摘要:研究發(fā)現(xiàn),水產(chǎn)養(yǎng)殖水域中微塑料的豐度與經(jīng)濟(jì)條件、流體動(dòng)力學(xué)條件、人口密度等因素密切相關(guān)。微塑料在魚體內(nèi)的累積順序?yàn)橄?、鰓gt;肝臟、腦gt;肌肉。腸道、鰓和肝臟中微塑料的主要存在形式分別為纖維、碎片和顆粒。具有吞咽攝食行為的魚類體內(nèi)微塑料的豐度高于濾食性魚類,雜食性魚類體內(nèi)微塑料的豐度高于草食性/肉食性魚類,底棲魚類體內(nèi)微塑料的豐度高于中上層魚類。此外,本文對(duì)水產(chǎn)養(yǎng)殖領(lǐng)域微塑料研究的未來方向進(jìn)行了展望,以期為評(píng)估微塑料對(duì)水產(chǎn)品質(zhì)量安全的影響提供參考。
關(guān)鍵詞:微塑料;水產(chǎn)養(yǎng)殖水域;魚;生物蓄積;毒性效應(yīng)
中圖分類號(hào):X174;X714 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1672-2043(2025)03-0630-11 doi:10.11654/jaes.2024-1023
塑料因其優(yōu)良的性能和低廉的價(jià)格而被廣泛應(yīng)用于工業(yè)生產(chǎn)和日常生活。2019年塑料的年產(chǎn)量達(dá)4.6億t,同時(shí)也伴隨著大量塑料廢物的產(chǎn)生[1],2019—2050年將共產(chǎn)生120億t的塑料廢物[2]。濫用、處理不當(dāng)和管理不善等原因?qū)е麓罅克芰侠M(jìn)入自然環(huán)境[3]。通常情況下塑料的分解非常緩慢,但當(dāng)其暴露在紫外線(UV)下和持續(xù)磨損時(shí),分解便會(huì)顯著加速[4]。在水生和陸地生態(tài)系統(tǒng)中的塑料經(jīng)過破碎、紫外線輻射(光氧化)、微生物引起的生物降解等后,其粒徑會(huì)逐漸變小,成為微塑料,即粒徑小于5 mm的塑料[5],其通常以纖維、薄膜、泡沫、球體和顆粒的形式存在[6]。
目前在水環(huán)境中檢測到的微塑料主要有聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚對(duì)苯二甲酸乙二醇酯(PET)和聚酰胺(PA)等[7-8]。微塑料在水體中的分布取決于它們自身的密度、大小和形狀,PP和PE是典型的低密度塑料,容易漂浮在水體中,而PVC、PS、PET和PA是高密度塑料,容易下沉到沉積物中[9-10]。微塑料除本身含有毒單體和添加劑外,也是各種污染物、抗性基因和微生物的載體[11],因此會(huì)對(duì)意外攝入它們的水生生物產(chǎn)生健康威脅。微塑料顆粒的大小和形狀使其很容易被魚、蝦等水生生物誤食,并累積在體內(nèi)影響其生長和繁殖,進(jìn)而對(duì)漁業(yè)可持續(xù)發(fā)展產(chǎn)生巨大的影響[12-13]。
我國擁有世界上最大的水產(chǎn)養(yǎng)殖面積,2023 年全國水產(chǎn)養(yǎng)殖面積為762.46 萬hm2,產(chǎn)量為7 116.17萬t,是唯一一個(gè)水產(chǎn)養(yǎng)殖產(chǎn)量超過野生捕撈的國家[14-15]。我國的水產(chǎn)養(yǎng)殖場一般為封閉或半封閉的池塘,長期、高強(qiáng)度的水產(chǎn)養(yǎng)殖活動(dòng),可能會(huì)導(dǎo)致微塑料大量積累,進(jìn)而影響水產(chǎn)品的質(zhì)量安全。魚類種類繁多且食性和攝食方式各異,棲息活動(dòng)在不同的水層,很容易接觸和攝入水環(huán)境中無處不在的微塑料并在體內(nèi)蓄積,從而對(duì)其生長和健康造成損害[13]。魚體中的微塑料也可能通過食物鏈傳遞到人體中,進(jìn)而對(duì)人體健康造成威脅。
本文就目前微塑料在水環(huán)境中的污染現(xiàn)狀,綜合闡述了水產(chǎn)養(yǎng)殖水域微塑料的分布特征、微塑料在魚體中的富集特征和微塑料對(duì)魚體的毒性效應(yīng)機(jī)制,并對(duì)水產(chǎn)養(yǎng)殖領(lǐng)域微塑料未來的研究方向進(jìn)行了展望。本研究結(jié)果將為保障漁業(yè)的可持續(xù)發(fā)展和水產(chǎn)品質(zhì)量安全提供一定科學(xué)依據(jù)。
1 微塑料在水產(chǎn)養(yǎng)殖水域的分布現(xiàn)狀
水產(chǎn)養(yǎng)殖水域中的微塑料主要來自遺棄的漁具、飼料、幼魚缸、網(wǎng)、繩索、管道、浮標(biāo)和網(wǎng)箱等[8]。這些塑料經(jīng)過物理、化學(xué)或生物降解等過程,逐漸破碎或分解,導(dǎo)致水產(chǎn)養(yǎng)殖環(huán)境中檢測出大量的微塑料(表1)。
研究發(fā)現(xiàn)華南珠江口南沙養(yǎng)殖池塘中的微塑料豐度為6.6~263.6 個(gè)·L-1 [21],廣西茅尾海水產(chǎn)養(yǎng)殖區(qū)水體中微塑料豐度范圍為1.2~10.1 個(gè)·L-1 [26]。上海稻魚共養(yǎng)系統(tǒng)[17]、馬鞍列島人工魚礁[20]和海南島水產(chǎn)養(yǎng)殖場[22]的水體中微塑料平均豐度分別比華南珠江口南沙養(yǎng)殖池[21]和廣西茅尾海水產(chǎn)養(yǎng)殖區(qū)[26]水體中的低了99.3%~99.7%、99.7%~99.9% 和99.6%~99.8%。自20世紀(jì)70年代后期以來,珠江三角洲已成為我國人口最多、經(jīng)濟(jì)最活躍的地區(qū)。近幾十年來快速的經(jīng)濟(jì)增長和城市發(fā)展造成的南沙區(qū)污水(主要來自工業(yè)、農(nóng)業(yè)和日常生活)和廢物污染,致使珠江口附近的養(yǎng)殖場中微塑料的豐度較高[21]。池塘的水源很可能是受到微塑料污染的水體,導(dǎo)致華南地區(qū)水產(chǎn)養(yǎng)殖水體中微塑料豐度較高。微塑料污染水平的差異也可能是由于流體動(dòng)力學(xué)條件的不同。上海稻魚共養(yǎng)系統(tǒng)的養(yǎng)殖稻田有山脊與天然水柱隔離,可以阻止微塑料進(jìn)入[17]。廣東省佛山市草魚養(yǎng)殖池塘中微塑料豐度相對(duì)較高,可能是由于草魚養(yǎng)殖主要在土池中,土池是一個(gè)相對(duì)封閉的系統(tǒng),具有較長的保水時(shí)間和較低的流速,有利于微塑料的沉積[28]。人口密度也是影響水中微塑料污染程度的重要因素之一,兩者之間存在正相關(guān)性[29]。馬鞍列島、海南島以及南海地區(qū)人口密度相對(duì)較低,相應(yīng)受到微塑料污染的影響也較小。
