摘要:喹諾酮類抗生素(Quinolones,QNs)以其廣譜抗菌特性被廣泛應(yīng)用于醫(yī)療、農(nóng)業(yè)及養(yǎng)殖業(yè)。隨著使用量的持續(xù)增加,QNs在多種環(huán)境介質(zhì)中被頻繁檢出,已成為水域生態(tài)環(huán)境面臨的長(zhǎng)期且持續(xù)性風(fēng)險(xiǎn)因子。長(zhǎng)期的QNs選擇壓力誘導(dǎo)抗生素抗性基因(Antibiotic resistant genes,ARGs)的產(chǎn)生與積累,同時(shí)耐藥細(xì)菌群體在水環(huán)境中不斷遷移、擴(kuò)散和增殖,進(jìn)一步加劇了水域生態(tài)風(fēng)險(xiǎn),其潛在危害遠(yuǎn)超QNs殘留本身。QNs大量使用并經(jīng)地表和地下徑流最終進(jìn)入水生生態(tài)系統(tǒng),使水體和沉積物成為QNs及其ARGs的重要儲(chǔ)存庫(kù),其對(duì)生態(tài)環(huán)境及公共健康構(gòu)成的威脅日益嚴(yán)峻。本文綜述了我國(guó)典型淡水水域中QNs的來(lái)源、遷移轉(zhuǎn)化及賦存特征,探討了QNs及其相關(guān)ARGs對(duì)生態(tài)環(huán)境的潛在風(fēng)險(xiǎn),為進(jìn)一步研究淡水水域中QNs及其ARGs的環(huán)境行為與風(fēng)險(xiǎn)評(píng)估提供理論依據(jù)。
關(guān)鍵詞:喹諾酮類抗生素;淡水水域;遷移轉(zhuǎn)化;賦存水平;抗生素抗性基因
中圖分類號(hào):X52 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1672-2043(2025)03-0580-14 doi:10.11654/jaes.2024-1123
抗生素(Antibiotics)是一類由微生物產(chǎn)生的次級(jí)代謝產(chǎn)物,也可通過(guò)化學(xué)合成或半合成方法人工制備,具有抑制微生物生長(zhǎng)及殺滅微生物的能力。自1928年第一種抗生素——青霉素被發(fā)現(xiàn)以來(lái),它們對(duì)人類健康和生活做出了重要貢獻(xiàn)。按照功能和化學(xué)結(jié)構(gòu)分類,抗生素可分為氨基糖苷類(Aminoglyco?sides)、β-內(nèi)酰胺類(Beta-lactams)、林可酰胺類(Lin?cosamides)、大環(huán)內(nèi)酯類(Macrolides)、多肽類(Peptid?eantibiotics)、喹諾酮類(Quinolones)、磺胺類(Sulfon?amides)、四環(huán)素類(Tetracyclines)、氯霉素類(Chlor?amphenicols)和利福霉素類(Rifamycins)等10大類[1]。其中,喹諾酮類抗生素是應(yīng)用最廣泛的抗生素之一,其通過(guò)干擾拓?fù)洚悩?gòu)酶Ⅳ和DNA旋轉(zhuǎn)酶的功能,阻礙細(xì)菌的DNA復(fù)制、轉(zhuǎn)錄、修復(fù)以及染色體分裂等關(guān)鍵過(guò)程,最終造成細(xì)菌DNA不可逆損傷,從而發(fā)揮抗菌作用[2]。自1962年首個(gè)喹諾酮類藥物——萘啶酸合成以來(lái),又陸續(xù)研制出10余種常用喹諾酮類藥物,根據(jù)其抗菌譜的差異可分為4代,其中第3代和第4代喹諾酮類抗生素應(yīng)用最為廣泛,占全球抗生素市場(chǎng)份額的18%[3]。
喹諾酮類抗生素相較于頭孢類、四環(huán)素類等其他抗生素,具有抗菌譜廣、抗菌效果顯著、安全性高、生產(chǎn)成本低、毒副作用小以及降解速度快等優(yōu)勢(shì),因此被廣泛應(yīng)用于醫(yī)療、農(nóng)業(yè)及養(yǎng)殖業(yè)[4-5]。然而,喹諾酮類抗生素的大量使用以及在生物體內(nèi)吸收不完全的特性,導(dǎo)致其在環(huán)境介質(zhì)和農(nóng)產(chǎn)品中被頻繁檢出[6–8]。進(jìn)入水體的喹諾酮類抗生素在有效抑制病原微生物生長(zhǎng)的同時(shí),也對(duì)有益菌群產(chǎn)生不良影響,改變水域中的微生物群落結(jié)構(gòu),破壞微生態(tài)平衡,并干擾水體中碳、氮、硫等生源元素的地球化學(xué)循環(huán)。此外,喹諾酮類抗生素的長(zhǎng)期殘留可能誘導(dǎo)抗生素抗性基因(Antibiotic resistant genes,ARGs)的產(chǎn)生,ARGs 通過(guò)菌群間傳播與擴(kuò)散,進(jìn)一步威脅生態(tài)環(huán)境及人體健康[9-10]。
為應(yīng)對(duì)上述問(wèn)題,我國(guó)在2022年發(fā)布的《新污染物治理行動(dòng)方案》中,明確將抗生素列為環(huán)境管控重點(diǎn),并強(qiáng)化對(duì)臨床抗菌藥物和獸用抗菌藥的監(jiān)管,進(jìn)一步加強(qiáng)了社會(huì)對(duì)抗生素殘留危害環(huán)境安全和生物健康問(wèn)題的重視,尤其關(guān)注其殘留可能加速耐藥性在環(huán)境中的傳播問(wèn)題[11]。同時(shí),世界衛(wèi)生組織(WHO)也將抗生素耐藥性列為當(dāng)前全球食品安全、人類和動(dòng)物健康的主要挑戰(zhàn)之一。因此,本文系統(tǒng)綜述了我國(guó)典型淡水水域中喹諾酮類抗生素的來(lái)源、分布、遷移轉(zhuǎn)化過(guò)程以及ARGs的生態(tài)風(fēng)險(xiǎn),旨在為評(píng)估喹諾酮類抗生素的潛在生態(tài)風(fēng)險(xiǎn)并制定相應(yīng)干預(yù)措施提供科學(xué)依據(jù)和思路。
1 淡水水域中喹諾酮類抗生素的來(lái)源
1.1 外源輸入
1.1.1 源頭生產(chǎn)廢水排放
制藥廠廢水排放是喹諾酮類抗生素進(jìn)入環(huán)境的主要途徑之一。在喹諾酮類抗生素的生產(chǎn)過(guò)程及過(guò)期藥物處置中會(huì)產(chǎn)生大量廢棄物,但現(xiàn)有的廢水處理工藝僅能去除35%~75%的抗生素成分[12],導(dǎo)致部分抗生素生產(chǎn)企業(yè)排放的廢水和污泥中仍殘留較高濃度的喹諾酮類抗生素,其殘留量甚至可達(dá)到毫克級(jí)別[13-14]。
1.1.2 醫(yī)療及城市污水排放
人類醫(yī)療衛(wèi)生活動(dòng)是喹諾酮類抗生素污染的主要來(lái)源之一[15]。50%~80%的抗生素?zé)o法被人體吸收而以原藥或代謝產(chǎn)物的形式通過(guò)尿液和糞便排出體外[16]。這些排泄物通過(guò)城市排污管道匯入污水處理廠,但由于現(xiàn)有污水處理技術(shù)的局限性,加之抗生素尚未被納入污水排放標(biāo)準(zhǔn),部分抗生素未能完全去除,最終直接排放到水環(huán)境中。
1.1.3 畜禽養(yǎng)殖業(yè)藥物投入和廢物排放
喹諾酮類抗生素作為人畜共用藥物,不僅被廣泛用于防治動(dòng)物細(xì)菌性疾病,還被制成促生長(zhǎng)劑添加到飼料中[17-18]。因此,在畜禽養(yǎng)殖過(guò)程中會(huì)產(chǎn)生并排放大量含喹諾酮類抗生素的廢水和動(dòng)物排泄物。尤其在農(nóng)村地區(qū),這些廢棄物通常被用作土壤肥料,并通過(guò)雨水沖刷、地表徑流以及地下水循環(huán)等途徑最終進(jìn)入水體環(huán)境,顯著增加淡水環(huán)境中的抗生素負(fù)荷。
1.2 內(nèi)源輸入
集約化水產(chǎn)養(yǎng)殖的高密度放養(yǎng)模式容易導(dǎo)致水生生物疾病頻發(fā),為防治養(yǎng)殖生物的細(xì)菌性感染,喹諾酮類抗生素被大量使用。然而,水產(chǎn)養(yǎng)殖環(huán)境中的抗生素殘留問(wèn)題已被廣泛關(guān)注。例如,在天津近郊的養(yǎng)殖區(qū),表層水和沉積物中均檢測(cè)到喹諾酮類抗生素殘留,其最高檢出量分別達(dá)26.80 μg·L-1和65.11 ng·g-1 [19]。此外,由于水產(chǎn)養(yǎng)殖場(chǎng)通常靠近河流、湖泊等水體,其抗生素殘留對(duì)周邊地表水環(huán)境的潛在影響更加顯著。
綜上所述,我國(guó)淡水水域中喹諾酮類抗生素的污染主要來(lái)源于陸地外源輸入(包括制藥廢水、醫(yī)療廢水及畜禽養(yǎng)殖廢物)和水產(chǎn)養(yǎng)殖的內(nèi)源輸入(圖1)。其中,制藥廢水和城市污水因抗生素濃度較高且去除難度較大,是主要的污染來(lái)源;而畜禽和水產(chǎn)養(yǎng)殖中抗生素的使用和排放,則進(jìn)一步加劇了淡水環(huán)境中的污染負(fù)荷。因此,為了減少喹諾酮類抗生素的環(huán)境污染,亟需加強(qiáng)抗生素管理、優(yōu)化污水處理工藝,并嚴(yán)格控制農(nóng)業(yè)和水產(chǎn)養(yǎng)殖中的抗生素濫用。
