[摘要]"氧化應激在年齡相關性眼病中扮演關鍵角色,氧化應激可損傷晶狀體上皮細胞(lens"epithelial"cells,LECs")和視網(wǎng)膜色素上皮(retinal"pigment"epithelium,RPE)細胞。這種損傷可導致細胞衰老和凋亡,最終引發(fā)年齡相關性白內(nèi)障(age-related"cataract,ARC)和年齡相關性黃斑變性(age-related"macular"degeneration,AMD)。Klotho蛋白因其抗細胞凋亡、抗衰老及抗氧化應激的多重功能而受到廣泛關注。研究表明Klotho蛋白主要通過調(diào)節(jié)核因子紅細胞2相關因子2、叉頭轉錄因子O及還原型煙酰胺腺嘌呤二核苷酸磷酸氧化酶等關鍵的抗氧化應激靶點發(fā)揮其抗氧化應激的作用。實驗數(shù)據(jù)進一步證實Klotho蛋白通過抑制氧化應激,可顯著減輕LECs和RPE細胞的凋亡,從而潛在降低ARC和AMD的發(fā)病風險。本文針對Klotho蛋白在年齡相關性眼病中的抗氧化應激作用機制作一綜述。
[關鍵詞]"Klotho;氧化應激;抗氧化應激;年齡相關性眼病
[中圖分類號]"R776.1;R774.5""""""[文獻標識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.12.029
1""氧化應激與抗氧化應激
氧化應激(oxidative"stress,OS)指機體內(nèi)氧化與抗氧化作用失衡,導致氧化過程占據(jù)優(yōu)勢,進而產(chǎn)生大量氧化物,其中活性氧(reactive"oxygen"species,ROS)的作用尤為突出。ROS可競爭細胞內(nèi)的電子,導致脂質過氧化、蛋白質修飾、染色體和線粒體DNA損傷,進而改變信息傳遞和基因表達,最終引發(fā)組織的自噬、凋亡和壞死,導致功能障礙[1-4]。為抵御氧化應激損傷,人體已發(fā)展出由酶和非酶兩類抗氧化劑組成的抗氧化防御系統(tǒng),可通過預防、阻斷和修復減輕或消除氧化應激的影響。在細胞內(nèi)的抗氧化劑如超氧化物歧化酶(superoxide"dismutase,SOD)、過氧化氫酶(catalase,CAT)、谷胱甘肽(glutathione,GSH)過氧化物酶(GSH"peroxidase,GSH-Px)和谷胱甘肽S-轉移酶(GSH"S-transferase,GST)等發(fā)揮至關重要的作用[5-6]。
抗氧化酶的基因表達主要受核因子紅細胞2相關因子2(nuclear"factor"erythroid"2-related"factor"2,Nrf2)、叉頭轉錄因子O(forkhead"box"O,F(xiàn)OXO)及還原型煙酰胺腺嘌呤二核苷酸磷酸(reduced"nicotinamide"adenine"dinucleotide"phosphate,NADPH)氧化酶(NADPH"oxidase,NOX)的調(diào)控。Nrf2屬于亮氨酸拉鏈轉錄因子家族,是調(diào)節(jié)細胞內(nèi)抗氧化物表達的關鍵因子。Nrf2活性受Kelch樣環(huán)氧氯丙烷相關蛋白1(Kelch-like"ECH-associated"protein1,Keap1)的調(diào)控,Nrf2與Keap1結合可保留在胞質中,Nrf2與Keap1解聯(lián)發(fā)生核易位,進入細胞核中的Nrf2可與小Maf蛋白形成異源二聚體(可識別結合抗氧化應答元件)參與下游抗氧化靶基因的轉錄和表達,如SOD、GST和GSH等[7-9]。
哺乳動物的FOXO是叉頭轉錄因子(forkhead"box,F(xiàn)OX)家族中重要的一個亞家族。在生長因子刺激下,F(xiàn)OXO受蛋白激酶B(protein"kinase"B,Akt)介導的磷酸化,F(xiàn)OXO磷酸化后無法核易位,將抑制FOXO介導的錳超氧化物歧化酶(manganese"superoxide"dismutase,Mn-SOD)和CAT等抗氧化酶的轉錄,最終通過調(diào)節(jié)氧化應激介導的脂質過氧化、蛋白質和DNA損傷,誘導細胞凋亡。除磷酸化外,氧化應激尚可促進FOXO的翻譯后修飾過程(泛素化和乙?;?,進一步調(diào)節(jié)細胞生長[10-11]。