上述結(jié)果表明,水產(chǎn)養(yǎng)殖水域中微塑料的豐度與經(jīng)濟(jì)、流體動(dòng)力學(xué)條件和人口密度等密切相關(guān)。
2 微塑料在魚體中的富集特征
水產(chǎn)養(yǎng)殖水體中的微塑料可能會(huì)被魚類誤食并在魚體內(nèi)累積。本文以“microplastics”和“fish”為關(guān)鍵詞,在Web of Science數(shù)據(jù)庫中檢索出3 096篇相關(guān)文獻(xiàn),經(jīng)過篩選最終選取54篇文獻(xiàn),對(duì)78種魚體內(nèi)微塑料的分布特征進(jìn)行了研究(表2)。結(jié)果表明,微塑料在魚體內(nèi)的分布具有顯著的組織差異性、攝食差異性和棲息地差異性等特征。
2.1 組織差異性
微塑料主要通過直接接觸或食物鏈進(jìn)入魚體,并累積在魚的不同組織中[65,81]。研究發(fā)現(xiàn)微塑料在魚類不同組織中的累積順序大致為消化道、鰓gt;肝臟、腦gt;肌肉(表2),說明消化道和鰓是微塑料在魚體內(nèi)的直接累積器官。微塑料尺寸較小并且很多微塑料的形狀與浮游生物類似,因此容易被以浮游動(dòng)物為食的魚類攝入并累積在消化道中[82]。作為與外界環(huán)境持續(xù)接觸的直接靶標(biāo)以及濾食性魚類的攝食器官[83],魚鰓中微塑料的積累也較為顯著。研究表明,尺寸較小的微塑料通過上皮細(xì)胞的內(nèi)吞作用內(nèi)化,穿過生物屏障或通過循環(huán)系統(tǒng)轉(zhuǎn)移到其他組織,這可能是肝臟、腦和肌肉中也存在微塑料的原因[84]。例如,在暴露于20 μm PS的斑馬魚的肝臟中沒有發(fā)現(xiàn)微塑料,但在暴露于5 μm PS的斑馬魚肝臟中檢測到了微塑料[85]。
另外,魚類不同組織中的微塑料形狀也有所不同。魚的腸道內(nèi)容物中纖維狀的微塑料豐度較高[86],鰓或皮膚上主要是薄膜和碎片狀微塑料[87],肝臟等組織中的微塑料以細(xì)小顆粒為主[85]。這可能是由于纖維形狀微塑料細(xì)長并且與浮游生物相似,容易被魚類誤食,而薄膜和碎片狀微塑料的較大表面積使它們?nèi)菀妆祸w和皮膚阻攔[87],肝組織中微塑料的累積高度依賴于顆粒的大小,較小的微塑料顆??梢赃M(jìn)入循環(huán)系統(tǒng)并轉(zhuǎn)移到肝臟[85,88]。
2.2 攝食差異性
魚類進(jìn)食方式、所處的營養(yǎng)級(jí)以及食性的差異都會(huì)導(dǎo)致微塑料在魚體內(nèi)的累積程度不同(表2)。
魚類的覓食機(jī)制不同,其胃腸道中積累的微塑料數(shù)量也會(huì)有差異。吞咽進(jìn)食的魚類如石斑魚,其腸道中微塑料的豐度達(dá)到23.91 個(gè)·條-1[30],而濾食性魚類沙丁魚體內(nèi)微塑料的豐度僅為1.58 個(gè)·條-1[45]。濾食性魚類在通過鰓耙被動(dòng)過濾水時(shí)偶爾會(huì)攝入微塑料[89],而不咀嚼直接吞食獵物的魚類會(huì)在很大程度上攝入更多的微塑料[90]。魚類的攝食習(xí)性也會(huì)影響微塑料的累積。雜食性魚類金鯧魚腸道中的微塑料高達(dá)546 個(gè)·條-1[36],顯著高于無須鱈魚、鯔魚、鯉魚等肉食性魚類[32,48,77]。這是由于雜食性魚類的食物種類繁多、來源廣泛,例如浮游生物、底棲生物以及動(dòng)植物碎屑等[91],比肉食性和草食性魚類攝入的微塑料源更多,導(dǎo)致體內(nèi)微塑料豐度較高[92]。洄游性魚類在不同季節(jié)生活在不同的水體中,具有更廣泛的營養(yǎng)生態(tài)位和餌料,會(huì)攝食不同環(huán)境介質(zhì)(例如海水、沉積物)中的微塑料,導(dǎo)致微塑料在體內(nèi)含量更高。如帶魚消化道中的微塑料為46 個(gè)·條-1 [45],鯉魚消化道內(nèi)僅為4.2個(gè)·條-1[77]。此外,由于生物放大作用,微塑料會(huì)在較高營養(yǎng)級(jí)的魚類中富集。如前所述的石斑魚,其以底棲甲殼類、各種小型魚類和頭足類為食,在食物鏈中所處的營養(yǎng)級(jí)相對(duì)較高,體內(nèi)微塑料豐度顯著高于低營養(yǎng)級(jí)魚類。
2.3 棲息地差異性
魚體內(nèi)微塑料的蓄積在很大程度上受棲息地中微塑料的豐度和分布的影響,與水體中微塑料的豐度有關(guān)[93]。鯔魚主要棲息環(huán)境為沿岸沙泥底水域,以浮游動(dòng)物、底棲生物等為食,其體內(nèi)微塑料的豐度為10.00 個(gè)·條-1 [61],高于中上層魚類鳀魚的1.13 個(gè)·條-1 [46]。由于微塑料的蓄積和自然沉降,底層海水中微塑料的豐度一般高于上層和中層海水,從而增加了底棲魚類接觸微塑料的可能性,使得底棲魚類攝入更多的微塑料。海州灣沿海水域底層魚類攝入的微塑料數(shù)量也顯著高于中上層魚類[89]。但是在日本九州西海岸沿海地區(qū),中上層魚類體內(nèi)的微塑料含量要高于底層魚類[94],這可能是由于一些低密度的微塑料會(huì)長時(shí)間懸浮在地表水中,被中上層魚類攝入的概率較大[95]。另外,穴居生物的洞穴會(huì)導(dǎo)致沉積物局部下沉,形成小的“峽谷”,增加其表面積,是塑料碎片沉積的首選區(qū)域,此處微塑料的豐度大約是開闊斜坡、大陸架和平原環(huán)境的2倍[96]。因此,洞穴的存在也會(huì)增強(qiáng)下沉微塑料的保留,增加微塑料的豐度,進(jìn)而增加微塑料被底棲魚類攝食的概率。