2 淡水水域環(huán)境中喹諾酮類抗生素的環(huán)境行為
喹諾酮類抗生素進(jìn)入淡水環(huán)境后,會(huì)經(jīng)歷遷移、吸附、擴(kuò)散、降解等一系列過(guò)程,并在水相和沉積物之間進(jìn)行動(dòng)態(tài)分配。這些環(huán)境行為不僅決定了喹諾酮類抗生素的生態(tài)歸趨,也對(duì)水生生物及微生物群落構(gòu)成了潛在風(fēng)險(xiǎn)(圖2)。
2.1 遷移、擴(kuò)散及水?沉積物分配機(jī)制
2.1.1 水環(huán)境中遷移與擴(kuò)散
喹諾酮類抗生素的遷移受水流動(dòng)力學(xué)、物理化學(xué)特性和環(huán)境因素(pH、溶解性、顆粒物濃度)等多種因素的影響。在流動(dòng)性較差的池塘、湖泊和水庫(kù)等靜水環(huán)境中,由于具有強(qiáng)烈的顆粒和膠體吸附能力[20-21],喹諾酮類抗生素更容易在水體-沉積物界面積累并向底部沉降。研究發(fā)現(xiàn)珠江口養(yǎng)殖區(qū)沉積物中喹諾酮類抗生素的檢出率和種類顯著高于水體環(huán)境,這表明沉積物不僅是水域環(huán)境中喹諾酮類抗生素的重要儲(chǔ)存庫(kù),更可能成為潛在的污染源[22]。相比之下,在河流等水流速度較快的環(huán)境中,喹諾酮類抗生素更容易隨懸浮顆粒物遷移并在下游區(qū)域富集。例如,松花江監(jiān)測(cè)數(shù)據(jù)顯示,在松花江干流和3條支流中均有喹諾酮類抗生素的檢出,且3條支流中檢測(cè)到的抗生素質(zhì)量濃度顯著高于干流各斷面,導(dǎo)致支流匯入口下游斷面抗生素濃度呈增加趨勢(shì)[23]。
2.1.2 水?沉積物系統(tǒng)中的吸附及分配
喹諾酮類抗生素在淡水環(huán)境中的歸趨行為主要受水-沉積物分配機(jī)制影響,涉及吸附、沉降、解吸和再釋放等過(guò)程。
吸附作用包括物理吸附和化學(xué)吸附兩種形式:物理吸附是通過(guò)范德華力、靜電作用等非化學(xué)鍵作用實(shí)現(xiàn)的,而化學(xué)吸附則是喹諾酮類抗生素分子中的羧基、氨基、羥基等活性基團(tuán)與顆粒物表面結(jié)合(如絡(luò)合、氫鍵和π?π相互作用)的過(guò)程[24–26]。吸附作用決定了喹諾酮類抗生素在水體中的遷移能力和持久性,主要受分配系數(shù)(Kd)、環(huán)境因素(pH、溫度、離子強(qiáng)度和溶解性有機(jī)物等)以及沉積物礦物組成等因素影響。研究表明,喹諾酮類抗生素的Kd值較高,更傾向于吸附在沉積物上[27]。同時(shí),Kd在空間上呈現(xiàn)顯著差異性,這表明沉積物理化性質(zhì)和水文因素也是影響喹諾酮類抗生素分配行為的重要因素[28]。
環(huán)境條件對(duì)吸附行為的影響尤為顯著。例如,在酸性條件下,喹諾酮類抗生素主要以陽(yáng)離子形式存在,更容易與沉積物表面的負(fù)電荷結(jié)合;而在較高pH條件下,抗生素主要以陰離子形式存在,可能因靜電排斥力導(dǎo)致其從沉積物中重新釋放進(jìn)入水相[29]。此外,離子強(qiáng)度降低或水體擾動(dòng)等環(huán)境變化也可能引起沉積物中吸附的抗生素被重新釋放,導(dǎo)致“二次污染”[28]。研究還發(fā)現(xiàn),沉積物中的腐殖質(zhì)和有機(jī)碳會(huì)顯著影響喹諾酮類抗生素的吸附能力,而高鹽度或高溶解性有機(jī)物可能促進(jìn)其從沉積物中解吸[30]。
2.2 降解機(jī)制及相互作用
喹諾酮類抗生素在淡水環(huán)境中的降解主要通過(guò)水解(Hydrolysis)、光解(Photodegradation)和微生物降解(Biodegradation),它們相互影響并決定了喹諾酮類抗生素的環(huán)境持久性和生態(tài)風(fēng)險(xiǎn)。
2.2.1 水解
水解是喹諾酮類抗生素在環(huán)境中的主要降解途徑之一,其速率受pH、溫度、金屬離子等因素的顯著影響。喹諾酮類抗生素在水中通常以陽(yáng)離子、陰離子或兩性離子形態(tài)存在,不同pH條件下其官能團(tuán)的質(zhì)子化或去質(zhì)子化狀態(tài)會(huì)發(fā)生顯著變化,從而影響水解速率[31-32]。例如,研究發(fā)現(xiàn)喹諾酮類抗生素以兩性離子形態(tài)存在時(shí)的水解速率最快:諾氟沙星的水解速率隨著pH升高而顯著增加,pH為3時(shí)諾氟沙星的水降速率最小,pH為11時(shí)最為顯著[33];鹽酸環(huán)丙沙星在pH為9的水體中降解速率最快,而當(dāng)pH為3時(shí)最為穩(wěn)定[34]。溫度也是影響喹諾酮類抗生素水解速率的關(guān)鍵因素,其速率隨著水溫升高而加快[35-36]。此外,喹諾酮類抗生素的水降速率還與其水溶性、揮發(fā)性和吸附性等特性密切相關(guān)[37]。
2.2.2 光解
光解是喹諾酮類抗生素在淺水區(qū)和表層水體中的主要降解途徑。水體中的抗生素在陽(yáng)光照射下吸收能量后進(jìn)入激發(fā)態(tài),隨后引發(fā)光氧化、光氯化和光水解等一系列化學(xué)反應(yīng)[38-39]。光解速率受光照強(qiáng)度、波長(zhǎng)、無(wú)機(jī)離子、溶解性有機(jī)物(腐殖質(zhì))和金屬離子等因素的影響[40],此外,光敏劑作為誘發(fā)抗生素光降解的關(guān)鍵催化劑,對(duì)降解速率也具有顯著影響[41-42]。在漁業(yè)水域中,紫外線輻射較強(qiáng)的表層水中喹諾酮類抗生素的光解速率較快,而沉積物中的抗生素因光照不足,降解速率顯著降低。腐殖質(zhì)和金屬離子可能通過(guò)激發(fā)自由基促進(jìn)光解。
2.2.3 微生物降解及與其他降解途徑的協(xié)同作用
微生物降解是喹諾酮類抗生素在淡水環(huán)境中去除的關(guān)鍵過(guò)程,通過(guò)羥基化、脫氟、脫氧、脫水、去甲基化和側(cè)鍵裂解等一系列生物轉(zhuǎn)化反應(yīng)降解抗生素,從而降低其環(huán)境持久性和毒性。其效率受菌群組成、環(huán)境條件和底物濃度等因素的顯著影響。目前,已經(jīng)篩選出能夠降解喹諾酮類抗生素的細(xì)菌,包括微桿菌屬、蒼白桿菌屬、葡萄球菌屬、嗜熱菌屬等[43]。通過(guò)優(yōu)化培養(yǎng)條件,能夠顯著提高某些微生物的降解效率。例如,微桿菌屬菌株Microbacterium sp. QL 能夠在30 ℃、pH 7的條件下,經(jīng)過(guò)216 h,降解45.6%的初始濃度為100 mg·L-1 的諾氟沙星[44];另一種菌株Micro?bacterium sp. 4N2-2 可以通過(guò)羥基化、氧化脫氟、脫乙基化和N-乙?;到庵Z氟沙星[45]。嗜熱菌Thermussp. C419 對(duì)喹諾酮類抗生素也有較好的降解效果,在70 ℃的高溫條件下,抗生素濃度越高,降解速率越快[46]。白腐真菌被證實(shí)能夠通過(guò)木質(zhì)素改性酶和胞外酶的非特異性酶系統(tǒng)對(duì)喹諾酮類抗生素進(jìn)行礦化降解,將其轉(zhuǎn)化為二氧化碳和水,從而實(shí)現(xiàn)高效降解[47]。值得注意的是,混合菌群的降解效果通常優(yōu)于單一菌株[48]。例如,水過(guò)濾器中的微生物菌群能夠有效降解水環(huán)境中的環(huán)丙沙星,28 d后去除率可達(dá)89%,其中鐵銹桿菌屬和白桿菌屬是主要的優(yōu)勢(shì)菌屬[45]。此外,已有研究表明,抗生素光降解產(chǎn)物可以進(jìn)一步增強(qiáng)微生物降解效果,形成一種協(xié)同降解效應(yīng)[49]。
在不同水體環(huán)境中,不同降解途徑的貢獻(xiàn)率存在顯著差異。在湖泊和水庫(kù)中,光解作用較弱,微生物降解是主要去除機(jī)制;而在河流環(huán)境中,水流稀釋和微生物降解共同主導(dǎo)喹諾酮類抗生素的去除過(guò)程。盡管喹諾酮類抗生素在水體中可以降解,但由于環(huán)境中的持續(xù)輸入,它們?nèi)员憩F(xiàn)出“假持久性”而長(zhǎng)時(shí)間存在于淡水水域環(huán)境中[50]。這種持久性不僅增加了抗生素對(duì)水生生物的潛在風(fēng)險(xiǎn),還可能誘導(dǎo)ARGs的傳播,加劇生態(tài)風(fēng)險(xiǎn)。
3 淡水水域中喹諾酮類抗生素的賦存水平
