摘要:本文以微塑料污染現(xiàn)狀-遷移行為-與其他污染物相互作用-生態(tài)效應(yīng)為主線,總結(jié)了國內(nèi)外關(guān)于土壤微塑料污染來源、分類等研究進(jìn)展,并針對土壤微塑料遷移途徑及機(jī)制研究進(jìn)行了歸納分析。在此基礎(chǔ)上,系統(tǒng)總結(jié)了微塑料與其他環(huán)境污染物的相互作用機(jī)理,詳述了其可能帶來的生態(tài)風(fēng)險。文章指出:農(nóng)業(yè)源是土壤微塑料的最主要來源,我國不同省份微塑料豐度存在較大差異;土壤理化性質(zhì)、農(nóng)業(yè)生產(chǎn)活動、自然氣候條件、土壤生物活動、微塑料自身性質(zhì)、土壤環(huán)境條件和土壤要素均可影響微塑料在土壤中的遷移行為,并且靜電相互作用是影響土壤微塑料遷移的最主要作用力。此外,在環(huán)境中遷移的微塑料易于通過范德華相互作用、靜電作用和表面絡(luò)合等作用與土壤中其他污染物形成復(fù)合污染,土壤環(huán)境微塑料及其復(fù)合污染會不可避免地接觸到各種土壤生物群,從而影響土壤微生物的群落結(jié)構(gòu)和代謝,并影響土壤動物和植物的生長發(fā)育。
關(guān)鍵詞:土壤;微塑料;環(huán)境行為;遷移;生態(tài)效應(yīng)
中圖分類號:X505;X53 文獻(xiàn)標(biāo)志碼:A 文章編號:1672-2043(2025)03-0537-17 doi:10.11654/jaes.2024-0503
我國塑料制品產(chǎn)量約占全球產(chǎn)量的30%,位居世界首位[1]。塑料產(chǎn)品進(jìn)入自然環(huán)境中,經(jīng)受風(fēng)化、紫外線輻射、生物降解和人類活動等作用后會逐漸分解和破碎產(chǎn)生粒徑更加微小、遷移能力更加強(qiáng)的微塑料。2004 年,Thompson 等在《Science》上提出微塑料的概念后,其引發(fā)的環(huán)境問題,便引起各國科學(xué)家們的高度關(guān)注[2]。微塑料是指直徑小于5 mm的塑料顆粒或碎片,其具有分布廣、粒徑小、化學(xué)性質(zhì)穩(wěn)定、易于被生物體吸收、可攜帶污染物遷移等特點(diǎn),使其易在食物鏈中積累,并最終危害人體健康[3]。大量的微塑料通過灌溉、農(nóng)膜覆蓋、污水污泥、垃圾填埋、大氣沉降等途徑進(jìn)入土壤,對土壤理化性質(zhì)、環(huán)境生物及糧食安全產(chǎn)生了不利影響。此外,由于粒徑較小,微塑料易在土壤中發(fā)生遷移,威脅土壤生物健康,形成生態(tài)風(fēng)險[4]。微塑料表面還能夠吸附并富集土壤污染物,造成更加嚴(yán)重的復(fù)合污染[5]。目前,關(guān)于土壤微塑料污染的相關(guān)問題學(xué)術(shù)界已經(jīng)展開了大量研究,前人在微塑料來源、污染現(xiàn)狀等方面已有總結(jié)。然而在土壤微塑料環(huán)境遷移行為、復(fù)合污染形成機(jī)制和生態(tài)效應(yīng)方面的總結(jié)還缺少系統(tǒng)性。因此,本文在簡述土壤微塑料污染現(xiàn)狀的基礎(chǔ)上,系統(tǒng)歸納了土壤中微塑料的遷移行為、微塑料與復(fù)合污染相互作用機(jī)制及其帶來的生態(tài)效應(yīng)影響,進(jìn)一步論證其在土壤生態(tài)系統(tǒng)中的潛在風(fēng)險,以期為保障土壤生態(tài)系統(tǒng)健康提供依據(jù)。
1 土壤中微塑料污染來源和污染現(xiàn)狀
1.1 土壤中微塑料來源
1.1.1 農(nóng)業(yè)來源
塑料薄膜被廣泛用于農(nóng)業(yè)生產(chǎn),其主要成分為聚氯乙烯和聚乙烯。由于只有不到60%的回收率[6],農(nóng)田覆膜可能是土壤中微塑料最直接、最主要的污染源[7]。我國新疆地區(qū)平均地膜殘留量在200 kg·hm-2以上,而甘肅、山西、內(nèi)蒙古、東北和河北部分地區(qū)平均殘留量大于100 kg·hm-2[8],覆蓋塑料薄膜的土壤中微塑料的含量會顯著高于未覆蓋土壤[9]。農(nóng)業(yè)灌溉也是土壤微塑料累積的原因之一(圖1)。一方面,地表大部分河流、湖泊等可灌溉用水中可檢測到微塑料的存在;另一方面,污灌污水中微塑料濃度可達(dá)1 000~627 000 個·m-3[10],從而可將大量微塑料帶入土壤環(huán)境。農(nóng)田土壤中污泥的投入也會導(dǎo)致微塑料積累。研究發(fā)現(xiàn),每次施用20~22 t·hm-2的污泥可使每千克農(nóng)業(yè)土壤中平均增加280個輕密度微塑料和430個重密度微塑料[11]。此外,在農(nóng)業(yè)生產(chǎn)中會消耗大量的化肥和農(nóng)藥,從而產(chǎn)生大量的廢棄塑料包裝物。2018年我國化肥包裝廢棄物達(dá)15萬t,2019年農(nóng)藥廢棄包裝達(dá)1×1010個[12],這些塑料制品絕大部分會被丟棄在農(nóng)田附近,并經(jīng)老化磨損分解為微塑料,最終進(jìn)入土壤環(huán)境(圖1)。
1.1.2 其他來源
大氣沉降和雨水徑流沖刷也是土壤微塑料的來源(圖1)。監(jiān)測數(shù)據(jù)發(fā)現(xiàn)我國上海地區(qū)空氣中每年的微塑料含量為121 kg[13],并且漂浮在空氣中的微塑料會隨著風(fēng)力的作用進(jìn)行遷移,在5個月內(nèi)即可傳播95 km[14],并最終沉降到土壤環(huán)境中。洗面奶、染發(fā)劑、牙膏和各種化妝品等個人護(hù)理品中常會添加塑料微球,這些微塑料大多數(shù)會進(jìn)入污水管網(wǎng),并經(jīng)過污水處理廠處理后隨著污泥施用排放到土壤中[10];個人護(hù)理品中被丟棄的部分則直接暴露于土壤環(huán)境[15]。不僅如此,城市生活垃圾填埋場和農(nóng)村地區(qū)生活垃圾的隨意傾倒也會導(dǎo)致區(qū)域內(nèi)土壤微塑料含量增加[16]。此外,車輛輪胎[17]和飛機(jī)輪胎磨損[18]也是土壤微塑料的來源之一,車輛輪胎磨損產(chǎn)生的全球微塑料排放量預(yù)估為每人每年0.81 kg。由于2019年開始的新冠肺炎大流行,大量廢棄口罩可能成為土壤微塑料的新來源[19]。
1.2 我國土壤微塑料污染現(xiàn)狀
目前全球范圍內(nèi)普遍存在土壤微塑料污染,泛洪區(qū)、沿海濕地、城市公園、工業(yè)區(qū)土壤中都檢測到了微塑料的存在,但微塑料檢出量最大、關(guān)注度最高的還是農(nóng)田土壤?;赪eb of Science 和中國知網(wǎng)(CNKI)數(shù)據(jù)庫,查詢了2019—2023年間發(fā)表的關(guān)于我國土壤微塑料豐度的學(xué)術(shù)論文,有關(guān)研究數(shù)量增長較快,已成為研究的熱點(diǎn)和焦點(diǎn)。我國(不包括香港、澳門和臺灣地區(qū))土壤中檢測識別出的微塑料種類包括聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚對苯二甲酸乙二醇酯(PET)、聚酰胺(PA)、人造絲(RY)、乙烯醋酸乙烯共聚物(EVA)和聚乙烯醇(PVAL)等(圖2)。其中PE微塑料分布最廣,尤其是在農(nóng)田土壤中,在現(xiàn)有調(diào)查的所有農(nóng)業(yè)用地中都檢測到了PE 微塑料的存在(圖2),這可能是由農(nóng)業(yè)生產(chǎn)中薄膜的大量使用所致。已有研究證實(shí)微塑料污染嚴(yán)重的地區(qū)通常都會有較長的農(nóng)膜覆蓋歷史[20]。除PE外,PP和PS兩種微塑料的分布也較為廣泛,PE、PP和PS 3種主要微塑料類型在31個省市的檢出比例分別為100%、83%和48%(圖2)。
我國各省份(不包括香港、澳門和臺灣)土壤微塑料豐度有一定差異(圖2)。其中,安徽、云南和廣東3個省份土壤微塑料平均豐度最高(8 000~9 000 個·kg-1),內(nèi)蒙古、青海、廣西、西藏等省份微塑料污染較輕,平均豐度均小于100個·kg-1。此外,同一區(qū)域不同土地利用類型土壤中微塑料豐度差異十分顯著,廣東地區(qū)果樹園林土壤和電子垃圾廠附近土壤微塑料豐度差距最高可達(dá)113倍[21-22]。臨近地區(qū)相同土地利用類型中土壤微塑料豐度差異不顯著,北京和天津溫室大棚中檢測出的微塑料豐度相似,且均為PE和PP微塑料,這表明相鄰地區(qū)數(shù)據(jù)有一定的參考意義。不同土層深度的微塑料豐度不同,淺層農(nóng)田土壤中的微塑料豐度要顯著高于深層土壤[23]。
2 土壤微塑料的遷移行為
2.1 土壤微塑料的遷移途徑
微塑料進(jìn)入土壤環(huán)境后可以發(fā)生橫向或縱向遷移[59]。土壤疏松多孔、帶負(fù)電的特性使得微塑料在淋溶和重力等自然作用下可以通過土壤孔隙向下遷移[60]。翻耕、化肥和有機(jī)投入品的施用、灌溉等農(nóng)業(yè)生產(chǎn)活動也會對土壤中微塑料的遷移行為產(chǎn)生重要影響[58,61]。翻耕這一傳統(tǒng)的農(nóng)田耕作方式能夠促進(jìn)微塑料向更深層的土壤中傳遞,而淺耕、旋耕和耙地則會使得農(nóng)田中的微塑料分散于表面耕作層當(dāng)中[61]。另外,高強(qiáng)度機(jī)械耕作會導(dǎo)致農(nóng)田中殘留地膜破碎,從而顯著影響微塑料遷移[62]。微塑料還會隨著灌溉用水以及降雨沖刷向下遷移,灌溉次數(shù)的增加會加劇這一現(xiàn)象。雖然大孔隙優(yōu)先流中的微塑料可以被孔隙土壤表面捕獲、富集[4];但總的來說,土壤裂縫的形成會加速微塑料通過裂縫向更深層土壤遷移[63]。最近的研究發(fā)現(xiàn)微塑料比土壤中的礦物質(zhì)更容易被微風(fēng)帶入空氣,并且前人研究很可能低估了釋放到空氣中的塑料顆粒的實(shí)際數(shù)量[64],這些微塑料顆粒很可能遷移到較遠(yuǎn)的未被塑料污染的地區(qū),從而實(shí)現(xiàn)土壤中微塑料的跨區(qū)域遷移。
土壤生物(動物、植物、微生物)也會影響微塑料在土壤環(huán)境中的遷移。蚯蚓是微塑料在土壤中的重要遷移媒介,其攝食、排泄等生命活動以及微塑料在其身體表面的附著都會將微塑料向更深層土壤遷移[65-66]。據(jù)報道,聚乙烯微塑料可以通過蚯蚓向下運(yùn)輸?shù)?0 cm深的土壤剖面中,并且粒徑越小的微塑料移動距離越大[61]。生活在土壤中的其他動物,如螞蟻和倉鼠,也會起到類似的作用[67]。此外,一些土壤動物可能會使用微塑料作為筑巢材料,這也會影響土壤環(huán)境中的微塑料遷移[59]。與土壤動物對微塑料縱向遷移的影響不同,植物根系活動更傾向于使微塑料固定在原有土層中[68]。但也有學(xué)者提出了相反的觀點(diǎn),認(rèn)為植物根系在生長過程中會在土壤中形成較大的孔隙,微塑料可以借助這些孔隙向下遷移[4]。小粒徑微塑料容易黏附在細(xì)菌表面或被細(xì)菌吞噬,隨著細(xì)菌的運(yùn)動在小范圍內(nèi)進(jìn)行遷移[69]。微生物還可以改變微塑料的物理性質(zhì),使微塑料的遷移受到影響[70],例如銅綠假單胞菌、乳酸菌等細(xì)菌可附著在微塑料表面,降低其遷移能力[71]。