NOX家族一直被認為是信號轉導中ROS的重要來源。當受應激源激活時,NOX可將NADPH的電子轉移到分子氧中產(chǎn)生超氧陰離子(O2-),并通過下游二次反應產(chǎn)生過氧化氫(H2O2)和羥基自由基(·OH),引發(fā)一系列氧化應激反應[12-13]。
2""Klotho
Klotho是一種多功能的抗衰老蛋白,主要存在于腎臟和腦脈絡膜叢中,同時也在晶狀體、視網(wǎng)膜及視神經(jīng)中少量表達[14-15]。Klotho不僅以膜形式作為人成纖維細胞生長因子23的共受體參與磷酸鹽穩(wěn)態(tài)和維生素D代謝,還以蛋白水解產(chǎn)生的循環(huán)可溶性形式作為一種具有抗衰老、抗氧化活性的激素存在于血液、尿液、腦脊液中[14]。隨著年齡增長,Klotho表達及血液中可溶性Klotho水平均減少[16]。研究表明Klotho在調(diào)節(jié)氧化應激方面至關重要,其抗氧化應激能力與年齡相關性眼病的發(fā)生發(fā)展密切相關,表達下降的Klotho通過作用于常見的抗氧化應激靶點(FOXO、Nrf2、NOX等)增加眼部組織對氧化損傷的易感性,導致晶狀體、視網(wǎng)膜等眼部組織的氧化應激增加,最終增加年齡相關性眼病的發(fā)生風險[17-19]。
3""年齡相關性白內(nèi)障
年齡相關性白內(nèi)障(age-related"cataract,ARC)是中老年人群視力下降及失明的首要原因[20];40歲以上人群患病率高達11.8%~18.8%[21]。ARC病理表現(xiàn)是晶狀體透明度的喪失,其作為無血管的器官,生存在房水中,由內(nèi)部循環(huán)的水和溶質支撐。晶狀體的透明度取決于細胞間和細胞內(nèi)體積的穩(wěn)態(tài)、高度有序的蛋白質結構及晶狀體的代謝[22-23]。任何成分的破壞均可導致折射率的變化,造成晶狀體混濁(白內(nèi)障)。在多種發(fā)病機制中,氧化應激占主導地位。
3.1""氧化應激與晶狀體上皮細胞
自由基引起的脂質過氧化是導致白內(nèi)障發(fā)生的初始機制。過氧化脂質可影響晶狀體上皮細胞(lens"epithelial"cells,LECs")的膜通透性,進一步改變細胞的內(nèi)部組成和構型,導致蛋白質功能喪失[1,"24]。LECs對維持晶狀體內(nèi)部環(huán)境的穩(wěn)定性和透明度至關重要。ROS誘導LECs凋亡,產(chǎn)生大量額外的ROS,導致晶狀體退化和功能喪失[25]。ROS可抑制LECs的Na、K-ATP酶,進而導致細胞內(nèi)水、鈉潴留,造成晶狀體細胞水腫、形成囊泡、裂隙、光散射增加,最終導致晶狀體混濁[26-27]。
3.2""Klotho與LECs
Klotho在LECs中表達并調(diào)節(jié)晶狀體功能[28]。與正常人的透明晶狀體相比,ARC患者的LECs表現(xiàn)出Klotho基因甲基化增加、Klotho蛋白表達降低及細胞活性降低[17]。ARC患者的晶狀體還表現(xiàn)出更高水平的氧化應激,血清、房水及晶狀體中氧化劑水平均下降,ROS、氧化應激標志物水平均增加[29]。Klotho可能是通過FOXO、Nrf2、NOX等途徑調(diào)節(jié)LECs的氧化應激。
3.2.1""Klotho與Nrf2"""Klotho可通過增強Nrf2介導的抗氧化防御機制延緩LECs的凋亡。Hsieh等[19]利用過表達Klotho的獨立轉基因小鼠系EFmKL46,證明過表達Klotho可誘導Nrf2核易位,核Nrf2表達增加、細胞質Klotho降低,同時抗氧化劑水平增加。Ma等[30]發(fā)現(xiàn)大鼠晶狀體中Klotho表達降低,導致核Nrf2表達降低,SOD、GSH等抗氧化劑水平下降、氧化應激標志物丙二醛(malondialdehyde,MDA)增加、血漿和房水Klotho水平下降,Klotho給藥治療可逆轉變化并降低大鼠白內(nèi)障的發(fā)生率。Ma等[30]后續(xù)研究進一步證實α-Klotho(非γ-Klotho)通過調(diào)節(jié)Nrf2途徑增強LECs的抗氧化能力,盡管晶狀體同時表達α-Klotho和γ-Klotho,但γ-Klotho可能通過其他途徑參與白內(nèi)障的發(fā)生發(fā)展。