近年來(lái),喹諾酮類抗生素在全球范圍內(nèi)的水環(huán)境中均有檢測(cè)到,即使是人跡罕至的南極洲地區(qū)也不能幸免[51]。通過(guò)對(duì)已有報(bào)道的我國(guó)典型淡水水域中喹諾酮類抗生素的統(tǒng)計(jì)分析發(fā)現(xiàn),氧氟沙星、諾氟沙星、恩諾沙星和環(huán)丙沙星是檢出率最高的抗生素種類(表1)。以長(zhǎng)江下游江蘇段為例,該區(qū)域流經(jīng)南京、鎮(zhèn)江、揚(yáng)州、無(wú)錫、蘇州等經(jīng)濟(jì)發(fā)達(dá)城市,受到工業(yè)廢水、城市污水、農(nóng)業(yè)面源和水產(chǎn)養(yǎng)殖尾水排放的顯著影響,水體中喹諾酮類抗生素殘留濃度較高,最高濃度可達(dá)2 717.31 ng·L-1 [52];而石家莊位于華北平原,是我國(guó)重要的工業(yè)城市,同樣面臨嚴(yán)重的工業(yè)廢水、城市污水和農(nóng)業(yè)面源排放問(wèn)題,由于該地區(qū)年降水量遠(yuǎn)低于長(zhǎng)江下游流域,水體自凈能力較弱,喹諾酮類抗生素在水體中的殘留濃度也較高,水體中最高可達(dá)1 674.97ng·L-1,沉積物中最高可達(dá)1 300 ng·g-1 [28,53]。
喹諾酮類抗生素不僅可以通過(guò)攝食被水生生物吸收,也可以通過(guò)魚鰓或體表直接從水體中吸收[69],而消費(fèi)者食用含有抗生素殘留的水產(chǎn)品可能面臨一定的健康風(fēng)險(xiǎn)。研究表明,喹諾酮類抗生素在水產(chǎn)品中的殘留水平因地區(qū)和品種而異。例如,越南水產(chǎn)品中喹諾酮類抗生素的殘留濃度(4~4 000 ng·g-1)[70]gt;我國(guó)(ND~984 ng·g-1)[71]gt;阿根廷(ND~97.89 ng·g-1)[72]gt;意大利(0.84~3.59 ng·g-1)[73]。恩諾沙星、諾氟沙星、環(huán)丙沙星和氧氟沙星是喹諾酮類抗生素在水產(chǎn)品中常見(jiàn)的殘留種類(表2)。
4 淡水水域中喹諾酮類ARGs的特征
ARGs作為水環(huán)境中的重要污染物,具有遺傳性和水平轉(zhuǎn)移的生物學(xué)特性,相比于抗生素本身更容易在環(huán)境微生物群落之間遷移和傳播,并長(zhǎng)期存留在環(huán)境中。因此,逐年增加的耐藥菌和ARGs嚴(yán)重威脅著生態(tài)環(huán)境安全和人類健康。喹諾酮類ARGs的來(lái)源可分為外源輸入與內(nèi)源激活兩大類。外源輸入主要源自醫(yī)療、制藥、畜禽養(yǎng)殖和水產(chǎn)養(yǎng)殖中抗生素的廣泛使用,經(jīng)廢水排放、污水處理和沉積物釋放等途徑進(jìn)入環(huán)境,導(dǎo)致水體中ARGs的大量富集[84–86]。研究表明,城市污水處理工藝雖然能去除大部分耐藥菌群和抗性基因,但仍有2.77×104 CFU·mL-1的耐藥細(xì)菌和3.98×104 copies·mL-1的喹諾酮類ARGs通過(guò)處理后的污水進(jìn)入自然環(huán)境[87]。內(nèi)源激活則是指在抗生素污染壓力誘導(dǎo)環(huán)境微生物中潛在ARGs的表達(dá),加速ARGs的傳播與積累[88],進(jìn)一步加劇水體的耐藥性風(fēng)險(xiǎn)。
4.1 喹諾酮類ARGs的分布特征
喹諾酮類ARGs在我國(guó)典型淡水水域環(huán)境中廣泛存在,包括洞庭湖、鄱陽(yáng)湖、黃浦江、沂河、渭河、太湖、珠江等(表3),其中qnrA、qnrB 和qnrS 是主要的抗性基因,在水體和沉積物中的檢出率和豐度均處于較高水平。喹諾酮類ARGs分布特征受污染源類型、土地利用模式及人類活動(dòng)的影響,尤其水產(chǎn)養(yǎng)殖和污水排放等區(qū)域被認(rèn)為是水體抗生素和抗性基因的主要潛在來(lái)源。徐慕等[89]利用宏基因組學(xué)高通量測(cè)序技術(shù),在上海市沙田湖養(yǎng)殖區(qū)及周邊水體中共檢測(cè)出46種喹諾酮類ARGs和5種耐藥機(jī)制,水體平均豐度高達(dá)60 553 read·L-1;在太湖流域,qnrB、qnrS 和aac(6 ′)-Ib 喹諾酮類ARGs在地表水及來(lái)源于畜禽、人類等的抗性大腸桿菌中被廣泛檢測(cè)出,表明該水域內(nèi)ARGs的廣泛傳播與畜禽養(yǎng)殖和人類活動(dòng)密切相關(guān),受污染源排放驅(qū)動(dòng)明顯[90]。珠江三角洲地區(qū)是我國(guó)經(jīng)濟(jì)最發(fā)達(dá)的地區(qū)之一,同時(shí)也是水產(chǎn)養(yǎng)殖、制藥工業(yè)、城市污水排放最為集中的區(qū)域,其水體和沉積物樣本中均檢測(cè)到了qnrA、qnrD 和qnrS 的殘留,水體中ARGs污染水平高于沉積物,但沉積物可作為長(zhǎng)期ARGs儲(chǔ)存庫(kù),反映水環(huán)境中ARGs的累積和遷移特征[91]。對(duì)沂河水體進(jìn)行監(jiān)測(cè),結(jié)果顯示有qnrB 抗性基因的殘留,且市區(qū)段部分樣品中qnrB 的豐度更高,說(shuō)明人為活動(dòng)和污水排放等對(duì)喹諾酮類ARGs污染起主導(dǎo)作用[92]。
喹諾酮類ARGs的豐度受季節(jié)、環(huán)境因子和污染源輸入影響,表現(xiàn)出顯著的空間和時(shí)間變化特征。以東洞庭湖流域?yàn)槔?,陳金明等[93]采用實(shí)時(shí)熒光定量PCR技術(shù),分別對(duì)豐水期和枯水期的沉積物樣品進(jìn)行檢測(cè),結(jié)果顯示豐水期喹諾酮類qnrS 抗性基因豐度要高出枯水期一個(gè)數(shù)量級(jí),可能是因?yàn)樨S水期沉積物的溫度和營(yíng)養(yǎng)物質(zhì)濃度等條件更適合微生物的生長(zhǎng)和繁殖。而在鄱陽(yáng)湖流域的地表水和地下水樣品中檢測(cè)到qnrA 和qnrB 喹諾酮類ARGs的殘留,特別是在農(nóng)業(yè)和水產(chǎn)養(yǎng)殖活動(dòng)較多的流域西部地區(qū)[94]。此外,在尼泊爾加德滿都谷地的河流中也檢測(cè)到抗性基因qnrA 和qnrS(檢出率為66.67%)[95]。與我國(guó)淡水水域相比,該區(qū)域環(huán)境中喹諾酮類ARGs豐度整體較高,且波動(dòng)范圍更廣,這可能與不同污染源的輸入以及環(huán)境條件的多樣性密切相關(guān)。這些研究均表明了工業(yè)廢水、城市污水、農(nóng)業(yè)面源污染和養(yǎng)殖尾水排放等是驅(qū)動(dòng)ARGs擴(kuò)散的主要因素,對(duì)水生生態(tài)系統(tǒng)的安全構(gòu)成潛在風(fēng)險(xiǎn)。
4.2 喹諾酮類AGRs的傳播及生態(tài)風(fēng)險(xiǎn)
喹諾酮類AGRs[如qnr、qac、aac(6 ′)-Ib-cr]主要以胞內(nèi)抗性基因(Intracellular ARGs,iARGs)和胞外抗性基因(Extracellular ARGs,eARGs)兩種形式存在[97]。iARGs通常位于抗生素抗性細(xì)菌的細(xì)胞內(nèi),能夠通過(guò)垂直基因轉(zhuǎn)移傳播(Vertical gene transfer,VGT)至后代,或者通過(guò)水平基因轉(zhuǎn)移(Horizontalgene transfer,HGT)傳遞給其他物種[98]。其中,HGT是ARGs在環(huán)境中傳播的主要機(jī)制,包括質(zhì)粒轉(zhuǎn)導(dǎo)、轉(zhuǎn)化及拼接等移動(dòng)遺傳元件的傳播[99–100]。而eARGs則通常來(lái)源于活細(xì)菌分泌釋放或細(xì)菌死亡裂解,以游離DNA 的形式釋放到環(huán)境中,并吸附在沉積物或土壤顆粒上,在環(huán)境中長(zhǎng)期穩(wěn)定存留,也可通過(guò)轉(zhuǎn)化作用進(jìn)入其他細(xì)菌體內(nèi),使其獲得抗生素抗性[101–102]。喹諾酮類ARGs 的產(chǎn)生與細(xì)菌感染防治和養(yǎng)殖投入中喹諾酮類抗生素的過(guò)度使用密切相關(guān)。工業(yè)廢水、城市污水、農(nóng)業(yè)用水和養(yǎng)殖尾水排放等人為活動(dòng)也為喹諾酮類ARGs 的富集與傳播提供了條件[103]。喹諾酮類ARGs 的傳播在淡水水域環(huán)境中受多種環(huán)境因子(溫度、pH、鹽度、金屬離子)的共同調(diào)控。適宜的溫度可促進(jìn)抗性質(zhì)粒的HGT 過(guò)程[104];pH 也對(duì)ARGs 的水平轉(zhuǎn)移具有調(diào)節(jié)作用,酸性環(huán)境通常促進(jìn)其轉(zhuǎn)移,而堿性環(huán)境則可能表現(xiàn)為抑制作用[105];鹽度的變化則通過(guò)改變微生物群落結(jié)構(gòu),影響ARGs的分布,特別是在河口和開放水域,鹽度的變化會(huì)打破ARGs的VGT 平衡,并具有季節(jié)性差異[106]。此外,沉積物、納米材料、離子液體和農(nóng)藥等非抗生素化學(xué)品的存在也會(huì)加快喹諾酮類ARGs全球同化和傳播過(guò)程[107–110]。