2.2 土壤環(huán)境中微塑料遷移的微觀機(jī)制
圖3顯示了土壤環(huán)境中微塑料遷移的微觀機(jī)制。微塑料的粒徑大小可以顯著影響其遷移,當(dāng)其粒徑大于土壤臨界孔隙時,微塑料會在土壤中堵塞從而限制遷移[72]。與之相反的是小粒徑微塑料更容易發(fā)生遷移。由于其粒徑小,表面積極大,其與土壤顆粒之間的范德華力作用也會相應(yīng)增強(qiáng),這種增強(qiáng)的范德華力可以使微塑料與土壤顆粒之間形成更緊密的接觸和吸附,進(jìn)而有利于小粒徑微塑料在土壤中的遷移[73]。微塑料形貌也會影響其遷移[74],有研究發(fā)現(xiàn)球狀和粒狀微塑料比纖維狀微塑料更容易遷移到深層土壤,因?yàn)槔w維狀微塑料容易與土壤顆粒發(fā)生纏繞從而形成土塊抑制其遷移[75-76]。此外,微塑料的表面特性,包括官能團(tuán)和疏水性對其遷移也起到了重要作用[77]。研究人員發(fā)現(xiàn)含有COOH與SO-4的微塑料比含有NH2的微塑料更容易通過飽和砂柱,這是由于NH2基團(tuán)與帶負(fù)電的砂柱之間存在著較強(qiáng)的靜電吸引[78]。當(dāng)微塑料表面的化學(xué)性質(zhì)從疏水性轉(zhuǎn)為親水性后,產(chǎn)生的排斥相互作用也能促進(jìn)其遷移[79]。
除微塑料自身性質(zhì)外,土壤環(huán)境條件[離子強(qiáng)度、陽離子類型(單價、雙價以及更高價的陽離子)和pH值等]和土壤要素(土壤有機(jī)質(zhì)和礦物質(zhì)等)也會在不同程度上影響微塑料在土壤中的遷移[72,76]。研究表明離子強(qiáng)度的增加可以顯著抑制微塑料遷移,并且Ca2+的抑制作用顯著高于Na+ [80]。高價離子對雙電子層厚度的壓縮能力更強(qiáng),更容易降低微塑料沉積到土壤固相上的能壘[81]。系統(tǒng)表面電荷也可以顯著影響土壤環(huán)境中微塑料的遷移,各種離子和pH能夠改變微塑料和土壤固相的表面電荷,影響微塑料與土壤之間的靜電相互作用[80]。土壤中大量存在的鐵/鋁氧化物在中性pH條件下可以產(chǎn)生表面正電荷,通過靜電吸引促進(jìn)帶負(fù)電荷的微塑料和鐵鋁礦物的異質(zhì)聚集,抑制微塑料遷移[82-83]。土壤中帶負(fù)電的黏土礦物(如高嶺石、蒙脫石、伊利石等)和微塑料的靜電吸引作用也可抑制微塑料的遷移[84]。此外,土壤有機(jī)質(zhì)對微塑料的遷移影響也不容小覷[85]。有研究發(fā)現(xiàn),由于胡敏酸表面富含大量的羧基和羥基等負(fù)電荷官能團(tuán),其與微塑料吸附后,能夠通過靜電排斥和空間位阻作用促進(jìn)微塑料在土壤環(huán)境中的遷移[86-87]。同時,土壤環(huán)境中胡敏酸濃度與微塑料的遷移能力呈正相關(guān)[87]。生物炭、秸稈和豬糞有機(jī)肥等農(nóng)田投入品釋放的溶解性有機(jī)質(zhì)對不同粒徑微塑料的遷移具有差異性影響,微塑料會與溶解性有機(jī)質(zhì)通過靜電引力、范德華力等相互作用形成微塑料-有機(jī)質(zhì)-鐵礦物復(fù)合物,進(jìn)而導(dǎo)致小粒徑(50 nm)微塑料的沉積,從而降低其遷移能力[85]。
3 微塑料與其他污染物的相互作用
微塑料易與環(huán)境中的其他污染物發(fā)生相互作用(圖4),通過靜電相互作用、疏水相互作用、π-π 相互作用、氫鍵相互作用和表面絡(luò)合、螯合作用等與其他污染物形成復(fù)合污染,間接對土壤生物產(chǎn)生毒害作用[88]。此外,微塑料在遷移過程中更容易與土壤中共存的污染物接觸,通過上述相互作用攜帶其他污染物進(jìn)行遷移,給土壤生態(tài)系統(tǒng)帶來更嚴(yán)重的危害。因此揭示微塑料與土壤中共存污染物的相互作用至關(guān)重要。
3.1 微塑料與重金屬
重金屬被認(rèn)為是可以與微塑料發(fā)生相互作用的最重要和最常見的土壤無機(jī)污染物。微塑料的存在增加了土壤重金屬的遷移能力[89]。微塑料在自然環(huán)境中大部分帶負(fù)電荷,其可與Ni2+、Cu2+和Zn2+等二價金屬離子發(fā)生靜電作用[90]。Pb2+在微塑料上的吸附機(jī)制可能以表面絡(luò)合為主[91];但Cd2+在微塑料上的吸附可能不涉及化學(xué)吸附過程,而是與表面吸附、離子交換和電荷分布有關(guān),不同的表面官能團(tuán)、離子強(qiáng)度、pH均對Cd2+在微塑料上的吸附有重要影響[92]。不同類型的微塑料對重金屬的吸附機(jī)制存在差異[93]。聚苯乙烯微塑料通過官能團(tuán)絡(luò)合吸附Cd2+ [94],而Cu2+通過靜電相互作用被聚乙烯微塑料吸附[95]。此外,微塑料在土壤環(huán)境中的老化會導(dǎo)致其表面官能團(tuán)以及比表面積的變化,并導(dǎo)致陰離子活性位點(diǎn)的形成,從而提高其對土壤中重金屬污染物的吸附[96]。一般來說,微塑料吸附重金屬可分為以下3個步驟:(1)重金屬在微塑料表面薄膜上的擴(kuò)散;(2)重金屬在微塑料表面孔隙內(nèi)的擴(kuò)散;(3)重金屬在微塑料活性位點(diǎn)上的吸附[97]。值得注意的是,微塑料在自然環(huán)境中經(jīng)過長時間紫外線輻射、風(fēng)化、磨損后會顯著提高其表面粗糙度,增加對重金屬的吸附位點(diǎn)[98-99]。微塑料還會與土壤有機(jī)質(zhì)形成復(fù)合膠體[100],從而為金屬離子提供更多的吸附位點(diǎn)[101]。
3.2 微塑料與持久性有機(jī)污染物
目前已在微塑料表面發(fā)現(xiàn)了200多種有機(jī)化合物,其中絕大部分為持久性有機(jī)污染物[102]。微塑料吸附的有機(jī)污染物含量遠(yuǎn)高于土壤背景值[93],并且塑料碎片已被證實(shí)是自然環(huán)境中多環(huán)芳烴的來源和“匯”[103]。微塑料吸附有機(jī)污染物的主要機(jī)理包括疏水相互作用、靜電相互作用和其他非共價相互作用(圖4)。其中,疏水相互作用占據(jù)主導(dǎo)位置,多氯聯(lián)苯、多環(huán)芳烴、多溴聯(lián)苯醚和殺蟲劑等有機(jī)污染物主要通過疏水相互作用吸附在微塑料表面[104],疏水作用的強(qiáng)弱決定有機(jī)污染物的吸附量[105]。例如,研究發(fā)現(xiàn)微塑料中疏水性高的多環(huán)芳烴含量高于有機(jī)氯殺蟲劑(DDTs和HCHs)含量[97]。氫鍵、鹵素鍵和π-π鍵等相互作用在微塑料與有機(jī)污染物之間不可忽視[106-108]。例如,非共價鍵(氫和鹵素鍵)對促進(jìn)有機(jī)污染物在微塑料上的吸附起到了關(guān)鍵作用,其與疏水作用一起抵消了兩種物質(zhì)間的靜電斥力[109]。π-π相互作用主要發(fā)生在苯環(huán)較多的持久性有機(jī)污染物與微塑料之間,典型的例子是多氯聯(lián)苯在聚苯乙烯微塑料上的吸附[110]。烷基和π-π鍵之間的相互作用是烷基和芳香環(huán)之間產(chǎn)生的弱氫鍵,其被認(rèn)為是聚烯烴材料和帶有苯環(huán)的化學(xué)品之間的關(guān)鍵驅(qū)動力[111]。不同類型微塑料對持久性有機(jī)污染物的吸附量存在較大差異。聚氯乙烯比聚乙烯和聚丙烯微塑料吸附全氟辛烷磺酸和全氟辛烷磺酰胺的能力更強(qiáng)[112]。此外,溫度、老化、pH值和含水率等條件也會影響微塑料對有機(jī)污染物的吸附[113]。
3.3 微塑料與塑料源污染物
在塑料制造過程中通常會加入塑料添加劑,其可以與塑料碎片一起釋放到環(huán)境中,引起一系列環(huán)境問題[114]。塑料產(chǎn)品含有約20種添加劑[115],且塑料添加劑的危害遠(yuǎn)大于它們的聚合物,對環(huán)境并最終對人類健康構(gòu)成風(fēng)險。鄰苯二甲酸酯(PAEs)作為常見的增塑劑由于其不與塑料聚合物共價結(jié)合,因此PAEs有可能隨著微塑料浸出和遷移[116]。微塑料會在光、細(xì)菌和靜水壓力的作用下釋放PAEs[117-118]。另外,微塑料可以吸附PAEs[116]。在農(nóng)膜密集覆蓋地區(qū),微塑料與PAEs之間存在顯著的正相關(guān)關(guān)系[119]。微塑料對PAEs的吸附機(jī)理與持久性有機(jī)污染物的吸附機(jī)理大致相同,即疏水相互作用占據(jù)主導(dǎo)位置[120]。不同聚合物疏水性的強(qiáng)弱是吸附持久性有機(jī)污染物的關(guān)鍵因素,聚苯乙烯對PAEs的吸附量最高,其次是聚乙烯,最后是聚氯乙烯[120]。微塑料的粒徑、增塑劑含量、塑料的老化等塑料性能對PAEs的釋放有很大影響[121]。
3.4 微塑料與抗生素/抗生素抗性基因
抗生素在農(nóng)業(yè)和畜牧業(yè)生產(chǎn)中的大量使用,導(dǎo)致其在農(nóng)田土壤環(huán)境中積累[122],真實(shí)土壤環(huán)境中很可能存在微塑料與抗生素的復(fù)合污染[123]。微塑料具有吸附抗生素的能力,其與抗生素的復(fù)合污染對自然環(huán)境構(gòu)成了嚴(yán)重威脅。近年來,國內(nèi)外科學(xué)家的研究逐漸集中在微塑料與抗生素抗性基因之間的相互作用上[124]。與重金屬和持久性有機(jī)污染物相同,疏水相互作用、靜電相互作用和其他非共價相互作用也主導(dǎo)了抗生素/抗生素抗性基因與微塑料的相互作用機(jī)制[125-126]。例如,微塑料可以通過靜電吸引、范德華力和氫鍵吸附來改變四環(huán)素在環(huán)境中的歸趨[125]。微塑料的離子濃度、老化狀況、溫度、極性相互作用都會在不同程度上影響其對抗生素的吸附[127]。經(jīng)過土壤暴露后的微塑料對四環(huán)素的吸附能力明顯增加,聚乳酸、聚氯乙烯和聚乙烯微塑料對四環(huán)素的吸附能力分別提高了88%、26%和15%[128]。微塑料在老化過程中形成的大量含氧基團(tuán)( OH、COOH等)可與土壤孔隙之間的水分子形成氫鍵,從而增強(qiáng)親水抗生素對微塑料的吸附作用[129-130]。微塑料類型也會影響其對抗生素的吸附效果,聚酰胺微塑料與聚乙烯、聚苯乙烯、聚丙烯和聚氯乙烯微塑料相比對抗生素的吸附能力更強(qiáng)[131]。攜帶抗生素抗性基因的細(xì)菌可在土壤環(huán)境中長期存在,并可通過移動遺傳因子介導(dǎo),在環(huán)境細(xì)菌中水平傳播。有研究發(fā)現(xiàn)微塑料可以作為抗生素與細(xì)菌接觸的載體,從而增加環(huán)境中抗生素抗性基因的豐度[132]。其中作用最為顯著的是聚乙烯微塑料,其使表面抗生素抗性基因的豐度增加了近1個數(shù)量級。目前,在微塑料表面已經(jīng)檢測到多種潛在的細(xì)菌病原體和抗生素抗性基因,包括102種抗生素抗性基因和3種可移動遺傳元件,涵蓋了9個抗生素抗性基因類型。這些抗生素抗性基因的豐度有些高于土壤(微塑料表面的抗生素抗性基因相對豐度比土壤高1.7倍),其會隨著微塑料和土壤類型的不同而變化。施用有機(jī)肥、提高土壤溫度和濕度分別使得微塑料表面的抗生素抗性基因相對豐度增加179%、33%和24%,同時也會提高土壤中潛在的病原體豐度[133]。土壤中微塑料的粒徑和老化程度與抗生素抗性基因的吸附能力呈正相關(guān),且可以增加可移動遺傳元件的豐度,促進(jìn)抗生素抗性基因的傳播[133]。