綜上所述,在自然條件下,微塑料在魚體內(nèi)的分布特征具有組織差異性、攝食習(xí)慣差異性以及棲息地的差異性等。微塑料含量在魚體內(nèi)累積的順序?yàn)橄?、鰓gt;肝臟、腦gt;肌肉。腸道、鰓和肝臟中微塑料的主要形狀分別為纖維狀、碎片狀和細(xì)小顆粒狀。吞咽式魚體比濾食性魚體內(nèi)微塑料含量高,雜食性魚體內(nèi)比植食性/肉食性魚體內(nèi)微塑料含量高,底棲魚類比上層魚類體內(nèi)的微塑料含量高。
3 微塑料對(duì)魚體的毒性效應(yīng)
3.1 氧化損傷
微塑料的存在會(huì)促進(jìn)魚體不同組織中活性氧(ROS)的產(chǎn)生,從而引起抗氧化酶[超氧化物歧化酶(SOD)、過氧化氫酶(CAT)、谷胱甘肽過氧化物酶(GPx)等]的活性發(fā)生改變,誘導(dǎo)氧化應(yīng)激[97]。鯉魚暴露于1.0 g·L-1和2.5 g·L-1 PP微塑料中,其鰓部丙二醛含量水平隨PP微塑料暴露濃度和暴露時(shí)間依賴性增加,CAT活性顯著降低[98]。鯉魚通過飲食暴露于不同濃度的PVC 微塑料60 d后,肝臟中的ROS水平表現(xiàn)出明顯的劑量依賴性上升趨勢,并誘發(fā)氧化應(yīng)激,肝細(xì)胞中脂肪代謝的平衡被破壞,引起脂肪堆積,最終導(dǎo)致肝損傷[99]。
3.2 腸道影響
微塑料暴露可導(dǎo)致魚類腸道微生物群失調(diào)、攝食活性降低、腸道損傷及結(jié)構(gòu)改變,進(jìn)而抑制生長并引發(fā)腸道功能障礙。Jin 等[100]研究發(fā)現(xiàn)斑馬魚暴露于1 000 μg·L-1 PS微塑料14 d后腸道微生物群失調(diào),擬桿菌門和變形菌門的豐度顯著降低,厚壁菌門的豐度顯著增加。微塑料在腸道中累積會(huì)顯著降低魚的攝食活性,使其生長被抑制,如海洋石斑魚暴露于106個(gè)·L-1 PS微塑料14 d后,其體質(zhì)量和特定生長速率相對(duì)于未暴露組分別降低了65.4% 和65.9%[101]。斑馬魚暴露于50 μg·L-1 PS微塑料21 d后,腸道絨毛、上皮出現(xiàn)損傷,腸道通透性增加[102]。金魚幼魚暴露于100 μg·L-1 PS微塑料7 d后,出現(xiàn)腸道結(jié)構(gòu)疏松、腸腔變大、腸外膜與肌層分離、腸黏膜結(jié)構(gòu)破壞、線粒體細(xì)胞空泡化[103]。
3.3 免疫毒性
微塑料暴露會(huì)顯著影響魚類的免疫系統(tǒng),導(dǎo)致與免疫相關(guān)的酶活性下降、炎癥反應(yīng)加劇,并激活免疫信號(hào)通路,造成腸道和心血管等損傷,影響免疫功能。鯉魚通過飲食暴露于不同濃度的PVC 微塑料60 d后,腸道中的異性免疫酶——酸性磷酸酶(ACP)、堿性磷酸酶(AKP)及溶菌酶(LZM)的活性顯著下調(diào),導(dǎo)致腸道絨毛受損、炎癥細(xì)胞浸潤[99]。羅非魚暴露于100 μg和500 μg PP微塑料30 d后,其血清中冬氨酸氨基轉(zhuǎn)移酶(AST)、丙氨酸轉(zhuǎn)氨酶(ALT)的活性和淋巴細(xì)胞、總白細(xì)胞以及血小板數(shù)量顯著增加,血管組織和心臟功能受到損害,誘發(fā)炎癥影響免疫[104]。斑馬魚胚胎被注射PS微塑料后,與免疫反應(yīng)相關(guān)的信號(hào)通路被激活,補(bǔ)體替代途徑基因(CFHL3、CFHL4、CFb和C9)表達(dá)上調(diào)[105]。斑馬魚暴露于1 000 μg·L-1PE微塑料14 d后,腸道中IL1α、IL1β和IFN的蛋白水平顯著增加[100]。
3.4 生殖毒性
微塑料暴露對(duì)魚類的生殖發(fā)育造成嚴(yán)重影響,導(dǎo)致性腺發(fā)育延遲和繁殖力下降,卵巢和睪丸細(xì)胞凋亡率增加,引起卵巢組織炎癥及卵母細(xì)胞發(fā)育受損,最終影響魚類的繁殖。鯉魚幼魚通過飲食暴露于不同濃度的PVC微塑料60 d后,性腺體指標(biāo)顯著降低,性腺發(fā)育延遲[106]。20 μg·L-1 PS微塑料可延遲海洋青鳉性腺成熟,從而降低雌魚的繁殖力[107]。暴露于1 000ng·L-1 PE 微塑料21 d 后,鯉魚卵巢中線粒體凋亡相關(guān)基因(bax、aif、cyt - c、caspase - 7、caspase - 9 和caspase-3)的表達(dá)升高,而抗凋亡基因(bcl-2 和bclxl)的表達(dá)較低,導(dǎo)致卵巢細(xì)胞凋亡率增加;PE還通過TRAF6/NF-kB通路激活p65 因子,導(dǎo)致卵巢中促炎因子il-6、il-1β 和tnf-a 的水平增加,誘導(dǎo)卵巢組織炎癥并損害卵母細(xì)胞發(fā)育[108]。雄性斑馬魚暴露于1 000μg·L-1 PS微塑料21 d后,睪丸細(xì)胞凋亡水平顯著增加,睪丸基底膜的厚度顯著降低[109]。
3.5 神經(jīng)毒性
微塑料暴露會(huì)對(duì)魚類神經(jīng)系統(tǒng)產(chǎn)生毒性作用。斑馬魚暴露于5 mg·L-1 PE微塑料14 d后,參與神經(jīng)元功能、神經(jīng)元分化和軸突發(fā)生以及視覺相關(guān)(opsin6 和rhodopsin)的基因表達(dá)下調(diào)[110]。0.1~100 μg·L-1的老化PS微塑料顯著增加了斑馬魚的多巴胺(DA)、5-羥色胺(5-HT)、γ-氨基丁酸(GABA)和乙酰膽堿(Ach)水平[111]。乙酰膽堿酯酶(AchE)對(duì)維持神經(jīng)肌肉系統(tǒng)的正常功能具有重要作用。暴露于0.26 mg·L-1和0.69 mg·L-1微塑料96 h后,鱸魚腦中AchE的活性受到抑制[112]。ROS的過量產(chǎn)生導(dǎo)致潛在的神經(jīng)和神經(jīng)肌肉功能障礙,誘發(fā)肌肉損傷并影響新陳代謝,從而影響魚的運(yùn)動(dòng)[103]。