喹諾酮類ARGs 的傳播不僅誘導(dǎo)細(xì)菌耐藥性產(chǎn)生,還會(huì)通過(guò)消除缺乏抵抗力的物種來(lái)改變水體微生物群落的結(jié)構(gòu)和功能[111–112],對(duì)生態(tài)系統(tǒng)功能和生物健康造成多重影響。隨著時(shí)間的推移ARGs 會(huì)在沉積物中富集,進(jìn)一步加劇耐藥性傳播[113]。研究表明,混養(yǎng)模式池塘的沉積物中ARGs 的豐度要顯著高于非混養(yǎng)模式池塘[114],同時(shí)喹諾酮類ARGs的存在削弱了抗生素治療效果,增加了水產(chǎn)動(dòng)物疾病暴發(fā)的風(fēng)險(xiǎn)。在利用智利鮭魚進(jìn)行藥敏試驗(yàn)過(guò)程中發(fā)現(xiàn)其對(duì)喹諾酮類抗生素具有更高的耐藥性[115–117]。此外,ARGs可能通過(guò)食物鏈向魚類、鳥類乃至人類等更高營(yíng)養(yǎng)級(jí)的生物傳遞,增加人群暴露風(fēng)險(xiǎn)[118–119]。
喹諾酮類抗生素的持續(xù)使用不僅推動(dòng)耐藥菌的增殖,還通過(guò)VGT和HGT過(guò)程使ARGs廣泛傳播,影響非靶標(biāo)生物的健康,并改變生態(tài)系統(tǒng)功能。因此,在抗生素污染防控中,應(yīng)將ARGs的生態(tài)風(fēng)險(xiǎn)納入環(huán)境管理體系,并加強(qiáng)生態(tài)毒理學(xué)研究,以評(píng)估其對(duì)水生生態(tài)系統(tǒng)的長(zhǎng)期影響。
5 展望
喹諾酮類抗生素污染問(wèn)題在我國(guó)典型淡水水域中表現(xiàn)尤為突出,人口、農(nóng)業(yè)生產(chǎn)、城市化狀況和經(jīng)濟(jì)發(fā)展對(duì)喹諾酮類抗生素的分布具有關(guān)鍵影響。隨著抗生素使用量的增加,水體和沉積物已成為抗生素及其ARGs的主要存儲(chǔ)庫(kù),并對(duì)生態(tài)系統(tǒng)和食品安全構(gòu)成潛在威脅。加之由于新藥物研發(fā)的滯后性,喹諾酮類抗生素在未來(lái)較長(zhǎng)時(shí)間內(nèi)仍是農(nóng)業(yè)生產(chǎn)中防治疾病的關(guān)鍵藥物。因此,在合理和科學(xué)使用抗生素的前提下,未來(lái)需要圍繞以下幾個(gè)方向開展深入研究。
(1)加強(qiáng)抗生素的使用監(jiān)管:建立抗生素使用追蹤與溯源系統(tǒng),解析抗生素在“投入品-產(chǎn)地環(huán)境-養(yǎng)殖過(guò)程”中的消長(zhǎng)變化規(guī)律及危害形成機(jī)制,強(qiáng)化農(nóng)業(yè)、畜牧業(yè)、水產(chǎn)養(yǎng)殖業(yè)抗生素使用的精細(xì)化管理;制定抗生素排放標(biāo)準(zhǔn),明確養(yǎng)殖廢水、醫(yī)藥工業(yè)廢水和城市污水的抗生素濃度限制。
(2)提升污水處理效率:促進(jìn)污水處理廠技術(shù)升級(jí),推廣高級(jí)氧化技術(shù)(AOPs)、膜生物反應(yīng)器(MBR)、活性炭吸附等高效去除抗生素的方法;同時(shí),在農(nóng)業(yè)和畜禽養(yǎng)殖廢水處理中,鼓勵(lì)使用人工濕地、生物膜反應(yīng)器等生態(tài)友好型技術(shù),降低抗生素的環(huán)境負(fù)荷。
(3)構(gòu)建抗生素生態(tài)風(fēng)險(xiǎn)評(píng)估體系:建立全國(guó)抗生素污染監(jiān)測(cè)網(wǎng)絡(luò),對(duì)重點(diǎn)污染水域進(jìn)行長(zhǎng)期監(jiān)測(cè),結(jié)合大數(shù)據(jù)分析和環(huán)境建模,建立抗生素“源-徑-匯”過(guò)程的精準(zhǔn)定量和動(dòng)態(tài)預(yù)測(cè),搭建基于人工智能技術(shù)的抗生素智慧預(yù)警管理平臺(tái),優(yōu)化水環(huán)境管理決策。
(4)推動(dòng)綠色替代方案:推廣抗生素替代品,如益生菌、植物提取物、酶制劑等,提高水產(chǎn)養(yǎng)殖和畜牧業(yè)的健康養(yǎng)殖水平;加快抗生素替代技術(shù)的研發(fā),鼓勵(lì)低抗生素或無(wú)抗生素養(yǎng)殖模式,減少環(huán)境污染風(fēng)險(xiǎn)。
(5)政府、科研機(jī)構(gòu)和產(chǎn)業(yè)界應(yīng)通力合作,在環(huán)境管理、技術(shù)創(chuàng)新和政策優(yōu)化等方面形成合力,確保我國(guó)水環(huán)境質(zhì)量的長(zhǎng)期安全和可持續(xù)發(fā)展。
參考文獻(xiàn):
[1] BEN Y J, FU C X, HU M, et al. Human health risk assessment of
antibiotic resistance associated with antibiotic residues in the
environment:a review[J]. Environmental Research, 2019, 169:483-493.
[2] 張石云, 宋超, 陳家長(zhǎng). 喹諾酮類抗生素在水產(chǎn)養(yǎng)殖中應(yīng)用的研究
進(jìn)展[J]. 江蘇農(nóng)業(yè)科學(xué), 2019, 47(3):32-36. ZHANG S Y, SONG
C, CHEN J Z. Research progress of application of quinolones
antibacterial drugs in aquaculture[J]. Jiangsu Agricultural Sciences,
2019, 47(3):32-36.
[3] 龍泉鑫, 何穎, 謝建平. 喹諾酮類藥物作用的生理和遺傳的分子機(jī)
制[J]. 藥學(xué)學(xué)報(bào), 2012, 47(8):969-977. LONG Q X, HE Y, XIE J
P. The molecular physiological and genetic mechanisms underlying the
superb efficacy of quinolones[J]. Acta Pharmaceutica Sinica, 2012, 47
(8):969-977.
[4] 吳小梅, 林茂, 鄢慶枇, 等. 美洲鰻鱺及其養(yǎng)殖水體分離耐藥菌的多
樣性和耐藥性分析[J]. 水產(chǎn)學(xué)報(bào), 2015, 39(7):1043-1053. WU X
M, LIN M, YAN Q P, et al. Diversity and antimicrobial susceptibility of
drug-resistant bacteria isolated from Anguilla rostrata and the farming
water[J]. Journal of Fisheries of China, 2015, 39(7):1043-1053.
[5] 黃婕, 薛詠蘭, 徐洪, 等. 貴陽(yáng)市場(chǎng)常見(jiàn)淡水魚體內(nèi)氟喹諾酮類抗生
素殘留調(diào)查[J]. 環(huán)境與健康雜志, 2017, 34(2):139-141. HUANG
J, XUE Y L, XU H, et al. Residual levels of fluoroquinolones in
freshwater fish from aquatic products markets in Guiyang[J]. Journal of
Environment and Health, 2017, 34(2):139-141.
[6] KUMAR R R, LEE J T, CHO J Y. Fate, occurrence, and toxicity of
veterinary antibiotics in environment[J]. Journal of the Korean Society
for Applied Biological Chemistry, 2012, 55(6):701-709.
[7] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of
antibiotics emission and fate in the river basins of China:source
analysis, multimedia modeling, and linkage to bacterial resistance[J].
Environmental Science amp; Technology, 2015, 49(11):6772-6782.