4 微塑料對土壤生態(tài)系統(tǒng)的影響
微塑料會影響土壤性質(zhì),如pH值、土壤容重、土壤持水量、土壤團(tuán)聚體、土壤有機(jī)質(zhì)和土壤酶活性,從而間接影響土壤生態(tài)系統(tǒng)(圖5)。此外,微塑料進(jìn)入土壤環(huán)境會不可避免地接觸到各種土壤生物群。微塑料會改變土壤微生物的群落結(jié)構(gòu),影響土壤動物和植物的生長發(fā)育。植物體內(nèi)吸收的微塑料很可能通過食物鏈轉(zhuǎn)移,增加土壤生態(tài)系統(tǒng)污染的潛在危害。作為新興污染物,微塑料在土壤中持續(xù)的大量輸入對土壤生態(tài)系統(tǒng)的結(jié)構(gòu)和功能會產(chǎn)生嚴(yán)重危害。吸附在微塑料表面的土壤污染物還會從微塑料表面解吸到環(huán)境中,因此系統(tǒng)總結(jié)二者在土壤中的生態(tài)風(fēng)險具有重要意義。
4.1 對土壤結(jié)構(gòu)和理化性質(zhì)的影響
微塑料會影響土壤性質(zhì),如pH值、容重、持水量、團(tuán)聚體、有機(jī)質(zhì)和酶活性。研究發(fā)現(xiàn),聚乳酸和聚乙烯塑料會分別增加和降低土壤pH,二者在土壤系統(tǒng)中的生物降解特性引起了這種差異[134]。此外,吸附在土壤膠體上的微塑料可以導(dǎo)致土壤膠體對陽離子的吸附能力減弱,引起土壤pH值降低[135]。微塑料會降低土壤容重,一項(xiàng)Meta分析結(jié)果表明,微塑料濃度與土壤容重降低之間存在顯著相關(guān)性,微塑料濃度和形狀的差異可能是微塑料暴露導(dǎo)致土壤容重差異的主要原因[136]。微塑料添加顯著提高了土壤水分的蒸發(fā)速率,從而破壞土壤結(jié)構(gòu)完整性,引起土壤干裂[3]或缺氧[16]。微塑料粒徑大小顯著影響土壤的持水能力,微塑料粒徑越小土壤的持水能力降低越顯著[137]。并且其進(jìn)入土壤后會有72% 黏附在土壤團(tuán)聚體上,這意味著土壤中的微塑料可能參與土壤團(tuán)聚體的形成[51]。高密度聚酯纖維微塑料可以通過改變土壤中的水穩(wěn)性團(tuán)聚體形態(tài),影響土壤中大團(tuán)聚體(gt;2 000μm)的形成[81]。在典型農(nóng)田土壤中,聚酯纖維和聚丙烯微塑料的添加增大了土壤接觸角和飽和導(dǎo)水率,降低了土壤容重和持水能力。與聚丙烯顆粒相比,聚酯纖維對土壤物理性質(zhì)的影響更大,這主要是因?yàn)榫埘ダw維與土壤顆粒之間較大的形狀差異[138]。微塑料可以通過改變土壤團(tuán)聚體內(nèi)的生物、物理和化學(xué)過程(土壤有機(jī)質(zhì)的聚集或土壤內(nèi)部干濕循環(huán)),顯著抑制土壤團(tuán)聚體的穩(wěn)定性[136]。
微塑料對土壤有機(jī)碳、氮,以及土壤養(yǎng)分轉(zhuǎn)化也有一定的負(fù)面影響[139]。由于絕大部分微塑料由碳組成(多為具有長期穩(wěn)定性的惰性碳),其在土壤中的積累可以增加土壤有機(jī)碳的含量,并以多種方式影響碳循環(huán),如增加施肥土壤中CO2的釋放、影響土壤微生物呼吸、植物生長、凋落物分解等[140]。土壤中添加聚乙烯微塑料會導(dǎo)致土壤團(tuán)聚體中全磷、全氮和鉀含量顯著降低[141]。微塑料可通過降低土壤養(yǎng)分的有效性,影響土壤微生物群落組裝和結(jié)構(gòu),從而影響碳、氮、磷循環(huán)相關(guān)酶活性以及生態(tài)系統(tǒng)的多功能性,這種對微塑料的響應(yīng)與微塑料的濃度相關(guān),微塑料濃度越高農(nóng)田生態(tài)系統(tǒng)多功能性降低越嚴(yán)重[142]。然而,也有研究發(fā)現(xiàn)微塑料對土壤元素循環(huán)有一定的正向效應(yīng),微塑料通過改變土壤容重、含水量等理化性質(zhì)和與碳、氮元素循環(huán)相關(guān)的細(xì)菌群落,使得與土壤碳、氮循環(huán)相關(guān)的基因表達(dá)水平均有增強(qiáng)。土壤水力特性(土壤含水量、飽和水容量和土壤飽和水力傳導(dǎo)率)、細(xì)菌群落和養(yǎng)分循環(huán)相關(guān)功能基因的相關(guān)性分析表明,土壤水力特性是影響土壤氮和碳儲量的主要因素[143]。微塑料可改變土壤結(jié)構(gòu)或形成生物膜,影響硝化和反硝化微生物的生長及活性,通過提高反硝化速率,微塑料可使N2O的釋放速度加快約1.4倍,從而導(dǎo)致臭氧消耗或全球氣候變暖[144]。微塑料對土壤N2O排放的影響存在劑量效應(yīng),0.2%是聚乙烯微塑料影響水稻土N2O排放的濃度閾值,在一定濃度下,微塑料通過促進(jìn)亞硝酸鹽還原加速N2O產(chǎn)生和排放[145]。綜上,我們發(fā)現(xiàn)微塑料對土壤元素循環(huán)的影響既有正向效應(yīng)也有負(fù)向效應(yīng),造成差異化的關(guān)鍵在于微塑料改變了土壤理化性質(zhì),進(jìn)而影響了與碳、氮等元素循環(huán)相關(guān)的微生物群落結(jié)構(gòu),從而在不同程度上調(diào)控了土壤元素循環(huán)。
4.2 對土壤酶的影響
土壤酶是調(diào)控土壤養(yǎng)分循環(huán)的關(guān)鍵因素,其活性會受到微塑料的影響,然而相關(guān)研究結(jié)果存在很大差異。研究發(fā)現(xiàn),微塑料的添加提高了土壤脲酶[146]和高酸性磷酸酶的活性[147]。此外,低密度聚乙烯微塑料能顯著提高過氧化氫酶活性[148]。然而,也有研究指出微塑料會抑制酶活性。例如,土壤中添加微塑料后,熒光素二乙酸酯水解酶活性受到了抑制[147]。將聚苯乙烯微塑料加入土壤培養(yǎng)28 d后發(fā)現(xiàn),土壤脫氫酶和參與土壤碳、氮、磷循環(huán)的酶活性顯著降低,主要包括亮氨酸氨肽酶、堿性磷酸酶、β葡萄糖苷酶和纖維二糖水解酶[149]。微塑料對土壤酶活性的影響與其含量相關(guān),0.05%~0.40%的聚丙烯微塑料會抑制水解酶的活性[74]。當(dāng)塑料薄膜殘留量為67.5 kg·hm-2時,熒光乙酸乙酯水解酶活性和脫氫酶活性會分別降低10%和20%[150]。最近一項(xiàng)研究利用Meta分析探究了不同微塑料類型、含量、尺寸、暴露時間、土壤pH對土壤呼吸和酶活性的影響,結(jié)果表明不可降解微塑料的暴露對土壤酶活性沒有顯著影響。然而,聚丙烯微塑料可促進(jìn)酶活性,而聚乙烯和聚苯乙烯微塑料會抑制土壤酶活性[151]。有學(xué)者比較了不同組成和形狀的微塑料顆粒對土壤脲酶和磷酸酶活性的影響,發(fā)現(xiàn)對土壤脲酶和磷酸酶活性的促進(jìn)作用大小順序?yàn)榫郾├w維gt;聚乙烯膜gt;聚丙烯微球和聚丙烯纖維gt;聚丙烯微球gt;聚乙烯膜[152]。微塑料對土壤酶活性影響的途徑主要受到微塑料濃度、類型、尺寸、暴露時間以及土壤pH等多種因素影響。盡管已有一些研究探討了微塑料對土壤酶活性的影響,但由于影響因素的復(fù)雜性和多樣性,研究結(jié)果仍然存在很大差異。因此,需要更多的研究來深入理解微塑料對土壤酶的影響,并制定相應(yīng)的管理和防控策略。
4.3 對土壤生物的影響
4.3.1 對土壤微生物的影響
土壤生物是土壤生態(tài)系統(tǒng)的重要組成部分,在土壤形成和發(fā)展以及物質(zhì)循環(huán)中起著重要作用。微塑料進(jìn)入土壤環(huán)境會不可避免地接觸到各種土壤生物群。土壤微生物群落會受到微塑料的影響,其表面可以為微生物群落提供新的棲息地[153]。例如,牡蠣病原體J2-9菌株Vibro.crassostreae 可定殖在微塑料顆粒表面[154],弧菌科和假交替單胞菌科傾向于在微塑料表面富集[155]。此外,微生物可以快速附著并定殖于具有大比表面積和高粗糙度的微塑料上,并形成獨(dú)特的微生物群落[136]。微生物產(chǎn)生的細(xì)胞外聚合物質(zhì)(由蛋白質(zhì)、脂質(zhì)、多糖和核酸組成)基質(zhì)附著在土壤中的微塑料表面會形成生物膜[156]。微塑料的自身性質(zhì)以及有利于定殖微生物產(chǎn)生細(xì)胞外聚合物質(zhì)的環(huán)境條件(土壤pH、養(yǎng)分和溫度)均可影響生物膜的形成[157]。例如,一項(xiàng)研究發(fā)現(xiàn),有機(jī)肥的施用顯著改善了微塑料表面細(xì)菌生物膜的α/β多樣性,并且牛糞肥比植物性秸稈肥對生物膜多樣性的提高更有效,黑土比紅土和黃土更有效[158]。此外,生物膜的形成促進(jìn)了特定微生物物種的選擇性富集,并且提高了微塑料對生物體的應(yīng)激損傷[159]。微塑料對微生物的影響與其本身的粒徑大小、類型和環(huán)境濃度有關(guān)。高濃度聚乙烯微塑料可以顯著提高土壤中變形桿菌目(Beta?proteobacteriales)和假單胞菌目(Pseudomonadales)的相對豐度,而低濃度微塑料的投入則會輕微抑制這兩個菌群的相對豐度[160]。聚乙烯微塑料對叢枝菌根真菌的多樣性沒有影響,但是顯著改變了叢枝菌根真菌的群落結(jié)構(gòu)[134]。微塑料還能通過改變微生物的生存環(huán)境間接影響其群落結(jié)構(gòu)和功能[161]。此外,微塑料可與土壤基質(zhì)結(jié)合,通過建立輸水通道,加速土壤水分蒸發(fā),使土壤表面干裂,從而改變土壤中氧的流動,改變好氧微生物的分布[137]。研究發(fā)現(xiàn)聚苯乙烯微塑料可吸附T4噬菌體,靜電相互作用是病毒吸附到微塑料上的主要吸附機(jī)制,紫外線老化的微塑料表現(xiàn)出增強(qiáng)的病毒吸附能力,并且吸附在微塑料上會顯著延長病毒的傳染性[162]。此外,微塑料可以在不同程度上改變微生物β多樣性并影響其功能,干擾多環(huán)芳烴的生物降解。大多數(shù)多環(huán)芳烴降解基因的豐度因不可生物降解的低密度聚乙烯微塑料的存在而增加[163]。微塑料表面還能夠選擇性地富集特定的細(xì)菌群落和功能基因。分析表明,這些細(xì)菌參與了包括碳、氮、硫、抗生素的合成與降解等多種代謝途徑[133,164]。
4.3.2 對動物的影響