3.2.2""Klotho與FOXO""FOXO對抗氧化應激的調(diào)節(jié)同樣重要。Yamamoto等[11]利用動物和體外實驗證明Klotho蛋白可通過抑制胰島素/胰島素樣生長因子1(insulin-like"growth"factor"1,IGF-1)/磷脂酰肌醇-3激酶(phosphatidylinositol"3"kinase,PI3K)/Akt信號通路抑制FOXO的磷酸化并促進其核易位,核中FOXO可直接結合SOD啟動子上調(diào)其表達,增強ROS清除能力。Zheng等[31]發(fā)現(xiàn)晶狀體中Klotho和FOXO的表達均會隨年齡增加而降低,提示ARC患者可能因Klotho表達降低導致胰島素/IGF-1/PI3K/Akt-FOXO信號通路功能受損,從而削弱晶狀體的抗氧化應激能力,但目前尚無直接證據(jù)。
3.2.3""Klotho與NOX""文獻顯示抑制NOX4可能對ARC有保護作用[32]。NOX酶在晶狀體中表達與年齡呈負相關,提示Klotho的抗氧化調(diào)節(jié)可能與NOX的表達相關[33]。Zhou等[34]利用H2O2建立的ARC體外模型證明Klotho可通過下調(diào)NOX4的表達抑制ROS生成、減少MDA水平、增加SOD水平,進而促進細胞活力、抑制細胞衰老。
4""年齡相關性黃斑變性
年齡相關性黃斑變性(age-related"macular"degeneration,AMD)以黃斑進行性變性為特征,是老年人不可逆轉性失明的常見病因。依據(jù)脈絡膜血管病變是否侵襲視網(wǎng)膜,AMD可分為滲出型和萎縮型。AMD的主要異常包括光感受器喪失、視網(wǎng)膜色素上皮(retinal"pigment"epithelium,RPE)細胞變性、布魯赫膜增厚和脈絡膜變薄,其中RPE的氧化損傷是AMD發(fā)生發(fā)展的核心[2,"35]。
4.1""氧化應激與RPE
RPE位于脈絡膜毛細血管和光感受器的光敏外段之間,對維持視覺功能至關重要。RPE形態(tài)和功能的變化可造成視網(wǎng)膜損傷,包括黃斑中央部分RPE細胞減少、RPE-Bruch膜層增厚、脂褐素顆粒積累、黑色素顆粒丟失、溶酶體和線粒體功能受損[3,"36-37]。研究表明氧化應激在RPE變性和AMD發(fā)展中發(fā)揮關鍵作用,其通過ROS積累誘導線粒體DNA損傷、脂質過氧化、細胞衰老、凋亡和內(nèi)質網(wǎng)應激,并改變RPE細胞中線粒體生物能量學[2,37]。
4.2""Klotho與RPE的氧化應激
Klotho在視網(wǎng)膜中表達,對健康的視網(wǎng)膜功能很重要[38];Klotho可調(diào)節(jié)RPE功能并防止氧化應激[18]。AMD患者的RPE細胞呈現(xiàn)較高的氧化應激水平和較低的Klotho水平[39]。α-Klotho缺陷的小鼠壽命短,光感受器和RPE結構退化,黑色素體分布異常,線粒體受損;其視網(wǎng)膜α-Klotho表達缺失導致功能緩慢衰退;體外應用可溶性α-Klotho可增加RPE的吞噬作用并保護RPE免受氧化應激;Klotho可能通過FOXO、Nrf2、NOX等途徑調(diào)節(jié)RPE細胞中的氧化應激反應[18,"38]。
4.2.1""Klotho與Nrf2""體內(nèi)Nrf2缺乏可增強組織氧化應激易感性,這與AMD中RPE損傷的病理機制相關[40-41],Klotho通過促進Nrf2核易位激活信號通路,抑制RPE細胞凋亡。研究報道PI3K/Akt信號通路參與RPE細胞抗氧化功能的調(diào)節(jié),其激活可保護RPE細胞免受氧化損傷[42-43]。Klotho與PI3K/Akt及Nrf2信號通路對調(diào)節(jié)RPE細胞的抗氧化存在相關性。最近,Wen等[44]使用H2O2處理的ARPE-19細胞模型證實,Klotho蛋白處理可顯著增強Akt磷酸化、核易位,提高SOD2、CAT、GSH-Px水平及線粒體膜電位,抑制細胞凋亡。研究最終揭示Klotho通過激活PI3K/Akt-Nrf2/HO-1信號通路減輕RPE細胞的氧化應激損傷。