[8] KLEIN E Y, VAN BOECKEL T P, MARTINEZ E M, et al. Global
increase and geographic convergence in antibiotic consumption
between 2000 and 2015[J]. PNAS, 2018, 115(15):E3463-E3470.
[9] Environmental chemicals, the human microbiome, and health risk:a
research strategy[M]. Washington D.C:National Academies Press, 2018.
[10] 賈斌, 庾旸, 馬海川, 等. 我國(guó)長(zhǎng)三角地區(qū)淡水池塘養(yǎng)殖水產(chǎn)品中
抗生素殘留及對(duì)人體暴露的貢獻(xiàn)評(píng)價(jià)[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),
2022, 41(2):238-245. JIA B, YU Y, MA H C, et al. Antibiotic
residues and human exposure evaluation in freshwater aquaculture
products from Yangtze River Delta, China[J]. Journal of Agro -
Environment Science, 2022, 41(2):238-245.
[11] 高會(huì), 李冰, 姚子偉. 海洋環(huán)境中抗生素存在與環(huán)境行為研究進(jìn)展
[J]. 環(huán)境化學(xué), 2023, 42(3):779-791. GAO H, LI B, YAO Z W.
Advances in research on the presence and environmental behavior of
antibiotics in the marine environment[J]. Environmental Chemistry,
2023, 42(3):779-791.
[12] GUO R X, XIE X D, CHEN J Q. The degradation of antibiotic
amoxicillin in the Fenton-activated sludge combined system[J].
Environmental Technology, 2015, 36(7):844-851.
[13] 楊炯彬, 黃爭(zhēng), 趙建亮, 等. 我國(guó)典型制藥廠污染場(chǎng)地中抗生素的
污染特征及生態(tài)風(fēng)險(xiǎn)[J]. 環(huán)境科學(xué), 2024, 45(2):1004-1014.
YANG J B, HUANG Z, ZHAO J L, et al. Contamination
characteristics and ecological risk of antibiotics in contaminated sites
of typical pharmaceutical factories in China[J]. Environmental
Science, 2024, 45(2):1004-1014.
[14] LI S, SHI W Z, LIU W, et al. A duodecennial national synthesis of
antibiotics in China′s major rivers and seas(2005—2016)[J]. Science
of the Total Environment, 2018, 615:906-917.
[15] CHEN H Y, LI Y Z, SUN W C, et al. Characterization and source
identification of antibiotic resistance genes in the sediments of an
interconnected river-lake system[J]. Environment International, 2020,
137:105538.
[16] LI J, ZHOU L T, ZHANG X Y, et al. Bioaerosol emissions and
detection of airborne antibiotic resistance genes from a wastewater
treatment plant[J]. Atmospheric Environment, 2016, 124:404-412.
[17] 胡雯桉, 沈城, 孫慧倫, 等. 抗生素與抗性基因在畜禽養(yǎng)殖中的環(huán)
境影響及生態(tài)風(fēng)險(xiǎn)[J]. 華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2024
(6):151-160. HU W A, SHEN C, SUN H L, et al. Environmental
impacts and ecological risks of antibiotics and resistance genes in
livestock and poultry farming[J]. Journal of East China Normal
University(Natural Science), 2024(6):151-160.
[18] ADEGBEYE M J, ADETUYI B O, IGIRIGI A I, et al. Comprehensive
insights into antibiotic residues in livestock products:distribution,
factors, challenges, opportunities, and implications for food safety and
public health[J]. Food Control, 2024, 163:110545.
[19] 阮悅斐, 陳繼淼, 郭昌勝, 等. 天津近郊地區(qū)淡水養(yǎng)殖水體的表層
水及沉積物中典型抗生素的殘留分析[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),
2011, 30(12):2586-2593. RUAN Y F, CHEN J M, GUO C S, et al.
Distribution characteristics of typical antibiotics in surface water and
sediments from freshwater aquaculture water in Tianjin suburban
areas, China[J]. Journal of Agro-Environment Science, 2011, 30(12):
2586-2593.
[20] WANG Y J, SUN R J, XIAO A Y, et al. Phosphate affects the
adsorption of tetracycline on two soils with different characteristics[J].
Geoderma, 2010, 156(3/4):237-242.
[21] JECHALKE S, HEUER H, SIEMENS J, et al. Fate and effects of
veterinary antibiotics in soil[J]. Trends in Microbiology, 2014, 22(9):
536-545.
[22] 陳畇岐. 珠江口河島養(yǎng)殖區(qū)抗生素和殺蟲劑的污染特征、輸入途
徑及潛在風(fēng)險(xiǎn)[D]. 廣州:暨南大學(xué), 2020. CHEN Y Q.
Occurrence, distribution, and potential risk of antibiotics and
pesticides in freshwater aquaculture farms of an urbanized island,
south China[D]. Guangzhou:Jinan University, 2020.
[23] 楊尚樂(lè), 王旭明, 王偉華, 等. 松花江哈爾濱段及阿什河抗生素的
分布規(guī)律與生態(tài)風(fēng)險(xiǎn)評(píng)估[J]. 環(huán)境科學(xué), 2021, 42(1):136-146.
YANG S L, WANG X M, WANG W H, et al. Distribution and
ecological risk assessment of antibiotics in the Songhua River basin of
the Harbin section and Ashe River[J]. Environmental Science, 2021,
42(1):136-146.
[24] SUN Y, WANG X J, XIA S Q, et al. New insights into oxytetracycline
(OTC) adsorption behavior on polylactic acid microplastics
undergoing microbial adhesion and degradation[J]. Chemical
Engineering Journal, 2021, 416:129085.
[25] ZHANG Y, NI F, HE J S, et al. Mechanistic insight into different
adsorption of norfloxacin on microplastics in simulated natural water
and real surface water[J]. Environmental Pollution, 2021, 284:
117537.
[26] 趙曉東, 喬青青, 秦宵睿, 等. 近15年我國(guó)土壤抗生素污染特征與
生物修復(fù)研究進(jìn)展[J]. 環(huán)境科學(xué), 2023, 44(7):4059 - 4076.
ZHAO X D, QIAO Q Q, QIN X R, et al. Characteristics of antibiotic
contamination of soil in China in past fifteen years and the
bioremediation technology:a review[J]. Environmental Science, 2023,
44(7):4059-4076.
[27] LI S, SHI W Z, LI H M, et al. Antibiotics in water and sediments of
rivers and coastal area of Zhuhai City, Pearl River estuary, south
China[J]. Science of the Total Environment, 2018, 636:1009-1019.
[28] 劇澤佳, 付雨, 趙鑫宇, 等. 喹諾酮類抗生素在城市典型水環(huán)境中
的分配系數(shù)及其主要環(huán)境影響因子[J]. 環(huán)境科學(xué), 2022, 43(9):
4543 - 4555. JU Z J, FU Y, ZHAO X Y, et al. Distribution
coefficient of QNs in urban typical water and its main environmental
influencing factors[J]. Environmental Science, 2022, 43(9):4543-
4555.
[29] ZHANG H, LIU F F, WANG S C, et al. Sorption of fluoroquinolones
to nanoplastics as affected by surface functionalization and solution
chemistry[J]. Environmental Pollution, 2020, 262:114347.
[30] ATUGODA T, WIJESEKARA H, WERELLAGAMA D R I B, et al.
Adsorptive interaction of antibiotic ciprofloxacin on polyethylene
microplastics: implications for vector transport in water[J].
Environmental Technology amp; Innovation, 2020, 19:100971.
[31] 孔慧敏, 楊四福, 遲寶明, 等. 喹諾酮類抗生素在水環(huán)境中降解和
吸附影響因素[J]. 科學(xué)技術(shù)與工程, 2021, 21(3):1196 - 1201.
KONG H M, YANG S F, CHI B M, et al. Factors influencing the
degradation and absorption of quinolone antibiotics in aqueous
environment[J]. Science Technology and Engineering, 2021, 21(3):
1196-1201.
[32] 孫廣大, 蘇仲毅, 陳猛, 等. 固相萃取-超高壓液相色譜-串聯(lián)質(zhì)譜
同時(shí)分析環(huán)境水樣中四環(huán)素類和喹諾酮類抗生素[J]. 色譜, 2009,
27(1):54-58. SUN G D, SU Z Y, CHEN M, et al. Simultaneous
determination of tetracycline and quinolone antibiotics in
environmental water samples using solid phase extraction - ultra
pressure liquid chromatography coupled with tandem mass
spectrometry[J]. Chinese Journal of Chromatography, 2009, 27(1):
54-58.
[33] 張力媛. 喹諾酮類抗生素檢測(cè)方法的優(yōu)化及其在水中光解、水解
特性研究[D]. 長(zhǎng)春:吉林農(nóng)業(yè)大學(xué), 2016. ZHANG L Y.
Optimization of quinolone antibiotics detection method and in water
photolysis and hydrolysis characteristics research[D]. Changchun:
Jilin Agricultural University, 2016.
[34] 李霞, 陳菊芳, 聶湘平, 等. 鹽酸環(huán)丙沙星在不同模擬水體中的降
解與殘留[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 49(3):102-106.
LI X, CHEN J F, NIE X P, et al. Degradation and residue of
ciprofloxacin in different simulated water bodies[J]. Acta Scientiarum
Naturalium Universitatis Sunyatseni, 2010, 49(3):102-106.
[35] LOFTIN K A, ADAMS C D, MEYER M T, et al. Effects of ionic
strength, temperature, and pH on degradation of selected antibiotics
[J]. Journal of Environmental Quality, 2008, 37(2):378-386.