此外,微塑料還干擾魚體內(nèi)的新陳代謝。暴露于PE 微塑料后,斑馬魚體內(nèi)參與糖酵解途徑、嘌呤代謝、氧化代謝和賴氨酸代謝的基因豐度降低,能量應(yīng)激和代謝途徑受到影響[110]。微塑料暴露增加了鱸魚大腦和肌肉中的脂質(zhì)氧化(LPO),能量相關(guān)酶[乳酸脫氫酶(LDH)和異檸檬酸脫氫酶(IDH)]的活性受到抑制[112]。綜上所述,微塑料會(huì)引起魚類組織病變,改變腸道微生物豐度,產(chǎn)生免疫毒性、生殖毒性、神經(jīng)毒性等,并干擾相關(guān)代謝通路,對(duì)魚類健康造成嚴(yán)重危害(圖1)。
4 展望
雖然關(guān)于微塑料在水環(huán)境中的分布特征及其對(duì)魚類的效應(yīng)研究取得了很大的進(jìn)展,但尚有大量工作需要深入開展。例如,目前關(guān)于微塑料在我國水產(chǎn)養(yǎng)殖水域中的分布特征僅有10余篇研究報(bào)道,但我國擁有世界上最大的水產(chǎn)養(yǎng)殖面積,應(yīng)該加強(qiáng)對(duì)我國不同類型水產(chǎn)養(yǎng)殖水域中微塑料分布情況的調(diào)查,尤其是一些缺乏有效管理措施的小型水產(chǎn)養(yǎng)殖場。微塑料在這種封閉、交換能力差、水動(dòng)力較弱的環(huán)境中很容易大量積累,進(jìn)而對(duì)漁業(yè)生物尤其是魚類的質(zhì)量安全產(chǎn)生巨大的威脅。
微塑料對(duì)魚類毒性效應(yīng)的研究主要集中在腸道、鰓等組織中,而魚類嗅覺器官和味覺器官也是水體中的微塑料與魚體直接接觸的部位。在水生環(huán)境中嗅覺和味覺感受器都用于檢測食物,決定魚類的攝食行為。微塑料對(duì)魚類嗅覺系統(tǒng)和味覺系統(tǒng)的影響機(jī)制如何,還需進(jìn)一步研究。魚體中的微塑料與人體健康密切相關(guān),但目前關(guān)于食用含有微塑料的魚對(duì)人體的影響機(jī)制研究較少。因此,檢測魚類中的微塑料并確定食用含微塑料的魚對(duì)人體健康的不利影響顯得至關(guān)重要。
我國水產(chǎn)漁業(yè)的發(fā)展具有重要的經(jīng)濟(jì)和社會(huì)意義。為了更好地保障水產(chǎn)養(yǎng)殖生物健康生長和水產(chǎn)品質(zhì)量安全,需要徹底了解水產(chǎn)養(yǎng)殖中的微塑料污染來源并采取措施減少塑料進(jìn)入水生環(huán)境,減輕微塑料對(duì)水產(chǎn)養(yǎng)殖的影響。我國大多數(shù)水產(chǎn)養(yǎng)殖場屬于封閉型養(yǎng)殖場,傳統(tǒng)上經(jīng)營規(guī)模較小并缺乏有效的管理措施。因此需要加強(qiáng)水產(chǎn)養(yǎng)殖管理,制定相應(yīng)的法規(guī)限制和管控水產(chǎn)養(yǎng)殖過程中塑料制品的使用和塑料垃圾的排放,從源頭上遏制微塑料污染。此外,還需要加強(qiáng)對(duì)水產(chǎn)養(yǎng)殖環(huán)境中微塑料污染的檢測和水生生物微塑料攝入情況的研究。微塑料對(duì)水體的污染是一個(gè)長期、動(dòng)態(tài)的過程,可運(yùn)用遙感技術(shù)動(dòng)態(tài)監(jiān)測養(yǎng)殖環(huán)境中的微塑料[113]。同時(shí),推動(dòng)養(yǎng)殖塑料制品相關(guān)技術(shù)研發(fā),如回收塑料制品、提高漁具的耐磨性、使用環(huán)境友好材料制作的漁具代替塑料漁具等[114],以期選用合適的水產(chǎn)養(yǎng)殖微塑料污染控制措施,促進(jìn)水產(chǎn)養(yǎng)殖業(yè)的健康可持續(xù)發(fā)展。
參考文獻(xiàn):
[1] OECD. Global plastics outlook:policy scenarios to 2060[R]. Paris:
OECD Publishing 2022.
[2] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all
plastics ever made[J]. Science Advances, 2017, 3(7):e1700782.
[3] KUMAR R, VERMA A, SHOME A, et al. Impacts of plastic pollution
on ecosystem services, sustainable development goals, and need to
focus on circular economy and policy interventions[J]. Sustainability,
2021, 13(17):9963.
[4] SONG Y K, HONG S H, JANG M, et al. Combined effects of UV
exposure duration and mechanical abrasion on microplastic
fragmentation by polymer type[J]. Environmental Science amp; Technology,
2017, 51(8):4368-4376.
[5] ANDREW WIRNKOR V, CHRISTIAN EBERE E, EVELYN NGOZI V.