目前,微塑料對土壤動物的影響研究主要是在實(shí)驗(yàn)室里進(jìn)行,其中蚯蚓作為土壤生態(tài)系統(tǒng)中重要的無脊椎動物,是土壤動物試驗(yàn)的模式物種。蚯蚓能夠攝入土壤微塑料,暴露于微塑料含量較高的環(huán)境中會導(dǎo)致其腸道損傷及腸道微生物群落變化,甚至是死亡[165]。聚苯乙烯微塑料還可以通過激活活性氧介導(dǎo)的氧化應(yīng)激途徑,損害蚯蚓免疫細(xì)胞的免疫功能,破壞蚯蚓的蛋白質(zhì)結(jié)構(gòu)[166]。不僅如此,微塑料還會損壞蚯蚓的生殖系統(tǒng),干擾蚯蚓精子的生成并降低其體腔細(xì)胞活力[167]。微塑料的攝入以及微塑料在腸道中的長期駐留可能會改變動物的攝食活動。許多動物的腸道無法消化、排出攝入體內(nèi)的微塑料顆粒,從而出現(xiàn)腸道堵塞的現(xiàn)象[168]。并且,土壤微塑料的存在會導(dǎo)致土壤動物對其產(chǎn)生明顯的回避行為,甚至?xí)p少土壤動物的運(yùn)動[169]。微塑料可以改變白符跳蟲(Folsomiacandida)的腸道微生物群落,對其造成明顯的毒性作用并且影響其繁殖,甚至可能導(dǎo)致其死亡[170]。微塑料還會引發(fā)土壤線蟲[171]、老鼠(ICR)[172]的代謝紊亂,影響其生長發(fā)育。此外,聚苯乙烯微塑料還會引起小鼠腸道屏障功能障礙、膽汁酸代謝紊亂和腸道菌群變化[172]。并且,其在小鼠胎盤和胎兒中的積累誘導(dǎo)了組織的異常形態(tài)并降低了胎兒體質(zhì)量[173]。轉(zhuǎn)錄組分析結(jié)果表明,由于聚苯乙烯微塑料的存在,參與肌肉發(fā)育、脂質(zhì)代謝和皮膚形成的基因在胎盤和胎兒骨骼肌中的表達(dá)發(fā)生了顯著變化[173]。研究人員發(fā)現(xiàn)長期的微塑料暴露會引發(fā)肉雞的肌肉和肝臟發(fā)生慢性炎癥,誘導(dǎo)肌肉肥大,降低肉質(zhì)品質(zhì);結(jié)合轉(zhuǎn)錄組和代謝組學(xué)方法的研究發(fā)現(xiàn),長期微塑料暴露可顯著改變宿主基因表達(dá)、影響組織的代謝進(jìn)程[174]。
4.3.3 對陸生植物的影響
微塑料可以直接影響植物生長,也可以通過影響土壤性質(zhì)或微生物間接影響植物生長。不同聚合物類型微塑料對植物生長有不同的影響,與聚乙烯相比,聚乳酸微塑料對小麥生長的負(fù)面影響更加顯著[175-176]。萵苣和小麥側(cè)根出現(xiàn)的裂紋能夠直接讓微塑料穿透到中柱,這是一種代表植物吸收微塑料的有效方式,即作物會通過自身裂縫吸收微塑料[177]。但是,嵌入植物角質(zhì)層的較小的微塑料(lt;10 μm)難以去除[178]。因此,我們猜測一些根部吸收的微塑料很可能影響植物對水分和養(yǎng)分的吸收,從而影響其生長。已有研究指出微塑料可能通過堵塞植物種子種皮的孔隙,抑制水分的吸收,從而影響種子的發(fā)芽率[179-180]。殘留在土壤中的農(nóng)膜會對小麥的生長產(chǎn)生負(fù)面影響,這可能是由于土壤性質(zhì)受到了土壤微塑料的影響[175]。在新疆農(nóng)田表層土壤(0~20 cm)長期覆蓋塑料薄膜可使棉花產(chǎn)量減少15%[181]。農(nóng)田土壤中微塑料的顯著富集增加了蔥(Allium fistulosum)的總根長,其中一些微塑料還能引起蔥根生物量、平均根徑、根組織密度的變化[182]。生長于微塑料污染環(huán)境中的蘿卜的脆度及鎂、鈣和鐵的含量會降低,其營養(yǎng)價值也會受到影響[183]。聚丙烯微塑料添加顯著降低花生的地下生物量、可溶性糖含量和大豆的葉綠素含量,降幅分別為15.77%、25.51% 和5.74%。與之相反,微塑料添加增加了大豆的葉面積比值和可溶性糖含量,增幅分別為28.07%和25.82%[184]。植物根系吸收的微塑料很可能從根系遷移到地上組分,并通過食物鏈轉(zhuǎn)移,增加土壤生態(tài)系統(tǒng)污染的潛在危害。
綜合上述分析,我們發(fā)現(xiàn)微塑料通過提供新的棲息地富集微生物,并在微塑料表面形成生物膜,提高了微塑料對生物體的應(yīng)激損傷。并且微塑料通過改變動物體內(nèi)的微生物群落,影響其生命活動。暴露于微塑料環(huán)境下的植物會由于表皮孔隙堵塞影響對營養(yǎng)物質(zhì)的吸收,從而對生長發(fā)育產(chǎn)生負(fù)面影響。植物體內(nèi)吸收的微塑料很可能通過食物鏈轉(zhuǎn)移,增加對土壤生態(tài)系統(tǒng)污染的潛在危害。此外,與對土壤酶的影響類似,微塑料會通過改變土壤理化性質(zhì),從而影響土壤生態(tài)系統(tǒng)中的微生物、動物和植物。
4.4 微塑料復(fù)合污染對土壤生態(tài)系統(tǒng)的影響
微塑料作為土壤中的一個“匯”,重金屬、有機(jī)污染物、抗生素和增塑劑等都會在其表面富集[97,185]。當(dāng)微塑料和重金屬共存于土壤時,其將成為重金屬向植物遷移的“運(yùn)輸工具”,微塑料可以將Cu2+、Zn2+和Pb2+遷移至小麥根際并進(jìn)行解吸,從而促進(jìn)重金屬向植物轉(zhuǎn)移[186]。聚苯乙烯微塑料會增加水稻幼苗中砷的毒性以及促進(jìn)砷揮發(fā)[187],而聚氯乙烯微塑料會降低水稻土壤中汞的甲基化[188]。土壤動物可能會受到微塑料表面攜帶的以上污染物的毒理學(xué)影響。水牛攝入微塑料后,其腎臟、血液、肌肉、瘤胃液和肝臟中的重金屬含量均有所增加[189]。此外,微塑料和抗生素的復(fù)合污染對植物生長造成了嚴(yán)重?fù)p害,并加劇了根系氧化脅迫反應(yīng)[190]。微塑料還可以通過改變生物可利用性來介導(dǎo)有機(jī)污染物的降解[191]。大量證據(jù)表明,聚乙烯和聚苯乙烯微塑料可以吸附多環(huán)芳烴化合物并導(dǎo)致其表現(xiàn)出高生物可利用性[192-193],并且其還可以誘導(dǎo)生物體發(fā)生有機(jī)/細(xì)胞反應(yīng),例如氧化應(yīng)激、組織病理學(xué)損傷、免疫變化和修飾基因表達(dá)特性[194]。微塑料和有機(jī)污染物的聯(lián)合效應(yīng)會產(chǎn)生多種生態(tài)效應(yīng),包括毒性、生物積累和生物放大、物理效應(yīng)、微生物群落的改變和生態(tài)系統(tǒng)的破壞[195]。已有研究表明微塑料的老化增加了土壤PAEs的豐度,并共同影響草地和農(nóng)田土壤的碳平衡[196];同時,PAEs的釋放還會對土壤酶活性產(chǎn)生抑制作用[150]。微塑料可將PAEs運(yùn)輸?shù)叫∈竽c道中,引起腸道積聚,對小鼠腸道造成嚴(yán)重不良影響[197]。微塑料復(fù)合污染不止有上述協(xié)同作用,其也會對生物體產(chǎn)生拮抗毒性作用。當(dāng)PAEs和微塑料在環(huán)境中共同暴露時,PAEs會抑制微塑料對黃瓜幼苗生理特性的毒害[198]。簡而言之,微塑料對土壤生態(tài)系統(tǒng)的影響復(fù)雜多樣。其可以通過改變土壤理化性質(zhì),從而影響土壤酶活性和土壤微生物群落結(jié)構(gòu)及多樣性。微塑料還能直接影響土壤動物如蚯蚓的健康,長期微塑料暴露可顯著改變食用動物如肉雞的基因表達(dá),影響組織的代謝進(jìn)程。此外,微塑料可以通過影響植物的生長,改變植物對水分和養(yǎng)分的吸收,甚至穿透植物外組織,對人類健康造成嚴(yán)重危害。作為土壤污染物的“匯”,微塑料通過富集多種污染物對土壤生態(tài)造成更加不利的影響,并通過誘發(fā)生物體發(fā)生有機(jī)/細(xì)胞反應(yīng),威脅其健康。
4 總結(jié)與展望
本文從土壤微塑料的來源以及污染現(xiàn)狀出發(fā),著重關(guān)注了土壤微塑料的遷移行為及其可能帶來的生態(tài)風(fēng)險。土壤理化性質(zhì)、農(nóng)業(yè)生產(chǎn)活動、土壤生物活動、微塑料自身性質(zhì)、土壤環(huán)境條件和土壤要素等均會影響微塑料的遷移行為。此外,本文闡明了微塑料與其他污染物的相互作用機(jī)理,以期為相關(guān)研究者提供參考。微塑料易與環(huán)境中的其他污染物發(fā)生反應(yīng),通過靜電相互作用、疏水相互作用、π-π相互作用、氫鍵相互作用和表面絡(luò)合及螯合作用等與其他污染物產(chǎn)生復(fù)合污染,間接對土壤生物產(chǎn)生毒害作用。并且,微塑料還會改變土壤微生物的群落結(jié)構(gòu),影響土壤動物和植物的生長發(fā)育。植物體內(nèi)吸收的微塑料很可能通過食物鏈轉(zhuǎn)移,增加土壤生態(tài)系統(tǒng)污染的潛在危害。此外,吸附在微塑料表面的污染物還會從微塑料表面解吸到環(huán)境中,微塑料與污染物的相互作用會改變這些污染物在土壤中的原始存在形態(tài)和生態(tài)風(fēng)險。
為了進(jìn)一步明確土壤微塑料的環(huán)境行為,降低其帶來的生態(tài)風(fēng)險,我們認(rèn)為未來應(yīng)從以下幾個關(guān)鍵方向開展工作:
(1)推廣綠色降解型塑料產(chǎn)品。土壤環(huán)境中微塑料來源研究充分,然而污染現(xiàn)狀不容樂觀。農(nóng)田覆膜是微塑料進(jìn)入土壤最大的“源”,迫切需要推廣應(yīng)用可生物降解地膜,完善廢棄塑料的回收利用機(jī)制。
(2)明確真實(shí)土壤微塑料污染遷移機(jī)制。目前,針對微塑料遷移影響的實(shí)驗(yàn)都是在理想的實(shí)驗(yàn)室環(huán)境中進(jìn)行的,因此,在未來的研究中,應(yīng)加強(qiáng)原位土壤中微塑料遷移實(shí)驗(yàn)的開展,并應(yīng)建立統(tǒng)一、適用的土壤微塑料遷移模型。
(3)重點(diǎn)關(guān)注微塑料與其他土壤污染物的相互作用及危害。關(guān)于微塑料與重金屬、抗生素/抗生素抗性基因、持久性有機(jī)污染物以及塑料源污染物的相關(guān)研究仍處于起步階段,應(yīng)盡快開展相關(guān)研究,并闡明環(huán)境因素對微塑料與土壤污染物的相互作用機(jī)理。
(4)闡明微塑料對土壤生態(tài)系統(tǒng)多功能性影響的整體機(jī)理。微塑料對土壤生態(tài)系統(tǒng)的影響顯著,但現(xiàn)有研究尚未得出統(tǒng)一結(jié)論。因此需要更多的野外研究來進(jìn)一步探討微塑料對土壤生態(tài)系統(tǒng)多功能性的影響,同時,厘清微塑料與土壤污染物聯(lián)合作用對土壤生態(tài)系統(tǒng)的影響,揭示復(fù)合污染進(jìn)入食物鏈、危害人體健康的可能性。
參考文獻(xiàn):
[1] 唐釗, 朱建華, 王于志. 中國塑料制品禁令的相關(guān)法律條款及其重
要價值探討[J]. 塑料工業(yè), 2023, 51(4):206-207. TANG Z, ZHU J
H, WANG Y Z. Discussion on the relevant legal provisions and
important value of China′ s plastic products ban[J]. China Plastics
Industry, 2023, 51(4):206-207.