[36] MITCHELL S M, ULLMAN J L, TEEL A L, et al. pH and temperature
effects on the hydrolysis of three β - lactam antibiotics:ampicillin,
cefalotin and cefoxitin[J]. Science of the Total Environment, 2014,
466:547-555.
[37] BUENO I, HE H, KINSLEY A C, et al. Biodegradation, photolysis,
and sorption of antibiotics in aquatic environments:a scoping review
[J]. Science of the Total Environment, 2023, 897:165301.
[38] LIAO Y, TANG X M, YANG Q Q, et al. Characterization of an
inorganic polymer coagulant and coagulation behavior for humic acid/
algae-polluted water treatment:polymeric zinc–ferric–silicate–sulfate
coagulant[J]. RSC Advances, 2017, 7(32):19856-19862.
[39] 張成鈺. 四環(huán)素類抗生素在水體中的光降解及毒性變化研究[D]. 石
河子:石河子大學(xué), 2020. ZHANG C Y. Study on photodegradation
and toxicity of tetracycline antibiotics in water[D]. Shihezi:Shihezi
University, 2020.
[40] 代志峰, 邰超, 張少棟, 等. 天然水體溶解性物質(zhì)對(duì)5種抗生素光
解的影響[J]. 中國(guó)環(huán)境科學(xué), 2018, 38(6):2273-2282. DAI Z F,
TAI C, ZHANG S D, et al. Influence of dissolved substances in
natural water on the photolysis of five antibiotics[J]. China
Environmental Science, 2018, 38(6):2273-2282.
[41] 張爽. 冰中和水中典型抗生素光降解動(dòng)力學(xué)及其影響因素的比較
研究[D]. 大連:大連海事大學(xué), 2020. ZHANG S. Photodegradation
of typical antibiotics in ice and in water:kinetic comparison, and
effects of main aqueous constituents[D]. Dalian:Dalian Maritime
University, 2020.
[42] 東天, 馬溪平, 王聞燁, 等. 抗生素光降解研究進(jìn)展[J]. 環(huán)境科學(xué)與
技術(shù), 2014, 37(增刊1):108-113. DONG T, MA X P, WANG W
Y, et al. Research progress on photodegradation of antibiotics[J].
Environmental Science amp; Technology, 2014, 37(Suppl 1):108-113.
[43] 顧昌祺. 微生物降解喹諾酮類抗生素的研究進(jìn)展[J]. 山東化工,
2023, 52(4):100-103. GU C Q. Research progress of microbial
degradation of quinolone antibiotics[J]. Shandong Chemical Industry,
2023, 52(4):100-103.
[44] 楊敏. 17α-乙炔基雌二醇、諾氟沙星高效降解菌的篩選及降解特
性研究[D]. 濟(jì)南:濟(jì)南大學(xué), 2016. YANG M. Study on screening of
highly degradation bacteria with high efficiency and the degradation
characteristics about 17a-ethynylestradiol and norfloxacin[D]. Jinan:
University of Jinan, 2016.
[45] KIM D W, HEINZE T M, KIM B S, et al. Modification of norfloxacin
by a Microbacterium sp. strain isolated from a wastewater treatment
plant[J]. Applied and Environmental Microbiology, 2011, 77(17):
6100-6108.
[46] 潘蘭佳, 李杰, 李春星, 等. 嗜熱棲熱菌降解氟喹諾酮類抗生素[J].
環(huán)境工程學(xué)報(bào), 2020, 14(4):1092-1102. PAN L J, LI J, LI C X,
et al. Biodegradation of fluoroquinolones by Thermus thermophilus[J].
Chinese Journal of Environmental Engineering, 2020, 14(4):1092-
1102.
[47] SELVAM A, XU D L, ZHAO Z Y, et al. Fate of tetracycline,
sulfonamide and fluoroquinolone resistance genes and the changes in
bacterial diversity during composting of swine manure[J]. Bioresource
Technology, 2012, 126:383-390.
[48] 喻嬌. 環(huán)丙沙星(CIP)降解菌群馴化及降解特性初步研究[D]. 廣
州:暨南大學(xué), 2017. YU J. Domestication of CIP - degrading
bacterial consortium and preliminary study on their degradation
characteristics[D]. Guangzhou:Jinan University, 2017.
[49] DING R, YAN W F, WU Y, et al. Light-excited photoelectrons
coupled with bio-photocatalysis enhanced the degradation efficiency
of oxytetracycline[J]. Water Research, 2018, 143:589-598.
[50] 趙富強(qiáng), 高會(huì), 李瑞婧, 等. 環(huán)渤海區(qū)域典型河流下游水體中抗生
素賦存狀況及風(fēng)險(xiǎn)評(píng)估[J]. 中國(guó)環(huán)境科學(xué), 2022, 42(1):109-118.
ZHAO F Q, GAO H, LI R J, et al. Occurrences and risk assessment of
antibiotics in water bodies of major rivers in Bohai rim basin[J]. China
Environmental Science, 2022, 42(1):109-118.
[51] HERNáNDEZ F, CAL?STO-ULLOA N, GóMEZ-FUENTES C, et al.
Occurrence of antibiotics and bacterial resistance in wastewater and
sea water from the antarctic[J]. Journal of Hazardous Materials, 2019,
363:447-456.
[52] WANG N, WANG N, QI D, et al. Comprehensive overview of
antibiotic distribution, risk and priority:a study of large-scale
drinking water sources from the lower Yangtze River[J]. Journal of
Environmental Management, 2023, 344:118705.
[53] 劇澤佳, 趙鑫宇, 陳慧, 等. 石家莊市水環(huán)境中喹諾酮類抗生素的
空間分布特征與環(huán)境風(fēng)險(xiǎn)評(píng)估[J]. 環(huán)境科學(xué)學(xué)報(bào), 2021, 41(12):
4919-4931. JU Z J, ZHAO X Y, CHEN H, et al. The characteristics
of spatial distribution and environmental risk assessment for
quinolones antibiotics in the aquatic environment of Shijiazhuang City
[J]. Acta Scientiae Circumstantiae, 2021, 41(12):4919-4931.
[54] 王志芳, 雷燕, 肖俊, 等. 廣西羅非魚主產(chǎn)區(qū)養(yǎng)殖池塘抗生素殘留
狀況分析[J]. 南方農(nóng)業(yè)學(xué)報(bào), 2019, 50(4):891-897. WANG Z F,
LEI Y, XIAO J, et al. Residue status of antibiotics in aquaculture
ponds of main Tilapia aquaculture areas in Guangxi[J]. Journal of
Southern Agriculture, 2019, 50(4):891-897.
[55] 李文最, 陳高水, 鄭艷影, 等. 閩江流域福州段水體中抗生素殘留
污染調(diào)查[J]. 實(shí)用預(yù)防醫(yī)學(xué), 2018, 25(12):1455-1458. LI W Z,
CHEN G S, ZHENG Y Y, et al. Contamination profiles of antibiotics
residues in water bodies of the Fuzhou section of the Minjiang River
[J]. Practical Preventive Medicine, 2018, 25(12):1455-1458.
[56] 宋圓夢(mèng), 趙波, 盧夢(mèng)淇, 等. 白洋淀典型抗生素的源解析及其特定
源風(fēng)險(xiǎn)評(píng)估[J]. 環(huán)境科學(xué), 2023, 44(9):4927-4940. SONG Y M,
ZHAO B, LU M Q, et al. Source apportionment and source-specific
risk of typical antibiotics in Baiyangdian Lake[J]. Environmental
Science, 2023, 44(9):4927-4940.
[57] 張慧, 郭文建, 劉紹麗, 等. 南四湖和東平湖表層水體中抗生素污染特
征和風(fēng)險(xiǎn)評(píng)價(jià)[J]. 環(huán)境化學(xué), 2020, 39(12):3279-3287. ZHANG H,
GUO W J, LIU S L, et al. Contamination characteristics and risk
assessment of antibiotics in surface water of Nansi Lake and Dongping
Lake[J]. Environmental Chemistry, 2020, 39(12):3279-3287.
[58] 龔潤(rùn)強(qiáng), 趙華珒, 高占啟, 等. 駱馬湖及主要入湖河流表層水體中
抗生素的賦存特征及風(fēng)險(xiǎn)評(píng)價(jià)[J]. 環(huán)境科學(xué), 2022, 43(3):1384-
1393. GONG R Q, ZHAO H J, GAO Z Q, et al. Occurrence
characteristics and risk assessment of antibiotics in the surface water
of Luoma Lake and its main inflow rivers[J]. Environmental Science,
2022, 43(3):1384-1393.
[59] WANG C, MAO Y J, ZHOU W Q, et al. Inhomogeneous antibiotic
distribution in sediment profiles in anthropogenically impacted lakes:
source apportionment, fate drivers, and risk assessment[J]. Journal of
Environmental Management, 2023, 341:118048.
[60] ZHANG H, OUYANG W, LIN C Y, et al. Anthropogenic activities
drive the distribution and ecological risk of antibiotics in a highly
urbanized river basin[J]. Science of the Total Environment, 2024, 938:
173596.
[61] 任嬌陽(yáng). 北京市潮白河流域抗生素污染分布與風(fēng)險(xiǎn)評(píng)估[D]. 北
京:北京交通大學(xué), 2021. REN J Y. Distribution and risk assessment
of antibiotic contamination in Chaobai River basin, Beijing[D].
Beijing:Beijing Jiaotong University, 2021.
[62] GAO H, ZHAO F Q, LI R J, et al. Occurrence and distribution of
antibiotics and antibiotic resistance genes in water of Liaohe River
basin, China[J]. Journal of Environmental Chemical Engineering,
2022, 10(5):108297.