Microplastics, an emerging concern:a review of analytical techniques
for detecting and quantifying microplatics[J]. Analytical Methods in
Environmental Chemistry Journal, 2019, 2(2):13-30.
[6] COWGER W, GRAY A, CHRISTIANSEN S H, et al. Critical review of
processing and classification techniques for images and spectra in
microplastic research[J]. Applied Spectroscopy, 2020, 74(9):989-1010.
[7] BOUWMEESTER H, HOLLMAN P C H, PETERS R J B. Potential
health impact of environmentally released micro- and nanoplastics in
the human food production chain:experiences from nanotoxicology[J].
Environmental Science amp; Technology, 2015, 49(15):8932-8947.
[8] LI W C, TSE H F, FOK L.Plastic waste in the marine environment:a
review of sources, occurrence and effects[J]. Science of the Total
Environment, 2016, 566/567:333-349.
[9] BROWNE M A, GALLOWAY T, THOMPSON R. Microplastic:an
emerging contaminant of potential concern?[J]. Integrated Environmental
Assessment and Management, 2007, 3(4):559-561.
[10] COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as
contaminants in the marine environment:a review[J]. Marine Pollution
Bulletin, 2011, 62(12):2588-2597.
[11] SHENG Y F, YE X Y, ZHOU Y, et al. Microplastics(MPs)act as
sources and vector of pollutants:impact hazards and preventive
measures[J]. Bulletin of Environmental Contamination and
Toxicology, 2021, 107(4):722-729.
[12] FOEKEMA E M, DE GRUIJTER C, MERGIA M T, et al.Plastic in
North Sea fish[J].Environmental Science amp; Technology, 2013, 47(15):
8818-8824.
[13] PHILLIPS M B, BONNER T H. Occurrence and amount of
microplastic ingested by fishes in watersheds of the Gulf of Mexico[J].
Marine Pollution Bulletin, 2015, 100(1):264-269.
[14] 余向東, 袁曉初, 王丹. 大國漁業(yè)的崛起:新中國漁業(yè)七十年回顧
[J]. 中國水產(chǎn), 2020(1):2-9. YU X D, YUAN X C, WANG D. The
rise of fisheries in great powers:review of the 70 years of fisheries in
China[J]. China Fisheries, 2020(1):2-9.
[15] 農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局, 全國水產(chǎn)技術(shù)推廣總站, 中國水產(chǎn)
學(xué)會(huì). 中國漁業(yè)統(tǒng)計(jì)年鑒2024[M]. 北京:中國農(nóng)業(yè)出版社, 2024.
Bureau of Fisheries and Fishery Administration, Ministry of
Agriculture and Rural Affairs, National Fisheries Technology
Extension Center, China Society of Fisheries.China fishery statistical
yearbook 2024[M]. Beijing:China Agriculture Press, 2024.
[16] MA J L, NIU X J, ZHANG D Q, et al. High levels of microplastic
pollution in aquaculture water of fish ponds in the Pearl River Estuary
of Guangzhou, China[J]. Science of the Total Environment, 2020, 744:
140679.
[17] LV W W, ZHOU W Z, LU S B, et al. Microplastic pollution in ricefish
co-culture system:a report of three farmland stations in
Shanghai, China[J]. Science of the Total Environment, 2019, 652:
1209-1218.
[18] LV W W, YUAN Q, HE D F, et al. Microplastic contamination caused
by different rearing modes of Asian swamp eel(Monopterus albus)[J].
Aquaculture Research, 2020, 51(12):5084-5095.
[19] CHEN B, FAN Y P, HUANG W, et al. Observation of microplastics in
mariculture water of Longjiao Bay, southeast China:influence by
human activities[J]. Marine Pollution Bulletin, 2020, 160:111655.
[20] ZHANG D D, CUI Y Z, ZHOU H H, et al. Microplastic pollution in
water, sediment, and fish from artificial reefs around the Ma′ an
Archipelago, Shengsi, China[J]. Science of the Total Environment,
2020, 703:134768.
[21] LI Y Z, CHEN G L, XU K H, et al. Microplastics environmental effect
and risk assessment on the aquaculture systems from south China[J].
International Journal of Environmental Research and Public Health,
2021, 18(4):1869.
[22] LIN F, ZHANG Q Z, XIE J, et al. Microplastics in biota and surface
seawater from tropical aquaculture area in Hainan, China[J]. Gondwana
Research, 2022, 108:41-48.
[23] HOSSAIN S, AHMAD SHUKRI Z N, WAIHO K, et al. Microplastics
pollution in mud crab (Scylla sp.) aquaculture system:first
investigation and evidence[J]. Environmental Pollution, 2023, 329:
121697.
[24] YU F, PEI Y Z, ZHANG X C, et al. Occurrence and distribution
characteristics of aged microplastics in the surface water, sediment,
and crabs of the aquaculture pond in the Yangtze River Delta of China
[J]. Science of the Total Environment, 2023, 871:162039.
[25] XIONG X, LIU Q, CHEN X C, et al. Occurrence of microplastic in the
water of different types of aquaculture ponds in an important lakeside
freshwater aquaculture area of China[J]. Chemosphere, 2021, 282:
131126.
[26] ZHU J M, ZHANG Q, LI Y P, et al. Microplastic pollution in the
Maowei Sea, a typical mariculture bay of China[J]. Science of the Total
Environment, 2019, 658:62-68.
[27] LI W X, CHEN X F, CAI Z M, et al. Characteristics of microplastic
pollution and analysis of colonized-microbiota in a freshwater
aquaculture system[J]. Environmental Pollution, 2022, 306:119385.
[28] YAN M Q, WANG L, DAI Y Y, et al. Behavior of microplastics in
inland waters:aggregation, settlement, and transport[J]. Bulletin of
Environmental Contamination and Toxicology, 2021, 107(4):700-
709.
[29] HUANG Y L, TIAN M, JIN F, et al. Coupled effects of urbanization
level and dam on microplastics in surface waters in a coastal
watershed of southeast China[J]. Marine Pollution Bulletin, 2020,
154:111089.
[30] LAM T W L, FOK L, MA A T H, et al. Microplastic contamination in
marine-cultured fish from the Pearl River Estuary, south China[J].
Science of the Total Environment, 2022, 827:154281.
[31] AKHBARIZADEH R, MOORE F, KESHAVARZI B. Investigating a
probable relationship between microplastics and potentially toxic
elements in fish muscles from northeast of Persian Gulf[J].
Environmental Pollution, 2018, 232:154-163.
[32] CABANILLES P, ACLE S, ARIAS A, et al. Microplastics risk into a
three-link food chain inside European Hake[J]. Diversity, 2022, 14
(5):308.