4.2.2""Klotho與NOX""NOX在RPE細胞上表達,其介導的氧化應激在AMD發(fā)病中至關重要[45-46]。Jang等[47]發(fā)現(xiàn)α-Klotho可通過抑制轉化生長因子-β2(transforming"growth"factor-β2,TGF-β2)激活細胞外調(diào)節(jié)蛋白激酶1/2(extracellular"regulated"protein"kinases,"ERK1/2)-雷帕霉素(mammalian"target"of"rapamycin,mTOR)信號傳導并上調(diào)NOX4,促進線粒體ROS生成與電子呼吸傳遞鏈表達增加;給予α-Klotho可通過阻斷TGF-β2的受體結合抑制ERK1/2-mTORC1信號激活、下調(diào)NOX4并抑制線粒體活化和呼吸活動,最終減輕RPE的胞質和線粒體氧化應激。
4.2.3""Klotho與其他通路""Klotho蛋白可抑制IGF-1信號傳導,增加RPE細胞的抗氧化基因表達,降低ROS水平從而抑制氧化應激[18]。Zhou等[48]研究證實Klotho可通過腺苷酸活化蛋白激酶和p38絲裂原活化蛋白激酶通路分別磷酸化環(huán)磷腺苷效應元件結合蛋白和激活轉錄因子7/2,協(xié)同激活過氧化物酶體增殖物激活受體γ的輔激活因子-1α的轉錄,從而增強ROS清除能力。
5""小結
Klotho蛋白在LECs和RPE細胞的抗氧化應激機制中發(fā)揮關鍵作用。通過調(diào)節(jié)FOXO、Nrf2和NOX等抗氧化靶點增強細胞的抗氧化能力。Klotho表達下降與ARC和AMD的發(fā)生機制密切相關,提示其可能成為潛在的治療靶點。未來研究應深入探討Klotho在ARC和AMD中的作用機制。此外,考慮到Klotho的多組織保護作用,其在其他氧化應激相關疾病中的潛在應用也值得進一步研究。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] BABIZHAYEV"M"A."Mitochondria"induce"oxidative"stress,"generation"of"reactive"oxygen"species"and"redox"state"unbalance"of"the"eye"lens"leading"to"human"cataract"formation:"Disruption"of"redox"lens"organization"by"phospholipid"hydroperoxides"as"a"common"basis"for"cataract"disease[J]."Cell"Biochem"Funct,"2011,"29(3):"183–206.
[2] MAO"H,"SEO"S"J,"BISWAL"M"R,"et"al."Mitochondrial"oxidative"stress"in"the"retinal"pigment"epithelium"leads"to"localized"retinal"degeneration[J]."Invest"Ophthalmol"Vis"Sci,"2014,"55(7):"4613–4627.
[3] CHEN"C,"CHEN"Y,"LIANG"C,"et"al."Glucosamine-induced"autophagy"through"AMPK-mTOR"pathway"attenuates"lipofuscin-like"autofluorescence"in"human"retinal"pigment"epithelial"cells"in"vitro[J]."Int"J"Mol"Sci,"2018,"19(5):"1416.