[2] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea:where
is all the plastic?[J]. Science, 2004, 304(5672):838.
[3] WANG W F, GE J, YU X Y, et al. Environmental fate and impacts of
microplastics in soil ecosystems:progress and perspective[J]. Science of
the Total Environment, 2020, 708:134841.
[4] LI J, SONG Y, CAI Y B. Focus topics on microplastics in soil:
analytical methods, occurrence, transport, and ecological risks[J].
Environmental Pollution, 2020, 257:113570.
[5] RILLIG M C. Microplastic in terrestrial ecosystems and the soil?[J].
Environmental Science amp; Technology, 2012, 46(12):6453-6454.
[6] 馬兆嶸, 劉有勝, 張芊芊, 等. 農(nóng)用塑料薄膜使用現(xiàn)狀與環(huán)境污染分
析[J]. 生態(tài)毒理學(xué)報, 2020, 15(4):21-32. MA Z R, LIU Y S,
ZHANG Q Q, et al. The usage and environmental pollution of
agricultural plastic film[J]. Asian Journal of Ecotoxicology, 2020, 15
(4):21-32.
[7] HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a
source of microplastics in the terrestrial environment[J]. Environmental
Pollution, 2020, 260:114096.
[8] 趙巖, 陳學(xué)庚, 溫浩軍, 等. 農(nóng)田殘膜污染治理技術(shù)研究現(xiàn)狀與展望
[J]. 農(nóng)業(yè)機(jī)械學(xué)報, 2017, 48(6):1-14. ZHAO Y, CHEN X G, WEN
H J, et al. Research status and prospect of control technology for
residual plastic film pollution in farmland[J]. Transactions of the
Chinese Society for Agricultural Machinery, 2017, 48(6):1-14.
[9] ZHOU B Y, WANG J Q, ZHANG H B, et al. Microplastics in
agricultural soils on the coastal plain of Hangzhou Bay, east China:
multiple sources other than plastic mulching film[J]. Journal of
Hazardous Materials, 2020, 388:121814.
[10] PIEHL S, LEIBNER A, L?DER M G J, et al. Identification and
quantification of macro- and microplastics on an agricultural farmland
[J]. Scientific Reports, 2018, 8:17950.
[11] VAN DEN BERG P, HUERTA-LWANGA E, CORRADINI F, et al.
Sewage sludge application as a vehicle for microplastics in eastern
Spanish agricultural soils[J]. Environmental Pollution, 2020, 261:
114198.
[12] 李鵬飛, 侯德義, 王劉煒, 等. 農(nóng)田中的(微)塑料污染:來源、遷移、
環(huán)境生態(tài)效應(yīng)及防治措施[J]. 土壤學(xué)報, 2021, 58(2):314-330.
LI P F, HOU D Y, WANG L W, et al.(Micro)plastics pollution in
agricultural soils:sources, transportation, ecological effects and
preventive strategies[J]. Acta Pedologica Sinica, 2021, 58(2):314-
330.
[13] LIU K, WANG X H, FANG T, et al. Source and potential risk
assessment of suspended atmospheric microplastics in Shanghai[J].
Science of the Total Environment, 2019, 675:462-471.
[14] ALLEN S, ALLEN D, PHOENIX V R, et al. Atmospheric transport
and deposition of microplastics in a remote mountain catchment[J].
Nature Geoscience, 2019, 12:339-344.
[15] CHEUNG P K, FOK L. Characterisation of plastic microbeads in
facial scrubs and their estimated emissions in Chinese Mainland[J].
Water Research, 2017, 122:53-61.
[16] GOLWALA H, ZHANG X Y, ISKANDER S M, et al. Solid waste:an
overlooked source of microplastics to the environment[J]. Science of
the Total Environment, 2021, 769:144581.
[17] CHOI Y R, KIM Y N, YOON J H, et al. Plastic contamination of
forest, urban, and agricultural soils:a case study of Yeoju City in the
Republic of Korea[J]. Journal of Soils and Sediments, 2021, 21(5):
1962-1973.
[18] KOLE P J, L?HR A J, VAN BELLEGHEM F, et al. Wear and tear of
tyres:a stealthy source of microplastics in the environment[J].
International Journal of Environmental Research and Public Health,
2017, 14(10):1265.
[19] AKHBARIZADEH R, DOBARADARAN S, NABIPOUR I, et al.
Abandoned Covid-19 personal protective equipment along the
Bushehr Shores, the Persian Gulf:an emerging source of secondary
microplastics in coastlines[J]. Marine Pollution Bulletin, 2021, 168:
112386.
[20] YU L, ZHANG J D, LIU Y, et al. Distribution characteristics of
microplastics in agricultural soils from the largest vegetable
production base in China[J]. Science of the Total Environment, 2021,
756:143860.
[21] CHAI B W, WEI Q, SHE Y Z, et al. Soil microplastic pollution in an
e-waste dismantling zone of China[J]. Waste Management, 2020, 118:
291-301.
[22] 胡佳妮. 農(nóng)田土壤中微塑料污染特征和典型塑料地膜的環(huán)境行為
研究[D]. 上海:華東師范大學(xué), 2021:19-20. HU J N. A study on
pollution characteristics of microplastics in agricultural soils and
environmental behaviors of typical mulching films[D]. Shanghai:East
China Normal University, 2021:19-20.
[23] FENG S S, LU H W, TIAN P P, et al. Analysis of microplastics in a
remote region of the Tibetan Plateau:implications for natural
environmental response to human activities[J]. Science of the Total
Environment, 2020, 739:140087.
[24] ZHANG S L, LIU X, HAO X H, et al. Distribution of low-density
microplastics in the mollisol farmlands of northeast China[J]. Science
of the Total Environment, 2020, 708:135091.
[25] 劉旭. 典型黑土區(qū)耕地土壤微塑料空間分布特征[D]. 哈爾濱:東
北農(nóng)業(yè)大學(xué), 2019:19 - 20. LIU X. Spatial distribution of
microplastics in mollisol farmland of northeast China[D]. Harbin:
Northeast Agricultural University, 2019:19-20.
[26] WANG J, LI J Y, LIU S T, et al. Distinct microplastic distributions in
soils of different land-use types:a case study of Chinese farmlands[J].
Environmental Pollution, 2021, 269:116199.
[27] 王展, 陳春羽, 蘇沛瑤, 等. 遼寧地區(qū)農(nóng)田土壤中微塑料豐度及其
在團(tuán)聚體中的分布特征[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2024, 43(4):858-
865. WANG Z, CHEN C Y, SU P Y, et al. Abundance of
microplastics in farmland soil and its distribution in soil aggregate
fractions in the Liaoning area[J]. Journal of Agro-Environment
Science, 2024, 43(4):858-865.
[28] WANG K, CHEN W, TIAN J Y, et al. Accumulation of microplastics
in greenhouse soil after long-term plastic film mulching in Beijing,
China[J]. Science of the Total Environment, 2022, 828:154544.
[29] CHEN Y X, WU Y H, MA J, et al. Microplastics pollution in the soil
mulched by dust-proof nets:a case study in Beijing, China[J].
Environmental Pollution, 2021, 275:116600.
[30] FU F R, SUN Y, YANG D, et al. Combined pollution and soil
microbial effect of pesticides and microplastics in greenhouse soil of
suburban Tianjin, northern China[J]. Environmental Pollution, 2024,
340:122898.
[31] 田霞. 河北壩上農(nóng)田土壤及風(fēng)蝕物的微/中塑料研究[D]. 石家莊:
河北師范大學(xué), 2022:29 - 30. TIAN X. Study on micro / meso
plastics in soil and aeolian sediment for farmlands of Bashang region,
Hebei Province[D]. Shijiazhuang:Hebei Normal University, 2022:29-
30.
[32] LUO S, WU H N, XU J F, et al. Effects of lakeshore landcover types
and environmental factors on microplastic distribution in lakes on the
Inner Mongolia Plateau, China[J]. Journal of Hazardous Materials,
2024, 465:133115.
[33] 張舒婷. 山西農(nóng)田土壤微塑料分布及與重金屬的相關(guān)性研究[D].
太谷:山西農(nóng)業(yè)大學(xué), 2022:24-25. ZHANG S T. Distribution of
microplastics in farmland soil in Shanxi and their correlation with
heavy metals[D]. Taigu:Shanxi Agricultural University, 2022:24-25.