[33] SHU R L, LI Z, GAO S K, et al. Occurrence and accumulation of
microplastics in commercial fish in the coastal waters of the Lvsi
fishing ground in China[J]. Marine Pollution Bulletin, 2023, 194:
115181.
[34] RASTA M, KHODADOUST A, RAHIMIBASHAR M R, et al.
Microplastic pollution in the gastrointestinal tract and gills of some
teleost and sturgeon fish from the Caspian Sea, northern Iran[J].
Environmental Toxicology and Chemistry, 2023, 42(11):2453-2465.
[35] TERZI Y. Microplastic ingestion by invasive Prussian carp(Carassius
gibelio) used in fishmeal production in Türkiye[J]. Environmental
Monitoring and Assessment, 2023, 195(10):1232.
[36] LIU M J, GUO H Y, GAO J, et al. Characteristics of microplastic
pollution in golden pompano(Trachinotus ovatus)aquaculture areas
and the relationship between colonized-microbiota on microplastics
and intestinal microflora[J]. Science of the Total Environment, 2023,
856:159180.
[37] JITKAEW P, PRADIT S, NOPPRADIT P, et al. Microplastics in
estuarine fish(Arius maculatus)from Songkhla Lagoon, Thailand[J].
Regional Studies in Marine Science, 2024, 69:103342.
[38] MY T T A, DAT N D, HUNG N Q, et al. Micro-debris accumulated in
marine fishes collected from central Vietnam:characteristics and
implication for human health risk[J]. Water, Air, amp; Soil Pollution,
2023, 234(10):632.
[39] NIKKI R, ABDUL JALEEL K U, RAGESH S, et al. Abundance and
characteristics of microplastics in commercially important bottom
dwelling finfishes and shellfish of the Vembanad Lake, India[J].
Marine Pollution Bulletin, 2021, 172:112803.
[40] PAN Z, LIU Q L, XU J, et al. Microplastic contamination in seafood
from Dongshan Bay in southeastern China and its health risk
implication for human consumption[J]. Environmental Pollution,
2022, 303:119163.
[41] SAHA M, NAIK A, DESAI A, et al. Microplastics in seafood as an
emerging threat to marine environment:a case study in Goa, west
coast of India[J]. Chemosphere, 2021, 270:129359.
[42] KOONGOLLA J B, LIN L, YANG C P, et al. Microplastic prevalence
in marine fish from onshore Beibu Gulf, South China Sea[J]. Frontiers
in Marine Science, 2022, 9:964461.
[43] KOONGOLLA J B, LIN L, PAN Y F, et al. Occurrence of
microplastics in gastrointestinal tracts and gills of fish from Beibu
Gulf, South China Sea[J]. Environmental Pollution, 2020, 258:113734.
[44] ZHU L, WANG H, CHEN B J, et al. Microplastic ingestion in deepsea
fish from the South China Sea[J]. Science of the Total Environment,
2019, 677:493-501.
[45] HASAN J, MAJHARUL ISLAM S M, ALAM M S, et al. Presence of
microplastics in two common dried marine fish species from
Bangladesh[J]. Marine Pollution Bulletin, 2022, 176:113430.
[46] BAKIR A, VAN DER LINGEN C D, PRESTON-WHYTE F, et al.
Microplastics in commercially important small pelagic fish species
from South Africa[J]. Frontiers in Marine Science, 2020, 7:574663.
[47] HOSSAIN M B, PINGKI F H, AZAD M A S, et al. Microplastics in
different tissues of a commonly consumed fish, Scomberomorus
guttatus, from a large subtropical estuary: accumulation,
characterization, and contamination assessment[J]. Biology, 2023, 12
(11):1422.
[48] KILI? E, YüCEL N, MüBAREK ?AHUTO?LU S. First record of
microplastic occurence at the commercial fish from Orontes River[J].
Environmental Pollution, 2022, 307:119576.
[49] SPARKS C, IMMELMAN S. Microplastics in offshore fish from the
Agulhas Bank, South Africa[J]. Marine Pollution Bulletin, 2020, 156:
111216.
[50] SELVAM S, MANISHA A, ROY P D, et al. Microplastics and trace
metals in fish species of the Gulf of Mannar(Indian Ocean) and
evaluation of human health[J]. Environmental Pollution, 2021, 291:
118089.
[51] WOOTTON N, FERREIRA M, REIS-SANTOS P, et al. A comparison
of microplastic in fish from Australia and Fiji[J]. Frontiers in Marine
Science, 2021, 8:690991.
[52] ZHU W B, ZHAO N, LIU W B, et al. Occurrence of microplastics in
Antarctic fishes:abundance, size, shape, and polymer composition[J].
Science of the Total Environment, 2023, 903:166186.
[53] RASTA M, SATTARI M, TALESHI M S, et al. Microplastics in
different tissues of some commercially important fish species from
Anzali wetland in the Southwest Caspian Sea, northern Iran[J]. Marine
Pollution Bulletin, 2021, 169:112479.
[54] PANDEY N, VERMA R, PATNAIK S, et al. Abundance,
characteristics, and risk assessment of microplastics in indigenous
freshwater fishes of India[J]. Environmental Research, 2023, 218:
115011.
[55] CORDOVA M R, RIANI E, SHIOMOTO A. Microplastics ingestion
by blue panchax fish(Aplocheilus sp.)from Ciliwung Estuary, Jakarta,
Indonesia[J]. Marine Pollution Bulletin, 2020, 161:111763.
[56] ERYA?AR A R, GEDIK K, MUTLU T. Ingestion of microplastics by
commercial fish species from the southern Black Sea coast[J]. Marine
Pollution Bulletin, 2022, 177:113535.
[57] MISTRI M, SFRISO A A, CASONI E, et al. Microplastic
accumulation in commercial fish from the Adriatic Sea[J]. Marine
Pollution Bulletin, 2022, 174:113279.
[58] SIDDIQUE M A M, UDDIN A, RAHMAN S M A, et al. Microplastics
in an anadromous national fish, Hilsa shad Tenualosa ilisha from the
Bay of Bengal, Bangladesh[J]. Marine Pollution Bulletin, 2022, 174:
113236.
[59] PAN Z K, ZHANG C N, WANG S D, et al. Occurrence of
microplastics in the gastrointestinal tract and gills of fish from
Guangdong, south China[J]. Journal of Marine Science and
Engineering, 2021, 9(9):981.
[60] XU X, ZHANG L, XUE Y G, et al. Microplastic pollution
characteristic in surface water and freshwater fish of Gehu Lake,
China[J]. Environmental Science and Pollution Research, 2021, 28
(47):67203-67213.
