruction"via"modulating"PD-1"methylation"in"immune"thrombocytopenia[J]."Front"Immunol,"2021,"12:"630693.
[34] ZHAO"H"Y,"ZHANG"Y"Y,"XING"T,"et"al."M2nbsp;macrophages,"but"not"M1"macrophages,"support"megakaryopoiesis"by"upregulating"PI3K-Akt"pathway"activity[J]."Signal"Transduct"Target"Ther,"2021,"6(1):"234.
[35] CAI"X,"GUI"R"Y,"WU"J,"et"al."Decreased"expression"of"IL-35"and"its"receptor"contributes"to"impaired"megakaryopoiesis"in"the"pathogenesis"of"immune"thrombocytopenia[J]."Adv"Sci"(Weinh),"2024,"11(12):"e2305798.
[36] ZHAO"Y,"NI"X,"XU"P,"et"al."Interleukin-37"reduces"inflammation"and"impairs"phagocytosis"of"platelets"in"immune"thrombocytopenia"(ITP)[J]."Cytokine,"2020,"125:"154853.
[37] LIU"L,"XIANG"Y,"SHAO"L,"et"al."E3"ubiquitin"ligase"casitas"B-lineage"lymphoma-b"modulates"T-cell"anergic"resistance"via"phosphoinositide"3-kinase"signaling"in"patients"with"immune"thrombocytopenia[J]."J"Thromb"Haemost,"2024,"22(4):"1202–1214.
[38] LI"F,"JI"L,"WANG"W,"et"al."Insufficient"secretion"of"IL-10"by"Tregs"compromised"its"control"on"over-activated"CD4+"T"effector"cells"in"newly"diagnosed"adult"immune"thrombocytopenia"patients[J]."Immunol"Res,"2015,"61(3):"269–280.
[39] ZHAO"Y,"HAN"P,"LIU"L,"et"al."Indirubin"modulates"CD4+"T-cell"homeostasis"via"PD1/PTEN/Akt"signalling"pathway"in"immune"thrombocytopenia[J]."J"Cell"Mol"Med,"2019,"23(3):"1885–1898.
[40] ZHOU"H,"QIU"J"H,"WANG"T,"et"al."Interleukin"27"inhibits"cytotoxic"T-lymphocyte-mediated"platelet"destruction"in"primary"immune"thrombocytopenia[J]."Blood,"2014,"124(22):"3316–3319.
[41] SHAO"X,"XU"P,"JI"L,"et"al."Low-dose"decitabine"promotes"M2"macrophage"polarization"in"patients"with"primary"immune"thrombocytopenia"via"enhancing"KLF4"binding"to"PPARγ"promoter[J]."Clin"Transl"Med,"2023,"13(7):"e1344.
[42] KONG"Y,"CAO"X"N,"ZHANG"X"H,"et"al."Atorvastatin"enhances"bone"marrow"endothelial"cell"function"in"corticosteroid-resistant"immune"thrombocytopenia"patients[J]."Blood,"2018,"131(11):"1219–1233.
[43] JOSEFSSON"E"C,"VAINCHENKER"W,"JAMES"C."Regulation"of"platelet"production"and"life"span:"Role"of"Bcl-xLnbsp;and"potential"implications"for"human"platelet"diseases[J]."Int"J"Mol"Sci,"2020,"21(20):"7591.
[44] MITCHELL"W"B,"PINHEIRO"M"P,"BOULAD"N,"et"al."Effect"of"thrombopoietin"receptor"agonists"on"the"apoptotic"profile"of"platelets"in"patients"with"chronic"immune"thrombocytopenia[J]."Am"J"Hematol,"2014,"89(12):"E228–E234.
[45] DI"BUDUO"C"A,"CURRAO"M,"PECCI"A,"et"al."Revealing"eltrombopag’s"promotion"of"human"megakaryopoiesis"through"Akt/ERK-dependent"pathway"activation[J]."Haematologica,"2016,"101(12):"1479–1488.
[46] FENG"Y,"MENG"H,"MU"C,"et"al."Clinical"study"reveals"the"efficacy"of"sirolimus"in"treating"primary"immune"thrombocytopenia:"Findings"from"a"single-center"study[J]."Blood"Coagul"Fibrinolysis,"2024,"35(4):"155–160.
(收稿日期:2024–12–04)
(修回日期:2025–04–10)