[63] 丁劍楠, 劉舒嬌, 鄒杰明, 等. 太湖表層水體典型抗生素時(shí)空分布
和生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[J]. 環(huán)境科學(xué), 2021, 42(4):1811-1819. DING J
N, LIU S J, ZOU J M, et al. Spatiotemporal distributions and
ecological risk assessments of typical antibiotics in surface water of
Taihu Lake[J]. Environmental Science, 2021, 42(4):1811-1819.
[64] 宋冉冉. 東洞庭湖及濱湖區(qū)抗生素及抗性基因的多介質(zhì)賦存與源
分析[D]. 北京:北京化工大學(xué), 2021. SONG R R. Multimedia
occurrence and source analysis of antibiotics and antibiotic resistance
genes in east Dongting Lake and lakeside areas[D]. Beijing:Beijing
University of Chemical Technology, 2021.
[65] KERRIGAN J F, SANDBERG K D, ENGSTROM D R, et al.
Sedimentary record of antibiotic accumulation in Minnesota Lakes[J].
Science of the Total Environment, 2018, 621:970-979.
[66] KERRIGAN J F, SANDBERG K D, ENGSTROM D R, et al. Small
and large-scale distribution of four classes of antibiotics in sediment:
association with metals and antibiotic resistance genes[J].
Environmental Science Processes amp; Impacts, 2018, 20(8):1167-1179.
[67] DUONG H A, PHUNG T V, NGUYEN T N, et al. Occurrence,
distribution, and ecological risk assessment of antibiotics in selected
urban lakes of Hanoi, Vietnam[J]. Journal of Analytical Methods in
Chemistry, 2021, 2021(1):6631797.
[68] FERNANDES M J, PAíGA P, SILVA A, et al. Antibiotics and
antidepressants occurrence in surface waters and sediments collected
in the north of Portugal[J]. Chemosphere, 2020, 239:124729.
[69] 農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局, 中國(guó)水產(chǎn)科學(xué)研究院, 全國(guó)水產(chǎn)技
術(shù)推廣總站. 水產(chǎn)養(yǎng)殖用藥明白紙2022 年1、2 號(hào)[Z]. 2022.
Ministry of Agriculture and Rural Affairs, Fisheries Administration,
China Academy of Fishery Sciences, National Fishery Technology
Promotion Station. Aquaculture drug bulletin 2022, No.1, 2[Z]. 2022.
[70] UCHIDA K, KONISHI Y, HARADA K, et al. Monitoring of antibiotic
residues in aquatic products in urban and rural areas of Vietnam[J].
Journal of Agricultural and Food Chemistry, 2016, 64(31):6133-
6138.
[71] 貝亦江, 周欽, 周以琳, 等. 2018—2019年浙江省養(yǎng)殖水產(chǎn)品中6
種喹諾酮類藥物殘留分析及風(fēng)險(xiǎn)評(píng)估[J]. 食品安全質(zhì)量檢測(cè)學(xué)
報(bào), 2021, 12(5):2011-2017. BEI Y J, ZHOU Q, ZHOU Y L, et al.
Analysis and risk assessment of 6 quinolones residues in aquatic
products in Zhejiang Province from 2018 to 2019[J]. Journal of Food
Safety amp; Quality, 2021, 12(5):2011-2017.
[72] GRIBOFF J, CARRIZO J C, BONANSEA R I, et al. Multiantibiotic
residues in commercial fish from Argentina. The presence of mixtures
of antibiotics in edible fish, a challenge to health risk assessment[J].
Food Chemistry, 2020, 332:127380.
[73] CHIESA L M, NOBILE M, MALANDRA R, et al. Occurrence of
antibiotics in mussels and clams from various FAO areas[J]. Food
Chemistry, 2018, 240:16-23.
[74] 黃志英, 何軍. 江西省淡水魚蝦中喹諾酮類藥物殘留量的調(diào)查分
析[J]. 中國(guó)衛(wèi)生檢驗(yàn)雜志, 2022, 32(18):2286-2288. HUANG Z
Y, HE J. Investigation and analysis of quinolone residues in
freshwater fish and shrimp in Jiangxi Province[J]. Chinese Journal of
Health Laboratory Technology, 2022, 32(18):2286-2288.
[75] 吳延燦, 唐茜, 商魯寧, 等. 超高效液相色譜-串聯(lián)質(zhì)譜法檢測(cè)魚肉
中48 種抗生素[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào), 2024, 15(15):234-
242. WU Y C, TANG Q, SHANG L N, et al. Determination of 48
kinds of antibiotics in fish muscle by ultra performance liquid
chromatography-tandem mass spectrometry[J]. Journal of Food Safety
amp; Quality, 2024, 15(15):234-242.
[76] 柴麗月, 柳海, 梁芹芹, 等. 寧波市水產(chǎn)品中氟喹諾酮類藥物殘留
現(xiàn)狀分析及對(duì)策[J]. 檢驗(yàn)檢疫學(xué)刊, 2020, 30(1):25-27. CHAI L
Y, LIU H, LIANG Q Q, et al. Analysis and countermeasures of
residual fluoroquinolones in aquatic products in Ningbo[J]. Journal of
Inspection and Quarantine, 2020, 30(1):25-27.
[77] LIU S S, BEKELE T G, ZHAO H X, et al. Bioaccumulation and tissue
distribution of antibiotics in wild marine fish from Laizhou Bay, north
China[J]. Science of the Total Environment, 2018, 631:1398-1405.
[78] HUANG L L, MO Y M, WU Z Q, et al. Occurrence, distribution, and
health risk assessment of quinolone antibiotics in water, sediment,
and fish species of Qingshitan reservoir, south China[J]. Scientific
Reports, 2020, 10(1):15777.
[79] 劉少穎, 黃希匯, 胡柯君, 等. 杭州市動(dòng)物性食品中喹諾酮類抗生
素殘留水平及安全性評(píng)價(jià)[J]. 中國(guó)衛(wèi)生檢驗(yàn)雜志, 2018, 28(18):
2280-2282. LIU S Y, HUANG X H, HU K J, et al. Residual level
and safety assessment of quinolone antibiotics in animal food in
Hangzhou[J]. Chinese Journal of Health Laboratory Technology, 2018,
28(18):2280-2282.
[80] 金銀銀. 白洋淀區(qū)水產(chǎn)品中新污染物的殘留分布及健康風(fēng)險(xiǎn)評(píng)價(jià)
[D]. 杭州:浙江農(nóng)林大學(xué), 2024. JIN Y Y. Residual distributions
and health risk assessment of emerging contaminants in aquatic
products from Baiyangdian Lake[D]. Hangzhou:Zhejiang Aamp;F
University, 2024.
[81] 李少能. 廣州市番禺區(qū)淡水養(yǎng)殖水產(chǎn)品中氟喹諾酮類藥物殘留現(xiàn)
狀分析及對(duì)策[J]. 江西水產(chǎn)科技, 2023(4):51-54. LI S N.
Residual status and countermeasures of fluoroquinolone antibiotics in
freshwater aquaculture products in Panyu district, Guangzhou[J].
Jiangxi Fishery Science and Technology, 2023(4):51-54.
[82] 衛(wèi)瑾瑾, 鹿塵, 張正堯, 等. 河南省2019—2020年動(dòng)物源性食品中
喹諾酮類抗生素殘留的監(jiān)測(cè)分析及健康風(fēng)險(xiǎn)評(píng)估[J]. 中國(guó)衛(wèi)生檢
驗(yàn)雜志, 2022, 32(9):1138-1141. WEI J J, LU C, ZHANG Z Y, et
al. Analysis of monitoring results and health risk assessment of
quinolone antibiotic residues in animal - derived food from 2019 to
2020 in Henan Province[J]. Chinese Journal of Health Laboratory
Technology, 2022, 32(9):1138-1141.
[83] 徐文珍, 倪承珠, 郝偉, 等. 臺(tái)州市養(yǎng)殖水產(chǎn)品中喹諾酮類殘留分
析及評(píng)價(jià)[J]. 中國(guó)衛(wèi)生檢驗(yàn)雜志, 2022, 32(3):382-385. XU W
Z, NI C Z, HAO W, et al. Residual analysis and risk evaluation of
quinolone antibiotics in aquatic products in Taizhou City[J]. Chinese
Journal of Health Laboratory Technology, 2022, 32(3):382-385.
[84] ZHOU S, ZHU Y J, YAN Y, et al. Deciphering extracellular antibiotic
resistance genes(eARGs) in activated sludge by metagenome[J].
Water Research, 2019, 161:610-620.
[85] JIA J, CHENG M Q, XUE X, et al. Characterization of tetracycline
effects on microbial community, antibiotic resistance genes and
antibiotic resistance of Aeromonas spp. in gut of goldfish Carassius
auratus Linnaeus[J]. Ecotoxicology and Environmental Safety, 2020,
191:110182.
[86] CHEN J, XIA H, HUANG K, et al. Earthworms restructure the
distribution of extracellular antibiotics resistance genes of sludge by
modifying the structure of extracellular polymeric substances during
vermicomposting[J]. Journal of Hazardous Materials, 2023, 452:
131315.
[87] 李超, 魯建江, 童延斌, 等. 喹諾酮抗性基因在城市污水處理系統(tǒng)
中的分布及去除[J]. 環(huán)境工程學(xué)報(bào), 2016, 10(3):1177-1183. LI
C, LU J J, TONG Y B, et al. Removal of quinolone resistance bacteria
and corresponding resistance genes in a conventional municipal
sewage treatment plant[J]. Chinese Journal of Environmental
Engineering, 2016, 10(3):1177-1183.
[88] XU N H, QIU D Y, ZHANG Z Y, et al. A global atlas of marine
antibiotic resistance genes and their expression[J]. Water Research,
2023, 244:120488.