[61] GUILHERMINO L, MARTINS A, LOPES C, et al. Microplastics in
fishes from an estuary(Minho River) ending into the NE Atlantic
Ocean[J]. Marine Pollution Bulletin, 2021, 173:113008.
[62] HOSSEINPOUR A, CHAMANI A, MIRZAEI R, et al. Occurrence,
abundance and characteristics of microplastics in some commercial
fish of northern coasts of the Persian Gulf[J]. Marine Pollution
Bulletin, 2021, 171:112693.
[63] NIE H Y, WANG J, XU K H, et al. Microplastic pollution in water
and fish samples around Nanxun Reef in Nansha Islands, South China
Sea[J]. Science of the Total Environment, 2019, 696:134022.
[64] BESSA F, BARRíA P, NETO J M, et al. Occurrence of microplastics
in commercial fish from a natural estuarine environment[J]. Marine
Pollution Bulletin, 2018, 128:575-584.
[65] SU L, DENG H, LI B W, et al. The occurrence of microplastic in
specific organs in commercially caught fishes from coast and estuary
area of east China[J]. Journal of Hazardous Materials, 2019, 365:716-
724.
[66] HAQUE M R, ALI M M, AHMED W, et al. Assessment of
microplastics pollution in aquatic species(fish, crab, and snail),
water, and sediment from the Buriganga River, Bangladesh:an
ecological risk appraisals[J]. Science of the Total Environment, 2023,
857:159344.
[67] RENZI M, SPECCHIULLI A, BLA?KOVI? A, et al. Marine litter in
stomach content of small pelagic fishes from the Adriatic Sea:sardines
(Sardina pilchardus) and anchovies(Engraulis encrasicolus)[J].
Environmental Science and Pollution Research, 2019, 26(3):2771-
2781.
[68] O′ CONNOR J D, MURPHY S, LALLY H T, et al. Microplastics in
brown trout(Salmo trutta Linnaeus, 1758) from an Irish riverine
system[J]. Environmental Pollution, 2020, 267:115572.
[69] GALAFASSI S, SIGHICELLI M, PUSCEDDU A, et al. Microplastic
pollution in perch(Perca fluviatilis, Linnaeus 1758) from Italian
south-alpine lakes[J]. Environmental Pollution, 2021, 288:117782.
[70] LIM K P, DING J F, LOH K H, et al. First evidence of microplastic
ingestion by crescent perch(Terapon jarbua)in Malaysia[J]. Regional
Studies in Marine Science, 2023, 67:103202.
[71] YUAN W K, LIU X N, WANG W F, et al. Microplastic abundance,
distribution and composition in water, sediments, and wild fish from
Poyang Lake, China[J]. Ecotoxicology and Environmental Safety,
2019, 170:180-187.
[72] MAKHDOUMI P, HOSSINI H, NAZMARA Z, et al. Occurrence and
exposure analysis of microplastic in the gut and muscle tissue of
riverine fish in Kermanshah Province of Iran[J]. Marine Pollution
Bulletin, 2021, 173:112915.
[73] GURJAR U R, MARTIN XAVIER K A, SHUKLA S P, et al.
Incidence of microplastics in gastrointestinal tract of golden anchovy
(Coilia dussumieri) from north east coast of Arabian Sea:the
ecological perspective[J]. Marine Pollution Bulletin, 2021, 169:
112518.
[74] YUAN F, DING Y C, WANG Y, et al. Microplastic pollution in
Larimichthys polyactis in the coastal area of Jiangsu, China[J]. Marine
Pollution Bulletin, 2021, 173:113050.
[75] SáNCHEZ-ALMEIDA R, HERNáNDEZ-SáNCHEZ C, VILLANOVASOLANO
C, et al. Microplastics determination in gastrointestinal
tracts of European Sea bass(Dicentrarchus labrax)and gilt-head sea
bream(Sparus aurata) from Tenerife(Canary Islands, Spain)[J].
Polymers, 2022, 14(10):1931.
[76] GONG Y, WANG Y X, CHEN L, et al. Microplastics in different
tissues of a pelagic squid(Dosidicus gigas)in the northern Humboldt
Current ecosystem[J]. Marine Pollution Bulletin, 2021, 169:112509.
[77] OH J K, LEE J, LEE S Y, et al. Microplastic distribution and
characteristics in common carp(Cyprinus carpio) from Han River,
south Korea[J]. Water, 2023, 15(23):4113.
[78] GAGO J, PORTELA S, FILGUEIRAS A V, et al. Ingestion of plastic
debris(macro and micro)by longnose lancetfish(Alepisaurus ferox)in
the North Atlantic Ocean[J]. Regional Studies in Marine Science,
2020, 33:100977.
[79] LOPES C, AMBROSINO A C, FIGUEIREDO C, et al. Microplastic
distribution in different tissues of small pelagic fish of the Northeast
Atlantic Ocean[J]. Science of the Total Environment, 2023, 901:
166050.
[80] MATIAS R S, GOMES S, BARBOZA L G A, et al. Microplastics in
water, feed and tissues of European seabass reared in a recirculation
aquaculture system(RAS)[J]. Chemosphere, 2023, 335:139055.
[81] SEQUEIRA I F, PRATA J C, DA COSTA J P, et al. Worldwide
contamination of fish with microplastics:a brief global overview[J].
Marine Pollution Bulletin, 2020, 160:111681.
[82] ORY N C, GALLARDO C, LENZ M, et al. Capture, swallowing, and
egestion of microplastics by a planktivorous juvenile fish[J].
Environmental Pollution, 2018, 240:566-573.
[83] ZHENG S W, WANG W X. Disturbing ion regulation and excretion in
medaka(Oryzias melastigma)gills by microplastics:insights from the
gut-gill axis[J]. Science of the Total Environment, 2023, 857:159353.
[84] ZITOUNI N, BOUSSERRHINE N, MISSAWI O, et al. Uptake, tissue
distribution and toxicological effects of environmental microplastics in
early juvenile fish Dicentrarchus labrax[J]. Journal of Hazardous
Materials, 2021, 403:124055.
[85] LU Y F, ZHANG Y, DENG Y F, et al. Uptake and accumulation of
polystyrene microplastics in zebrafish(Danio rerio)and toxic effects
in liver[J]. Environmental Science amp; Technology, 2016, 50(7):4054-
4060.
[86] JABEEN K, SU L, LI J N, et al. Microplastics and mesoplastics in fish
from coastal and fresh waters of China[J]. Environmental Pollution,
2017, 221:141-149.