[34] 田浩琦, 李唐慧嫻, 郭倩倩, 等. 汾河上中游沿岸農(nóng)田土壤微塑料
污染現(xiàn)狀和分布規(guī)律研究[C]//2019年中國土壤學(xué)會土壤環(huán)境專
業(yè)委員會、土壤化學(xué)專業(yè)委員會聯(lián)合學(xué)術(shù)研討會, 2019:1. TIAN
H Q, LI T H X, GUO Q Q, et al. Study on the status and distribution
of soil microplastics pollution in farmland along the upper and middle
reaches of Fenhe River[C]//2019 Joint Symposium of Soil
Environment Committee and Soil Chemistry Committee of Soil Society
of China, 2019:1.
[35] 張成麗, 李霜, 雷雨辰, 等. 開封某農(nóng)田土壤重金屬和微塑料空間
分布及生態(tài)風(fēng)險[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報, 2023, 54(6):693-701.
ZHANG C L, LI S, LEI Y C, et al. Spatial distribution of the farmland
soil heavy metal and microplastics and ecological risk assessment[J].
Journal of Shenyang Agricultural University, 2023, 54(6):693-701.
[36] 衛(wèi)洲. 微塑料在土壤中的分布及其對有機(jī)污染物吸附特征的研究
[D]. 淮南:安徽理工大學(xué), 2022:28-29. WEI Z. Study on the
distribution of microplastics in soil and the adsorption characteristics
of microplastics to organic pollutants[D]. Huainan:Anhui University
of Science and Technology, 2022:28-29.
[37] CAO L, WU D, LIU P, et al. Occurrence, distribution and affecting
factors of microplastics in agricultural soils along the lower reaches of
Yangtze River, China[J]. Science of the Total Environment, 2021, 794:
148694.
[38] 胡博. 福建晉江河口紅樹林恢復(fù)濕地土壤、間隙水重金屬與微塑
料的分布特征及其環(huán)境意義[D]. 泉州:華僑大學(xué), 2021:62-65.
HU B. Distribution characteristics and environmental significance of
heavy metals and microplastics in soil and interstitial water of
mangrove restoration wetland in Jinjiang Estuary, Fujian Province[D].
Quanzhou:Huaqiao University, 2021:62-65.
[39] CHEN Y L, LENG Y F, LIU X N, et al. Microplastic pollution in
vegetable farmlands of suburb Wuhan, central China[J].
Environmental Pollution, 2020, 257:113449.
[40] DING L, ZHANG S Y, WANG X Y, et al. The occurrence and
distribution characteristics of microplastics in the agricultural soils of
Shaanxi Province, in north-western China[J]. Science of the Total
Environment, 2020, 720:137525.
[41] JIA Z F, WEI W, WANG Y H, et al. Occurrence characteristics and
risk assessment of microplastics in agricultural soils in the loess hilly
gully area of Yan′ an, China[J]. Science of the Total Environment,
2024, 912:169627.
[42] 程萬莉, 樊廷錄, 王淑英, 等. 我國西北覆膜農(nóng)田土壤微塑料數(shù)量
及分布特征[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2020, 39(11):2561-2568.
CHENG W L, FAN T L, WANG S Y, et al. Quantity and distribution
of microplastics in film mulching farmland soil of northwest China[J].
Journal of Agro-Environment Science, 2020, 39(11):2561-2568.
[43] MIN R, MA K, ZHANG H W, et al. Distribution and risk assessment
of microplastics in Liujiaxia Reservoir on the upper Yellow River[J].
Chemosphere, 2023, 320:138031.
[44] 馬貴, 丁家富, 周悅, 等. 固原市農(nóng)田土壤微塑料的分布特征及風(fēng)
險評估[J]. 環(huán)境科學(xué), 2023, 44(9):5055-5062. MA G, DING J F,
ZHOU Y, et al. Distribution characteristics and risk assessment of
microplastics in farmland soil in Guyuan[J]. Environmental Science,
2023, 44(9):5055-5062.
[45] XU Z X, HU C, WANG X F, et al. Distribution characteristics of
plastic film residue in long-term mulched farmland soil[J]. Soil
Ecology Letters, 2022, 5(3):220144.
[46] LI W F, WANG S Z, WUFUER R, et al. Distinct soil microplastic
distributions under various farmland-use types around Urumqi, China
[J]. Science of the Total Environment, 2023, 857:159573.
[47] ZHANG G S, LIU Y F. The distribution of microplastics in soil
aggregate fractions in southwestern China[J]. Science of the Total
Environment, 2018, 642:12-20.
[48] XU G R, YANG L, XU L, et al. Soil microplastic pollution under
different land uses in tropics, southwestern China[J]. Chemosphere,
2022, 289:133176.
[49] 張淑怡. 貴州覆膜耕地微塑料污染特征及其對煙草的生長脅迫研
究[D]. 貴陽:貴州民族大學(xué), 2023:39-41. ZHANG S Y. A study
on characteristics of microplastic pollution in mulched arable land in
Guizhou and the growth stress of microplastic on tobacco(Nicotiana
tabacum L.)[D]. Guiyang:Guizhou Minzu University, 2023:39-41.
[50] 蘭莉莎. 涪江重慶段沉積物中微塑料的分布特征及其對典型抗生
素的吸附行為研究[D]. 重慶:重慶交通大學(xué), 2022:36-39. LAN
L S. The distribution characteristics of microplastics in the sediments
of the Chongqing section of the Fujiang River and their adsorption
behaviors for typical antibiotics[D]. Chongqing:Chongqing Jiaotong
University, 2022:36-39.
[51] LIAO Y L, TANG Q X, YANG J Y. Microplastic characteristics and
microplastic-heavy metal synergistic contamination in agricultural
soil under different cultivation modes in Chengdu, China[J]. Journal
of Hazardous Materials, 2023, 459:132270.
[52] 劉琳琳, 王鵬, 孫曙光, 等. 四川廣元植煙土壤微塑料分布狀況分
析[J]. 中國煙草學(xué)報, 2023, 29(1):46-54. LIU L L, WANG P,
SUN S G, et al. Distribution of micro plastics in tobacco planting soil
in Guangyuan, Sichuan Province[J]. Acta Tabacaria Sinica, 2023, 29
(1):46-54.
[53] LONG B B, LI F Y, WANG K, et al. Impact of plastic film mulching
on microplastic in farmland soils in Guangdong Province, China[J].
Heliyon, 2023, 9(6):e16587.
[54] ZHANG X Y, XIA X J, DAI M, et al. Microplastic pollution and its
relationship with the bacterial community in coastal sediments near
Guangdong Province, south China[J]. Science of the Total
Environment, 2021, 760:144091.
[55] LIU M T, LU S B, SONG Y, et al. Microplastic and mesoplastic
pollution in farmland soils in suburbs of Shanghai, China[J].
Environmental Pollution, 2018, 242:855-862.
[56] 謝福武, 田毓婷, 吳思怡, 等. 海南樂東農(nóng)用地土壤微塑料分布狀
況調(diào)查[J]. 中國無機(jī)分析化學(xué), 2024, 14(8):1116-1125. XIE F
W, TIAN Y T, WU S Y, et al. Investigation on microplastics
distribution of soil in Ledong farmland, Hainan[J]. Chinese Journal of
Inorganic Analytical Chemistry, 2024, 14(8):1116-1125.
[57] 馮三三, 盧宏瑋, 薛宇軒, 等. 青藏高原微塑料賦存特征和歸趨分
析[C]//華東師范大學(xué), 上海市海洋湖沼學(xué)會, 中國土壤學(xué)會環(huán)境微
塑料工作組. 第四屆全國(海洋)環(huán)境微塑料污染與管控學(xué)術(shù)研討
會摘要集, 2023:3. FENG S S, LU H W, XUE Y X, et al. Analysis
of the occurrence characteristics and trend of microplastics in the
Tibetan Plateau[C]//East China Normal University, Shanghai Society
of Oceanology and Limnology, Environmental Microplastics Working
Group of the Soil Society of China. Abstract of the 4th National
(Marine) Environmental Microplastic Pollution and Control
Symposium, 2023:3.
[58] FENG S S, LU H W, LIU Y L. The occurrence of microplastics in
farmland and grassland soils in the Qinghai-Tibet Plateau:different
land use and mulching time in facility agriculture[J]. Environmental
Pollution, 2021, 279:116939.
[59] YANG H R, YAN Y M, YU Y K, et al. Distribution, sources,
migration, influence and analytical methods of microplastics in soil
ecosystems[J]. Ecotoxicology and Environmental Safety, 2022, 243:
114009.
[60] ZHANG X T, CHEN Y X, LI X Y, et al. Size / shape-dependent
migration of microplastics in agricultural soil under simulative and
natural rainfall[J]. Science of the Total Environment, 2022, 815:
152507.
[61] RILLIG M C, INGRAFFIA R, DE SOUZA MACHADO A A.
Microplastic incorporation into soil in agroecosystems[J]. Frontiers in
Plant Science, 2017, 8:1805.
[62] MENG F R, FAN T L, YANG X M, et al. Effects of plastic mulching
on the accumulation and distribution of macro and micro plastics in
soils of two farming systems in northwest China[J]. PeerJ, 2020, 8:
e10375.
[63] O′ CONNOR D, PAN S Z, SHEN Z T, et al. Microplastics undergo
accelerated vertical migration in sand soil due to small size and wetdry
cycles[J]. Environmental Pollution, 2019, 249:527-534.
[64] LEONARD J, RAVI S, MOHANTY S K. Preferential emission of
microplastics from biosolid-applied agricultural soils:field evidence
and theoretical framework[J]. Environmental Science amp; Technology
Letters, 2024, 11(2):136-142.
[65] DONG Y M, GAO M L, QIU W W, et al. Effect of microplastics and
arsenic on nutrients and microorganisms in rice rhizosphere soil[J].
Ecotoxicology and Environmental Safety, 2021, 211:111899.
[66] YU M, VAN DER PLOEG M, LWANGA E H, et al. Leaching of
microplastics by preferential flow in earthworm(Lumbricus terrestris)
burrows[J]. Environmental Chemistry, 2019, 16(1):31.
[67] XU B L, LIU F, CRYDER Z, et al. Microplastics in the soil
environment:occurrence, risks, interactions and fate:a review[J].
Critical Reviews in Environmental Science and Technology, 2020, 50
(21):2175-2222.
[68] LI H X, LU X Q, WANG S Y, et al. Vertical migration of
microplastics along soil profile under different crop root systems[J].
Environmental Pollution, 2021, 278:116833.
[69] DE TENDER C, DEVRIESE L I, HAEGEMAN A, et al. Temporal
dynamics of bacterial and fungal colonization on plastic debris in the
North Sea[J]. Environmental Science amp; Technology, 2017, 51(13):
7350-7360.
[70] HE S Y, JIA M Y, XIANG Y P, et al. Biofilm on microplastics in
aqueous environment:physicochemical properties and environmental
implications[J]. Journal of Hazardous Materials, 2022, 424:127286.
[71] MITZEL M R, SAND S, WHALEN J K, et al. Hydrophobicity of
biofilm coatings influences the transport dynamics of polystyrene
nanoparticles in biofilm-coated sand[J]. Water Research, 2016, 92:
113-120.
[72] BRADFORD S A, SIMUNEK J, BETTAHAR M, et al. Modeling
colloid attachment, straining, and exclusion in saturated porous media
[J]. Environmental Science amp; Technology, 2003, 37(10):2242-2250.
[73] ZHAO W G, SU Z, GENG T, et al. Effects of ionic strength and
particle size on transport of microplastic and humic acid in porous
media[J]. Chemosphere, 2022, 309:136593.
[74] DE SOUZA MACHADO A A, LAU C W, TILL J, et al. Impacts of
microplastics on the soil biophysical environment[J]. Environmental
Science amp; Technology, 2018, 52(17):9656-9665.
[75] ZHANG G S, ZHANG F X, LI X T. Effects of polyester microfibers on
soil physical properties:perception from a field and a pot experiment
[J]. Science of the Total Environment, 2019, 670:1-7.