[89] 徐慕, 李世豪, 馬巾, 等. 上海沙田湖養(yǎng)殖區(qū)及周邊水體中氟喹諾
酮類抗性基因的分布特征及其與環(huán)境因子關(guān)系[J]. 環(huán)境科學(xué),
2021, 42(12):5848 - 5856. XU M, LI S H, MA J, et al.
Investigation on fluoroquinolone resistance genes in the intensive
aquaculture area of Shatianhu intensive aquiculture farm and
surrounding waterbodies in Shanghai, China[J]. Environmental
Science, 2021, 42(12):5848-5856.
[90] ZHANG S H, LV X Y, HAN B, et al. Prevalence of antibiotic
resistance genes in antibiotic-resistant Escherichia coli isolates in
surface water of Taihu Lake basin, China[J]. Environmental Science
and Pollution Research International, 2015, 22(15):11412-11421.
[91] SU H C, LIU S, HU X J, et al. Occurrence and temporal variation of
antibiotic resistance genes(ARGs) in shrimp aquaculture:args
dissemination from farming source to reared organisms[J]. Science of
the Total Environment, 2017, 607:357-366.
[92] 苗強(qiáng), 王宇飛, 段瑞欣, 等. 沂河市區(qū)段抗生素抗性基因特征分析[J].
水產(chǎn)養(yǎng)殖, 2024, 45(10):26-31. MIAO Q, WANG Y F, DUAN R X,
et al. Analysis of the antibiotic resistance gene characteristics of Yihe
in the urban area[J]. Journal of Aquaculture, 2024, 45(10):26-31.
[93] 陳金明, 盧少勇, 葛飛, 等. 東洞庭湖表層沉積物中抗生素及抗性
基因的時(shí)空分異特征[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2024, 41(3):697-
705. CHEN J M, LU S Y, GE F, et al. Spatio - temporal
differentiation of antibiotic and antibiotic resistance genes in surface
sediments of East Dongting Lake basin[J]. Journal of Agricultural
Resources and Environment, 2024, 41(3):697-705.
[94] 劉淼. 鄱陽(yáng)湖周邊水體抗生素抗性基因與細(xì)菌群落相關(guān)性及潛在
宿主分析[D]. 撫州:東華理工大學(xué), 2023. LIU M. Correlation
between antibiotic resistance genes and bacterial communities and
analysis of potential hosts in water around Poyang Lake[D]. Fuzhou:
East China Institute of Technology, 2023.
[95] AMARASIRI M, TAKEZAWA T, MALLA B, et al. Prevalence of
antibiotic resistance genes in drinking and environmental water
sources of the Kathmandu Valley, Nepal[J]. Frontiers in Microbiology,
2022, 13:894014.
[96] 趙婉婷, 黃智峰, 郭雪萍, 等. 太湖周邊飲用水處理廠中抗生素抗
性基因污染分布特征[J]. 環(huán)境化學(xué), 2020, 39(12):3271-3278.
ZHAO W T, HUANG Z F, GUO X P, et al. Pollution and distribution
characteristics of antibiotic resistance genes in drinking water
treatment plants around Taihu Lake[J]. Environmental Chemistry,
2020, 39(12):3271-3278.
[97] YU P, DONG P Y, ZOU Y N, et al. Effect of pH on the mitigation of
extracellular / intracellular antibiotic resistance genes and antibiotic
resistance pathogenic bacteria during anaerobic fermentation of swine
manure[J]. Bioresource Technology, 2023, 373:128706.
[98] 李十盛, 高會(huì), 趙富強(qiáng), 等. 水產(chǎn)養(yǎng)殖環(huán)境中抗生素抗性基因的研究
進(jìn)展[J]. 中國(guó)環(huán)境科學(xué), 2021, 41(11):5314-5325. LI S S, GAO H,
ZHAO F Q, et al. Research progress on the occurrence and influencing
factors of antibiotic resistance genes in aquaculture environment[J].
China Environmental Science, 2021, 41(11):5314-5325.
[99] GROUSSIN M, POYET M, SISTIAGA A, et al. Elevated rates of
horizontal gene transfer in the industrialized human microbiome[J].
Cell, 2021, 184(8):2053-2067.
[100] YANG C D, WU T Y. A comprehensive review on quinolone
contamination in environments: current research progress[J].
Environmental Science and Pollution Research International, 2023,
30(17):48778-48792.
[101] GONZáLEZ-PLAZA J J, ?IMATOVI? A, MILAKOVI? M, et al.
Functional repertoire of antibiotic resistance genes in antibiotic
manufacturing effluents and receiving freshwater sediments[J].
Frontiers in Microbiology, 2017, 8:2675.
[102] LIU M M, HATA A, KATAYAMA H, et al. Consecutive
ultrafiltration and silica adsorption for recovery of extracellular
antibiotic resistance genes from an urban river[J]. Environmental
Pollution, 2020, 260:114062.
[103] MIRANDA C D, CONCHA C, GODOY F A, et al. Aquatic
environments as hotspots of transferable low-level quinolone
resistance and their potential contribution to high-level quinolone
resistance[J]. Antibiotics, 2022, 11(11):1487.
[104] 李千偉. 近岸海洋環(huán)境中典型抗生素抗性污染特征與傳播規(guī)律
[D]. 上海:上海海洋大學(xué), 2018. LI Q W. Resistance pollution
characteristics and diffusion pattern of typical antibiotics in the
coastal marine environment[D]. Shanghai:Shanghai Ocean University,
2018.
[105] HUANG H N, CHEN Y G, ZHENG X, et al. Distribution of
tetracycline resistance genes in anaerobic treatment of waste sludge:
the role of pH in regulating tetracycline resistant bacteria and
horizontal gene transfer[J]. Bioresource Technology, 2016, 218:
1284-1289.
[106] LU Z H, NA G S, GAO H, et al. Fate of sulfonamide resistance genes
in estuary environment and effect of anthropogenic activities[J].
Science of the Total Environment, 2015, 527:429-438.
[107] YE C S, FENG M B, CHEN Y Q, et al. Dormancy induced by
oxidative damage during disinfection facilitates conjugation of
ARGs through enhancing efflux and oxidative stress:a lagging
response[J]. Water Research, 2022, 221:118798.
[108] 楊會(huì), 崔鵬飛, 汝少國(guó). 新興污染物對(duì)抗生素抗性基因水平轉(zhuǎn)移
的影響[J]. 生態(tài)毒理學(xué)報(bào), 2024, 19(4):71-87. YANG H, CUI P
F, RU S G. Effects of emerging pollutants on horizontal transfer of
antibiotic resistance genes[J]. Asian Journal of Ecotoxicology, 2024,
19(4):71-87.
[109] HUO M X, XU X Y, MI K, et al. Co-selection mechanism for
bacterial resistance to major chemical pollutants in the environment
[J]. Science of the Total Environment, 2024, 912:169223.
[110] 苗蓀, 陳磊, 左劍惡. 環(huán)境中抗生素抗性基因豐度與抗生素和重
金屬含量的相關(guān)性分析:基于Web of Science數(shù)據(jù)庫(kù)檢索[J]. 環(huán)
境科學(xué), 2021, 42(10):4925-4932. MIAO S, CHEN L, ZUO J E.
Correlation analysis among environmental antibiotic resistance
genes abundance, antibiotics concentrations, and heavy metals
concentrations based on Web of Science searches[J]. Environmental
Science, 2021, 42(10):4925-4932.
[111] FERRER M, MéNDEZ-GARCíA C, ROJO D, et al. Antibiotic use
and microbiome function[J]. Biochemical Pharmacology, 2017, 134:
114-126.
[112] YANG P S, HAO S G, HAN M Z, et al. Analysis of antibiotic
resistance genes reveals their important roles in influencing the
community structure of ocean microbiome[J]. Science of the Total
Environment, 2022, 823:153731.
[113] YUAN J L, NI M, LIU M, et al. Occurrence of antibiotics and
antibiotic resistance genes in a typical estuary aquaculture region of
Hangzhou Bay, China[J]. Marine Pollution Bulletin, 2019, 138:376-
384.
[114] HUANG L, XU Y B, XU J X, et al. Antibiotic resistance genes
(ARGs)in duck and fish production ponds with integrated or nonintegrated
mode[J]. Chemosphere, 2017, 168:1107-1114.
[115] HENRíQUEZ P, KAISER M, BOHLE H, et al. Comprehensive
antibiotic susceptibility profiling of Chilean Piscirickettsia salmonis
field isolates[J]. Journal of Fish Diseases, 2016, 39(4):441-448.
[116] SAAVEDRA J, HERNANDEZ N, OSSES A, et al. Prevalence,
geographic distribution and phenotypic differences of Piscirickettsia
salmonis EM-90-like isolates[J]. Journal of Fish Diseases, 2017, 40
(8):1055-1063.
[117] DU X C, BAYLISS S C, FEIL E J, et al. Real time monitoring of
Aeromonas salmonicida evolution in response to successive
antibiotic therapies in a commercial fish farm[J]. Environmental
Microbiology, 2019, 21(3):1113-1123.
[118] NNADOZIE C F, ODUME O N. Freshwater environments as
reservoirs of antibiotic resistant bacteria and their role in the
dissemination of antibiotic resistance genes[J]. Environmental
Pollution, 2019, 254:113067.
[119] JARMA D, SáNCHEZ M I, GREEN A J, et al. Faecal microbiota
and antibiotic resistance genes in migratory waterbirds with
contrasting habitat use[J]. Science of the Total Environment, 2021,
783:146872.
(責(zé)任編輯:李丹)