[87] LI Z L, CHAO M, HE X K, et al. Microplastic bioaccumulation in
estuary-caught fishery resource[J]. Environmental Pollution, 2022,
306:119392.
[88] HAO T W, GAO Y, LI Z C, et al. Size-dependent uptake and
depuration of nanoplastics in Tilapia(Oreochromis niloticus) and
distinct intestinal impacts[J]. Environmental Science amp; Technology,
2023, 57(7):2804-2812.
[89] GAO S K, YAN K, LIANG B G, et al. The different ways
microplastics from the water column and sediment accumulate in fish
in Haizhou Bay[J]. Science of the Total Environment, 2023, 854:
158575.
[90] NELMS S E, GALLOWAY T S, GODLEY B J, et al. Investigating
microplastic trophic transfer in marine top predators[J]. Environmental
Pollution, 2018, 238:999-1007.
[91] VALENTIN?I? T. Taste and olfactory stimuli and behavior in fishes
[M]//The senses of fish. Dordrecht:Springer Netherlands, 2004:90-
108.
[92] WANG S D, ZHANG C N, PAN Z K, et al. Microplastics in wild
freshwater fish of different feeding habits from Beijiang and Pearl
River Delta regions, south China[J]. Chemosphere, 2020, 258:127345.
[93] CARBERY M, O′CONNOR W, PALANISAMI T. Trophic transfer of
microplastics and mixed contaminants in the marine food web and
implications for human health[J]. Environment International, 2018,
115:400-409.
[94] YAGI M, KOBAYASHI T, MARUYAMA Y, et al. Microplastic
pollution of commercial fishes from coastal and offshore waters in
southwestern Japan[J]. Marine Pollution Bulletin, 2022, 174:113304.
[95] HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al.
Microplastics in the marine environment:a review of the methods
used for identification and quantification[J]. Environmental Science amp;
Technology, 2012, 46(6):3060-3075.
[96] KANE I A, CLARE M A. Dispersion, accumulation, and the ultimate
fate of microplastics in deep-marine environments:a review and
future directions[J]. Frontiers in Earth Science, 2019, 7:80.
[97] JEONG C B, KANG H M, LEE M C, et al. Adverse effects of
microplastics and oxidative stress-induced MAPK / Nrf2 pathwaymediated
defense mechanisms in the marine copepod Paracyclopina
nana[J]. Scientific Reports, 2017, 7:41323.
[98] YEDIER S, YAL?INKAYA S K, BOSTANCI D. Exposure to
polypropylene microplastics via diet and water induces oxidative
stress in Cyprinus carpio[J]. Aquatic Toxicology, 2023, 259:106540.
[99] LIU X Y, LIANG C N, ZHOU M, et al. Exposure of Cyprinus carpio
var. larvae to PVC microplastics reveals significant immunological
alterations and irreversible histological organ damage[J]. Ecotoxicology
and Environmental Safety, 2023, 249:114377.
[100] JIN Y X, XIA J Z, PAN Z H, et al. Polystyrene microplastics induce
microbiota dysbiosis and inflammation in the gut of adult zebrafish
[J]. Environmental Pollution, 2018, 235:322-329.
[101] YIN L Y, CHEN B J, XIA B, et al. Polystyrene microplastics alter
the behavior, energy reserve and nutritional composition of marine
jacopever(Sebastes schlegelii)[J]. Journal of Hazardous Materials,
2018, 360:97-105.
[102] QIAO R X, SHENG C, LU Y F, et al. Microplastics induce intestinal
inflammation, oxidative stress, and disorders of metabolome and
microbiome in zebrafish[J]. Science of the Total Environment, 2019,
662:246-253.
[103] YANG H, XIONG H R, MI K H, et al. Toxicity comparison of nanosized
and micron-sized microplastics to goldfish Carassius auratus
Larvae[J]. Journal of Hazardous Materials, 2020, 388:122058.
[104] DO NASCIMENTO L S, DE OLIVEIRA S L, DA COSTA C C, et al.
Deleterious effects of polypropylene microplastic ingestion in Nile
Tilapia (Oreochromis niloticus) [J]. Bulletin of Environmental
Contamination and Toxicology, 2023, 111(1):13.
[105] VENEMAN W J, SPAINK H P, BRUN N R, et al. Pathway analysis
of systemic transcriptome responses to injected polystyrene particles
in zebrafish larvae[J]. Aquatic Toxicology, 2017, 190:112-120.
[106] LIU X Y, LIANG C N, FAN J, et al. Polyvinyl chloride microplastics
induce changes in gene expression and organ histology along the
HPG axis in Cyprinus carpio var.larvae[J]. Aquatic Toxicology, 2023,
258:106483.
[107] WANG J, LI Y J, LU L, et al. Polystyrene microplastics cause tissue
damages, sex-specific reproductive disruption and
transgenerational effects in marine medaka(Oryzias melastigma)[J].
Environmental Pollution, 2019, 254:113024.
[108] ZHU M R, WANG H R, HAN F X, et al. Polyethylene microplastics
cause apoptosis via the miR-132/CAPN axis and inflammation in
carp ovarian[J]. Aquatic Toxicology, 2023, 265:106780.
[109] QIANG L Y, CHENG J P. Exposure to polystyrene microplastics
impairs gonads of zebrafish(Danio rerio)[J]. Chemosphere, 2021,
263:128161.
[110] LEMOINE C M R, KELLEHER B M, LAGARDE R, et al.
Transcriptional effects of polyethylene microplastics ingestion in
developing zebrafish(Danio rerio)[J]. Environmental Pollution,
2018, 243:591-600.
[111] XIANG C D, CHEN H B, LIU X L, et al. UV-aged microplastics
induces neurotoxicity by affecting the neurotransmission in larval
zebrafish[J]. Chemosphere, 2023, 324:138252.
[112] BARBOZA L G A, VIEIRA L R, BRANCO V, et al. Microplastics
cause neurotoxicity, oxidative damage and energy-related changes
and interact with the bioaccumulation of mercury in the European
seabass, Dicentrarchus labrax (Linnaeus, 1758) [J]. Aquatic
Toxicology, 2018, 195:49-57.
[113] MARTíNEZ-VICENTE V, CLARK J R, CORRADI P, et al.
Measuring marine plastic debris from space:initial assessment of
observation requirements[J]. Remote Sensing, 2019, 11(20):2443.
[114] MNYORO M S, MUNUBI R N, PEDERSEN L F, et al. Evaluation of
biofilter performance with alternative local biomedia in pilot scale
recirculating aquaculture systems[J]. Journal of Cleaner Production,
2022, 366:132929.
(責(zé)任編輯:李丹)