[4] LAPORTE"C,"KOSTA"A,"KLEIN"G,"et"al."A"necrotic"cell"death"model"in"a"protist[J]."Cell"Death"Differ,"2007,"14(2):"266–274.
[5] MCCORD"J"M,"FRIDOVICH"I."Superoxide"dismutase."An"enzymic"function"for"erythrocuprein"(hemocuprein)[J]."J"Biol"Chem,"1969,"244(22):"6049–6055.
[6] ONES"P,"SUGGETT"A."The"catalse-hydrogen"peroxide"system."Kinetics"of"catalatic"action"at"high"substrate"concentrations[J]."Biochem"J,"1968,"110(4):"617–620.
[7] KATSUOKA"F,"OTSUKI"A,"TAKAHASHI"M,"et"al."Direct"and"specific"functional"evaluation"of"the"Nrf2"and"MafG"heterodimer"by"introducing"a"tethered"dimer"into"small"Maf-deficient"cells[J]."Mol"Cell"Biol,"2019,"39(20):"e00273.
[8] NGO"V,"KARUNATILLEKE"N"C,"BRICKENDEN"A,""et"al."Oxidative"stress-induced"misfolding"and"inclusion"formation"of"Nrf2"and"Keap1[J]."Antioxidants"(Basel),"2022,"11(2):"243.
[9] YU"H,"PENG"Y,"DONG"W,"et"al."Nrf2"attenuates"methamphetamine-induced"myocardial"injury"by"regulating"oxidative"stress"and"apoptosis"in"mice[J]."Hum"Exp"Toxicol,"2023,"42:"764729568.
[10] ZUO"M,"TONG"R,"HE"X,"et"al."FOXO"signaling"pathway"participates"in"oxidative"stress-induced"histone"deacetylation[J]."Free"Radic"Res,"2023,"57(1):"47–60.
[11] YAMAMOTO"M,"CLARK"J"D,"PASTOR"J"V,"et"al."Regulation"of"oxidative"stress"by"the"anti-aging"hormone"Klotho[J]."J"Biol"Chem,"2005,"280(45):"38029–38034.
[12] BRAVARD"A,"BONNARD"C,"DURAND"A,"et"al."Inhibition"of"xanthine"oxidase"reduces"hyperglycemia-"induced"oxidative"stress"and"improves"mitochondrial"alterations"in"skeletal"muscle"of"diabetic"mice[J]."Am"J"Physiol"Endocrinol"Metab,"2011,"300(3):"E581–E591.
[13] LU"Y,"ZHU"S,"WANG"X,"et"al."Shengmai-San"attenuates"cardiac"remodeling"in"diabetic"rats"by"inhibiting"NOX-mediated"oxidative"stress[J]."Diabetes"Metab"Syndr"Obes,"2021,"14:"647–657.
[14] XU"Y,"SUN"Z."Molecular"basis"of"Klotho:"From"gene"to"function"in"aging[J]."Endocr"Rev,"2015,"36(2):"174–193.
[15] ZHANG"Y,"WANG"L,"WU"Z,"et"al."The"expressions"of"Klotho"family"genes"in"human"ocular"tissues"and"in"anterior"lens"capsules"of"age-related"cataract[J]."Curr"Eye"Res,"2017,"42(6):"871–875.
[16] KOYAMA"D,"SATO"Y,"AIZAWA"M,"et"al."Soluble"α"Klotho"as"a"candidate"for"the"biomarker"of"aging[J]."Biochem"Biophys"Res"Commun,"2015,"467(4):nbsp;1019–1025.
[17] JIN"S,"ZHANG"Y,"CHEN"Z,"et"al."Epigenetic"changes"of"the"Klotho"gene"in"age-related"cataracts[J]."Eur"Rev"Med"Pharmacol"Sci,"2015,"19(14):"2544–2553.
[18] KOKKINAKI"M,"ABU-ASAB"M,"GUNAWARDENA"N,"et"al."Klotho"regulates"retinal"pigment"epithelial"functions"and"protects"against"oxidative"stress[J]."J"Neurosci,"2013,"33(41):"16346–16359.
[19] HSIEH"C,"KURO-O"M,"ROSENBLATT"K"P,"et"al."The"ASK1-signalosome"regulates"p38"MAPK"activity"in"response"to"levels"of"endogenous"oxidative"stress"in"the"Klotho"mouse"models"of"aging[J]."Aging"(Albany"NY),"2010,"2(9):"597–611.