[76] REN Z F, GUI X Y, XU X Y, et al. Microplastics in the soilgroundwater
environment:aging, migration, and co-transport of
contaminants:a critical review[J]. Journal of Hazardous Materials,
2021, 419:126455.
[77] LIU J, ZHANG T, TIAN L L, et al. Aging significantly affects mobility
and contaminant-mobilizing ability of nanoplastics in saturated loamy
sand[J]. Environmental Science amp; Technology, 2019, 53(10):5805-
5815.
[78] DONG Z Q, ZHU L, ZHANG W, et al. Role of surface functionalities
of nanoplastics on their transport in seawater-saturated sea sand[J].
Environmental Pollution, 2019, 255:113177.
[79] IVANIC F M, GUGGENBERGER G, WOCHE S K, et al. Soil organic
matter facilitates the transport of microplastic by reducing surface
hydrophobicity[J]. Colloids and Surfaces A:Physicochemical and
Engineering Aspects, 2023, 676:132255.
[80] WU X L, LYU X Y, LI Z Y, et al. Transport of polystyrene
nanoplastics in natural soils:effect of soil properties, ionic strength
and cation type[J]. Science of the Total Environment, 2020, 707:
136065.
[81] BRADFORD S A, TORKZABAN S. Colloid adhesive parameters for
chemically heterogeneous porous media[J]. Langmuir, 2012, 28(38):
13643-13651.
[82] CORNELIS G, PANG L P, DOOLETTE C, et al. Transport of silver
nanoparticles in saturated columns of natural soils[J]. Science of the
Total Environment, 2013, 463/464:120-130.
[83] WANG D J, BRADFORD S A, HARVEY R W, et al. Humic acid
facilitates the transport of ARS-labeled hydroxyapatite nanoparticles
in iron oxyhydroxide-coated sand[J]. Environmental Science amp;
Technology, 2012, 46(5):2738-2745.
[84] LU T T, GILFEDDER B S, PENG H, et al. Effects of clay minerals on
the transport of nanoplastics through water-saturated porous media[J].
Science of the Total Environment, 2021, 796:148982.
[85] MA J, QIU Y, ZHAO J Y, et al. Effect of agricultural organic inputs
on nanoplastics transport in saturated goethite-coated porous media:
particle size selectivity and role of dissolved organic matter[J].
Environmental Science amp; Technology, 2022, 56(6):3524-3534.
[86] GAO J, PAN S Z, LI P F, et al. Vertical migration of microplastics in
porous media:multiple controlling factors under wet-dry cycling[J].
Journal of Hazardous Materials, 2021, 419:126413.
[87] TAN M M, LIU L F, ZHANG M G, et al. Effects of solution chemistry
and humic acid on the transport of polystyrene microplastics in
manganese oxides coated sand[J]. Journal of Hazardous Materials,
2021, 413:125410.
[88] SARKER A, DEEPO D M, NANDI R, et al. A review of microplastics
pollution in the soil and terrestrial ecosystems:a global and
Bangladesh perspective[J]. Science of the Total Environment, 2020,
733:139296.
[89] LIN H, CUI G F, JIN Q, et al. Effects of microplastics on the uptake
and accumulation of heavy metals in plants:a review[J]. Journal of
Environmental Chemical Engineering, 2024, 12(1):111812.
[90] TANG S, LIN L J, WANG X S, et al. Interfacial interactions between
collected nylon microplastics and three divalent metal ions[Cu(Ⅱ),
Ni(Ⅱ), Zn(Ⅱ)] in aqueous solutions[J]. Journal of Hazardous
Materials, 2021, 403:123548.
[91] TANG S, LIN L J, WANG X S, et al. Pb(Ⅱ)uptake onto nylon
microplastics:interaction mechanism and adsorption performance[J].
Journal of Hazardous Materials, 2020, 386:121960.
[92] GUO X T, HU G L, FAN X Y, et al. Sorption properties of cadmium
on microplastics:the common practice experiment and A twodimensional
correlation spectroscopic study[J]. Ecotoxicology and
Environmental Safety, 2020, 190:110118.
[93] TEUTEN E L, ROWLAND S J, GALLOWAY T S, et al. Potential for
plastics to transport hydrophobic contaminants[J]. Environmental
Science amp; Technology, 2007, 41(22):7759-7764.
[94] LANG M F, YU X Q, LIU J H, et al. Fenton aging significantly affects
the heavy metal adsorption capacity of polystyrene microplastics[J].
Science of the Total Environment, 2020, 722:137762.
[95] WANG Y, WANG X J, LI Y, et al. Effects of exposure of polyethylene
microplastics to air, water and soil on their adsorption behaviors for
copper and tetracycline[J]. Chemical Engineering Journal, 2021, 404:
126412.
[96] KHALID N, AQEEL M, NOMAN A, et al. Interactions and effects of
microplastics with heavy metals in aquatic and terrestrial
environments[J]. Environmental Pollution, 2021, 290:118104.
[97] GUO X, WANG J L. The chemical behaviors of microplastics in
marine environment:a review[J]. Marine Pollution Bulletin, 2019,
142:1-14.
[98] BRENNECKE D, DUARTE B, PAIVA F, et al. Microplastics as
vector for heavy metal contamination from the marine environment[J].
Estuarine, Coastal and Shelf Science, 2016, 178:189-195.
[99] WANG Q J, ZHANG Y, WANGJIN X X, et al. The adsorption
behavior of metals in aqueous solution by microplastics effected by
UV radiation[J]. Journal of Environmental Sciences, 2020, 87:272-
280.
[100] SHIU R F, VAZQUEZ C I, TSAI Y Y, et al. Nano-plastics induce
aquatic particulate organic matter(microgels)formation[J]. Science
of the Total Environment, 2020, 706:135681.
[101] SHIU R F, LEE C L. Role of microgel formation in scavenging of
chromophoric dissolved organic matter and heavy metals in a riversea
system[J]. Journal of Hazardous Materials, 2017, 328:12-20.
[102] LIN L J, TANG S, WANG X S, et al. Sorption of tetracycline onto
hexabromocyclododecane / polystyrene composite and polystyrene
microplastics:statistical physics models, influencing factors, and
interaction mechanisms[J]. Environmental Pollution, 2021, 284:
117164.
[103] ROCHMAN C M, MANZANO C, HENTSCHEL B T, et al.
Polystyrene plastic:a source and sink for polycyclic aromatic
hydrocarbons in the marine environment[J]. Environmental Science
amp; Technology, 2013, 47(24):13976-13984.
[104] SONG X C, ZHUANG W, CUI H Z, et al. Interactions of
microplastics with organic, inorganic and bio-pollutants and the
ecotoxicological effects on terrestrial and aquatic organisms[J].
Science of the Total Environment, 2022, 838:156068.
[105] ZICCARDI L M, EDGINGTON A, HENTZ K, et al. Microplastics as
vectors for bioaccumulation of hydrophobic organic chemicals in the
marine environment:a state-of-the-science review[J]. Environmental
Toxicology and Chemistry, 2016, 35(7):1667-1676.
[106] BAKIR A, ROWLAND S J, THOMPSON R C. Competitive sorption
of persistent organic pollutants onto microplastics in the marine
environment[J]. Marine Pollution Bulletin, 2012, 64(12):2782-
2789.
[107] FU L N, LI J, WANG G Y, et al. Adsorption behavior of organic
pollutants on microplastics[J]. Ecotoxicology and Environmental
Safety, 2021, 217:112207.
[108] LI J Y, HUANG X T, HOU Z M, et al. Sorption of diclofenac by
polystyrene microplastics:kinetics, isotherms and particle size
effects[J]. Chemosphere, 2022, 290:133311.
[109] WU P F, CAI Z W, JIN H B, et al. Adsorption mechanisms of five
bisphenol analogues on PVC microplastics[J]. Science of the Total
Environment, 2019, 650:671-678.
[110] RICARDO I A, ALBERTO E A, SILVA JúNIDR A H, et al. A
critical review on microplastics, interaction with organic and
inorganic pollutants, impacts and effectiveness of advanced
oxidation processes applied for their removal from aqueous matrices
[J]. Chemical Engineering Journal, 2021, 424:130282.
[111] YAMATE T, KUMAZAWA K, SUZUKI H, et al. CH/π interactions
for macroscopic interfacial adhesion design[J]. ACS Macro Letters,
2016, 5(7):858-861.
[112] WANG F, SHIH K M, LI X Y. The partition behavior of
perfluorooctanesulfonate(PFOS) and perfluorooctanesulfonamide
(FOSA)on microplastics[J]. Chemosphere, 2015, 119:841-847.
[113] BESSELING E, WEGNER A, FOEKEMA E M, et al. Effects of
microplastic on fitness and PCB bioaccumulation by the lugworm
Arenicola marina(L.)[J]. Environmental Science amp; Technology,
2013, 47(1):593-600.
[114] HERMABESSIERE L, DEHAUT A, PAUL-PONT I, et al.
Occurrence and effects of plastic additives on marine environments
and organisms:a review[J]. Chemosphere, 2017, 182:781-793.
[115] VAN OERS L, VAN DER VOET E, GRUNDMANN V. Additives in
the plastics industry[M]//The handbook of environmental chemistry.
Berlin:Springer Berlin Heidelberg, 2011:133-149.
[116] WANG F, WANG Y, XIANG L L, et al. Perspectives on ecological
risks of microplastics and phthalate acid esters in crop production
systems[J]. Soil Ecology Letters, 2022, 4(2):97-108.
[117] FAUVELLE V, GAREL M, TAMBURINI C, et al. Organic additive
release from plastic to seawater is lower under deep-sea conditions
[J]. Nature Communications, 2021, 12:4426.
[118] PALUSELLI A, FAUVELLE V, GALGANI F, et al. Phthalate
release from plastic fragments and degradation in seawater[J].
Environmental Science amp; Technology, 2019, 53(1):166-175.
[119] XU Y W, JIA W Q, HU A L, et al. Co-occurrence of light
microplastics and phthalate esters in soils of China[J]. Science of the
Total Environment, 2022, 852:158384.
[120] LIU F F, LIU G Z, ZHU Z L, et al. Interactions between
microplastics and phthalate esters as affected by microplastics
characteristics and solution chemistry[J]. Chemosphere, 2019, 214:
688-694.
[121] YAN Y Y, ZHU F X, ZHU C Y, et al. Dibutyl phthalate release from
polyvinyl chloride microplastics:influence of plastic properties and
environmental factors[J]. Water Research, 2021, 204:117597.
[122] XU B L, LIU F, BROOKES P C, et al. Microplastics play a minor
role in tetracycline sorption in the presence of dissolved organic
matter[J]. Environmental Pollution, 2018, 240:87-94.
[123] SUN M M, YE M, JIAO W T, et al. Changes in tetracycline
partitioning and bacteria/phage-comediated ARGs in microplasticcontaminated
greenhouse soil facilitated by sophorolipid[J]. Journal
of Hazardous Materials, 2018, 345:131-139.
[124] SHI J H, WU D, SU Y L, et al. Selective enrichment of antibiotic
resistance genes and pathogens on polystyrene microplastics in
landfill leachate[J]. Science of the Total Environment, 2021, 765:
142775.
[125] GUO J J, HUANG X P, XIANG L, et al. Source, migration and
toxicology of microplastics in soil[J]. Environment International,
2020, 137:105263.
[126] LV M J, ZHANG T, YA H B, et al. Effects of heavy metals on the
adsorption of ciprofloxacin on polyethylene microplastics:
mechanism and toxicity evaluation[J]. Chemosphere, 2023, 315:
137745.
[127] 郝愛紅, 趙保衛(wèi), 張建, 等. 土壤中微塑料污染現(xiàn)狀及其生態(tài)風(fēng)險
研究進(jìn)展[J]. 環(huán)境化學(xué), 2021, 40(4):1100-1111. HAO A H,
ZHAO B W, ZHANG J, et al. Research progress on pollution status
and ecological risk of microplastics in soil[J]. Environmental
Chemistry, 2021, 40(4):1100-1111.