[20] STEINMETZ"J"D,"BOURNE"R"R"A,"BRIANT"P"S,"et"al."Causes"of"blindness"and"vision"impairment"in"2020"and"trends"over"30"years,"and"prevalence"of"avoidable"blindness"in"relation"to"VISION"2020:"The"right"to"sight:"An"analysis"for"the"Global"Burden"of"Disease"Study[J]."Lancet"Glob"Health,"2021,"9(2):"e144–e160.
[21] CHEN"X,"XU"J,"CHEN"X,"et"al."Cataract:"Advances"in"surgery"and"whether"surgery"remains"the"only"treatment"in"future[J]."Adv"Ophthalmol"Pract"Res,"2021,"1(1):"100008.
[22] MATHIAS"R"T,"RAE"J"L,"BALDO"G"J."Physiological"properties"of"the"normal"lens[J]."Physiol"Rev,"1997,"77(1):"21–50.
[23] DONALDSON"P"J,"CHEE"K"S,"LIM"J"C,"et"al."Regulation"of"lens"volume:"Implications"for"lens"transparency[J]."Exp"Eye"Res,"2009,"88(2):"144–150.
[24] BABIZHAYEV"M"A,"DEYEV"A"I,"LINBERG"L"F."Lipid"peroxidation"as"a"possible"cause"of"cataract[J]."Mech"Ageing"Dev,"1988,"44(1):"69–89.
[25] ZHOU"Y,"GUO"B,"YE"M,"et"al."Protective"effect"of"rutin"against"H2O2-induced"oxidative"stress"and"apoptosis"in"human"lens"epithelial"cells[J]."Curr"Eye"Res,"2016,"41(7):"933–942.
[26] KIM"J"Y,"PARK"J"H,"KANG"S,"et"al."Topical"nerve"growth"factor"attenuates"streptozotocin-induced"diabetic"cataracts"via"polyol"pathway"inhibition"and"Na+/K+-ATPase"upregulation[J]."Exp"Eye"Res,"2021,"202:"108319.
[27] KISE"K,"KOSAKA"H,"NAKABAYASHI"M,"et"al."Reactive"oxygen"species"involved"in"phenazine-"methosulfate-induced"rat"lens"opacification."An"experimental"model"of"cataract[J]."Ophthalmic"Res,"1994,"26(1):"41–50.
[28] ZHANG"Y,"WANG"L,"WU"Z,"et"al."The"expressions"of"Klotho"family"genes"in"human"ocular"tissues"and"in"anterior"lens"capsules"of"age-related"cataract[J]."Curr"Eye"Res,"2017,"42(6):"871–875.
[29] HSUEH"Y"J,"CHEN"Y"N,"TSAO"Y"T,"et"al."The"pathomechanism,"antioxidant"biomarkers,"and"treatment"of"oxidative"stress-related"eye"diseases[J]."Int"J"Mol"Sci,"2022,"23(3):"1255.
[30] MA"Z,"LI"J,"JIANG"H,"et"al."Expression"of"α-Klotho"is"downregulated"and"associated"with"oxidative"stress"in"the"lens"in"streptozotocin-induced"diabetic"rats[J]."Curr"Eye"Res,"2021,"46(4):"482–489.
[31] ZHENG"T,"LU"Y."Changes"in"SIRT1"expression"and"its"downstream"pathways"in"age-related"cataract"in"humans[J]."Curr"Eye"Res,"2011,"36(5):"449–455.
[32] LI"Z,"GE"M,"YUAN"Z."MicroRNA-182-5p"protects"human"lens"epithelial"cells"against"oxidative"stress-"induced"apoptosis"by"inhibiting"NOX4"and"p38"MAPK"signalling[J]."BMC"Ophthalmol,"2020,"20(1):"233.
[33] RAO"P"V,"MADDALA"R,"JOHN"F,"et"al."Expression"of"nonphagocytic"NADPH"oxidase"system"in"the"ocular"lens[J]."Mol"Vis,"2004,"10:"112–121.
[34] ZHOU"Y,"ZHAO"T."Klotho"relieves"H2O2-induced"lens"epithelial"cell"damage"via"suppression"of"NOX4[J]."Int"Ophthalmol,"2024,"44(1):"417.
[35] FLECKENSTEIN"M,"KEENAN"T"D"L,"GUYMER"R"H,"et"al."Age-related"macular"degeneration[J]."Nat"Rev"Dis"Primers,"2021,"7(1):"31.
[36] EAMEGDOOL"S"S,"SITIWIN"E"I,"CIOANCA"A"V,"et"al."Extracellular"matrix"and"oxidative"stress"regulate"human"retinal"pigment"epithelium"growth[J]."Free"Radic"Biol"Med,"2020,"146:"357–371.
[37] KARUNADHARMA"P"P,"NORDGAARD"C"L,"OLSEN"T"W,"et"al."Mitochondrial"DNA"damage"as"a"potential"mechanism"for"age-related"macular"degeneration[J]."Invest"Ophthalmol"Vis"Sci,"2010,"51(11):"5470–5479.
[38] REISH"N"J,"MALTARE"A,"MCKEOWN"A"S,"et"al."The"age-regulating"protein"Klotho"is"vital"to"sustain"retinal"function[J]."Invest"Ophthalmol"Vis"Sci,"2013,"54(10):"6675–6685.
[39] MA"Z,"LIU"J,"LI"J,"et"al."Klotho"levels"are"decreased"and"associated"with"enhanced"oxidative"stress"and"inflammation"in"the"aqueous"humor"in"patients"with"exudative"age-related"macular"degeneration[J]."Ocul"Immunol"Inflamm,"2022,"30(3):"630–637.
[40] LIU"X,"WARD"K,"XAVIER"C,"et"al."The"novel"triterpenoid"RTA"408"protects"human"retinal"pigment"epithelial"cells"against"H2O2-induced"cell"injury"via"NF-E2-related"factor"2"(Nrf2)"activation[J]."Redox"Biol,"2016,"8:"98–109.
[41] ZHAO"Z,"CHEN"Y,"WANG"J,"et"al."Age-related"retinopathy"in"Nrf2-deficient"mice[J]."PLoS"One,"2011,"6(4):"e19456.
[42] LIAO"R,"YAN"F,"ZENG"Z,"et"al."Insulin-like"growth"factor-1"activates"PI3K/Akt"signalling"to"protect"human"retinal"pigment"epithelial"cells"from"amiodarone-induced"oxidative"injury[J]."Br"J"Pharmacol,"2018,"175(1):"125–139.
[43] YANG"P,"PEAIRS"J"J,"TANO"R,"et"al."Oxidant-mediated"Akt"activation"in"human"RPE"cells[J]."Invest"Ophthalmol"Vis"Sci,"2006,"47(10):"4598–4606.
[44] WEN"X,"LI"S,"ZHANG"Y,"et"al."Recombinant"human"Klotho"protects"against"hydrogen"peroxide-mediated"injury"in"human"retinal"pigment"epithelial"cells"via"the"PI3K/Akt-Nrf2/HO-1"signaling"pathway[J]."Bioengineered,"2022,"13(5):"11767–11781.
[45] BEDARD"K,"KRAUSE"K."The"NOX"family"of"ROS-generating"NADPH"oxidases:"Physiology"and"pathophysiology[J]."Physiol"Rev,"2007,"87(1):"245–313.
[46] B?HM"E"W,"BUONFIGLIO"F,"VOIGT"A"M,"et"al."Oxidative"stress"in"the"eye"and"its"role"in"the"pathophysiology"of"ocular"diseases[J]."Redox"Biol,"2023,"68:"102967.
[47] JANG"H"Y,"KIM"S,"PARK"K,"et"al."Klotho"preventsnbsp;transforming"growth"factor-β2-induced"senescent-like"morphological"changes"in"the"retinal"pigment"epithelium[J]."Cell"Death"Dis,"2023,"14(5):"334.
[48] ZHOU"S,"HUM"J,"TASKINTUNA"K,"et"al."The"anti-aging"hormone"Klotho"promotes"retinal"pigment"epithelium"cell"viability"and"metabolism"by"activating"the"AMPK/PGC-1α"pathway[J]."Antioxidants"(Basel),"2023,"12(2):"385.
(收稿日期:2024–12–22)
(修回日期:2025–04–10)