[128] WANG K, HAN T, CHEN X D, et al. Insights into behavior and
mechanism of tetracycline adsorption on virgin and soil-exposed
microplastics[J]. Journal of Hazardous Materials, 2022, 440:
129770.
[129] DING L, MAO R F, MA S R, et al. High temperature depended on
the ageing mechanism of microplastics under different
environmental conditions and its effect on the distribution of organic
pollutants[J]. Water Research, 2020, 174:115634.
[130] LIU G Z, ZHU Z L, YANG Y X, et al. Sorption behavior and
mechanism of hydrophilic organic chemicals to virgin and aged
microplastics in freshwater and seawater[J]. Environmental
Pollution, 2019, 246:26-33.
[131] LI J, ZHANG K N, ZHANG H. Adsorption of antibiotics on
microplastics[J]. Environmental Pollution, 2018, 237:460-467.
[132] WEI J X, CHEN M Y, WANG J. Insight into combined pollution of
antibiotics and microplastics in aquatic and soil environment:
environmental behavior, interaction mechanism and associated
impact of resistant genes[J]. Trends in Analytical Chemistry, 2023,
166:117214.
[133] ZHU D, MA J, LI G, et al. Soil plastispheres as hotspots of antibiotic
resistance genes and potential pathogens[J]. The ISME Journal,
2022, 16:521-532.
[134] WANG F Y, ZHANG X Q, ZHANG S Q, et al. Interactions of
microplastics and cadmium on plant growth and arbuscular
mycorrhizal fungal communities in an agricultural soil[J].
Chemosphere, 2020, 254:126791.
[135] HOU J H, XU X J, YU H, et al. Comparing the long-term responses
of soil microbial structures and diversities to polyethylene
microplastics in different aggregate fractions[J]. Environment
International, 2021, 149:106398.
[136] QIU Y F, ZHOU S L, ZHANG C C, et al. Soil microplastic
characteristics and the effects on soil properties and biota:a
systematic review and meta-analysis[J]. Environmental Pollution,
2022, 313:120183.
[137] WAN Y, WU C X, XUE Q, et al. Effects of plastic contamination on
water evaporation and desiccation cracking in soil[J]. Science of the
Total Environment, 2019, 654:576-582.
[138] YU Y X, BATTU A K, VARGA T, et al. Minimal impacts of
microplastics on soil physical properties under environmentally
relevant concentrations[J]. Environmental Science amp; Technology,
2023, 57(13):5296-5304.
[139] CAO D D, WANG X, LUO X X, et al. Effects of polystyrene
microplastics on the fitness of earthworms in an agricultural soil[J].
IOP Conference Series:Earth and Environmental Science, 2017, 61:
012148.
[140] MONDOL M, ANGON P B, ROY A. Effects of microplastics on soil
physical, chemical and biological properties[J]. Natural Hazards
Research, 2025, 5(1):14-20.
[141] ZHANG J R, REN S Y, XU W, et al. Effects of plastic residues and
microplastics on soil ecosystems:a global meta-analysis[J]. Journal
of Hazardous Materials, 2022, 435:129065.
[142] LIU Z Q, WEN J H, LIU Z X, et al. Polyethylene microplastics alter
soil microbial community assembly and ecosystem multifunctionality
[J]. Environment International, 2024, 183:108360.
[143] MA R J, XU Z N, SUN J Y, et al. Microplastics affect C, N, and P
cycling in natural environments:highlighting the driver of soil
hydraulic properties[J]. Journal of Hazardous Materials, 2023, 459:
132326.
[144] SMITH K A. Changing views of nitrous oxide emissions from
agricultural soil:key controlling processes and assessment at
different spatial scales[J]. European Journal of Soil Science, 2017, 68
(2):137-155.
[145] YU Y X, LI X, FAN H X, et al. Dose effect of polyethylene
microplastics on nitrous oxide emissions from paddy soils cultivated
for different periods[J]. Journal of Hazardous Materials, 2023, 453:
131445.
[146] YU Z F, SONG S, XU X L, et al. Sources, migration, accumulation
and influence of microplastics in terrestrial plant communities[J].
Environmental and Experimental Botany, 2021, 192:104635.
[147] FEI Y F, HUANG S Y, ZHANG H B, et al. Response of soil enzyme
activities and bacterial communities to the accumulation of
microplastics in an acid cropped soil[J]. Science of the Total
Environment, 2020, 707:135634.
[148] HUANG Y, ZHAO Y R, WANG J, et al. LDPE microplastic films
alter microbial community composition and enzymatic activities in
soil[J]. Environmental Pollution, 2019, 254:112983.
[149] AWET T T, KOHL Y, MEIER F, et al. Effects of polystyrene
nanoparticles on the microbiota and functional diversity of enzymes
in soil[J]. Environmental Sciences Europe, 2018, 30(1):11.
[150] WANG J, LV S H, ZHANG M Y, et al. Effects of plastic film
residues on occurrence of phthalates and microbial activity in soils
[J]. Chemosphere, 2016, 151:171-177.
[151] LIU X H, LI Y Y, YU Y X, et al. Effect of nonbiodegradable
microplastics on soil respiration and enzyme activity:a metaanalysis[
J]. Applied Soil Ecology, 2023, 184:104770.
[152] YI M L, ZHOU S H, ZHANG L L, et al. The effects of three different
microplastics on enzyme activities and microbial communities in soil
[J]. Water Environment Research, 2021, 93(1):24-32.
[153] WRIGHT R J, ERNI-CASSOLA G, ZADJELOVIC V, et al. Marine
plastic debris: a new surface for microbial colonization[J].
Environmental Science amp; Technology, 2020, 54(19):11657-11672.
[154] FOULON V, LE ROUX F, LAMBERT C, et al. Colonization of
polystyrene microparticles by Vibrio crassostreae:light and electron
microscopic investigation[J]. Environmental Science amp; Technology,
2016, 50(20):10988-10996.
[155] DE TENDER C A, DEVRIESE L I, HAEGEMAN A, et al. Bacterial
community profiling of plastic litter in the Belgian part of the North
Sea[J]. Environmental Science amp; Technology, 2015, 49(16):9629-
9638.
[156] SOORIYAKUMAR P, BOLAN N, KUMAR M, et al. Biofilm
formation and its implications on the properties and fate of
microplastics in aquatic environments:a review[J]. Journal of
Hazardous Materials Advances, 2022, 6:100077.
[157] MENG L, LIANG L R, SHI Y S, et al. Biofilms in plastisphere from
freshwater wetlands: biofilm formation, bacterial community
assembly, and biogeochemical cycles[J]. Journal of Hazardous
Materials, 2024, 476:134930.
[158] ZHANG S W, LI Y S, JIANG L S, et al. Organic fertilizer facilitates
the soil microplastic surface degradation and enriches the diversity
of bacterial biofilm[J]. Journal of Hazardous Materials, 2023,459:
132139.
[159] YU Z Y, QIU D H, ZHOU T, et al. Biofilm enhances the interactive
effects of microplastics and oxytetracycline on zebrafish intestine[J].
Aquatic Toxicology, 2024, 270:106905.
[160] FENG X Y, WANG Q L, SUN Y H, et al. Microplastics change soil
properties, heavy metal availability and bacterial community in a
Pb-Zn-contaminated soil[J]. Journal of Hazardous Materials, 2022,
424:127364.
[161] JUDD K E, CRUMP B C, KLING G W. Variation in dissolved
organic matter controls bacterial production and community
composition[J]. Ecology, 2006, 87(8):2068-2079.
[162] LU J, YU Z G, NGIAM L, et al. Microplastics as potential carriers of
viruses could prolong virus survival and infectivity[J]. Water
Research, 2022, 225:119115.
[163] LI Y T, GU P, ZHANG W, et al. Effects of biodegradable and nonbiodegradable
microplastics on bacterial community and PAHs
natural attenuation in agricultural soils[J]. Journal of Hazardous
Materials, 2023, 449:131001.
[164] YU X, ZHANG Y, TAN L, et al. Microplastisphere may induce the
enrichment of antibiotic resistance genes on microplastics in aquatic
environments:a review[J]. Environmental Pollution, 2022, 310:
119891.
[165] WANG J, COFFIN S, SUN C L, et al. Negligible effects of
microplastics on animal fitness and HOC bioaccumulation in
earthworm Eisenia fetida in soil[J]. Environmental Pollution, 2019,
249:776-784.
[166] HE F L, SHI H J, GUO S Q, et al. Molecular mechanisms of nanosized
polystyrene plastics induced cytotoxicity and immunotoxicity
in Eisenia fetida[J]. Journal of Hazardous Materials, 2024, 465:
133032.
[167] KWAK J I, AN Y J. Microplastic digestion generates fragmented
nanoplastics in soils and damages earthworm spermatogenesis and
coelomocyte viability[J]. Journal of Hazardous Materials, 2021, 402:
124034.
[168] HUERTA LWANGA E, MENDOZA VEGA J, KU QUEJ V, et al.
Field evidence for transfer of plastic debris along a terrestrial food
chain[J]. Scientific Reports, 2017, 7:14071.
[169] ZHU D, BI Q F, XIANG Q, et al. Trophic predator-prey
relationships promote transport of microplastics compared with the
single Hypoaspis aculeifer and Folsomia candida[J]. Environmental
Pollution, 2018, 235:150-154.
[170] JU H, ZHU D, QIAO M. Effects of polyethylene microplastics on the
gut microbial community, reproduction and avoidance behaviors of
the soil springtail, Folsomia candida[J]. Environmental Pollution,
2019, 247:890-897.
[171] KIM H M, LEE D K, LONG N P, et al. Uptake of nanopolystyrene
particles induces distinct metabolic profiles and toxic effects in
Caenorhabditis elegans[J]. Environmental Pollution, 2019, 246:
578-586.
[172] JIN Y X, LU L, TU W Q, et al. Impacts of polystyrene microplastic
on the gut barrier, microbiota and metabolism of mice[J]. Science of
the Total Environment, 2019, 649:308-317.
[173] CHEN G Q, XIONG S Y, JING Q, et al. Maternal exposure to
polystyrene nanoparticles retarded fetal growth and triggered
metabolic disorders of placenta and fetus in mice[J]. Science of the
Total Environment, 2023, 854:158666.
[174] CHEN J H, CHEN G H, PENG H Q, et al. Microplastic exposure
induces muscle growth but reduces meat quality and muscle
physiological function in chickens[J]. Science of the Total
Environment, 2023, 882:163305.
[175] QI Y L, YANG X M, PELAEZ A M, et al. Macro - and micro -
plastics in soil-plant system:effects of plastic mulch film residues
on wheat(Triticum aestivum) growth[J]. Science of the Total
Environment, 2018, 645:1048-1056.
[176] QI Y L, OSSOWICKI A, YANG X M, et al. Effects of plastic mulch
film residues on wheat rhizosphere and soil properties[J]. Journal of
Hazardous Materials, 2020, 387:121711.
[177] LI L Z, LUO Y M, LI R J, et al. Effective uptake of submicrometre
plastics by crop plants via a crack-entry mode[J]. Nature
Sustainability, 2020, 3:929-937.
[178] AUSTEN K, MACLEAN J, BALANZATEGUI D, et al. Microplastic
inclusion in birch tree roots[J]. Science of the Total Environment,
2022, 808:152085.
[179] BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics
accumulate on pores in seed capsule and delay germination and root
growth of the terrestrial vascular plant Lepidium sativum[J].
Chemosphere, 2019, 226:774-781.
[180] KAL?íKOVá G, ?GAJNAR GOTVAJN A, KLADNIK A, et al.
Impact of polyethylene microbeads on the floating freshwater plant
duckweed Lemna minor[J]. Environmental Pollution, 2017, 230:
1108-1115.
[181] LIU E K, HE W Q, YAN C R.‘White revolution’to‘white pollution’:
agricultural plastic film mulch in China[J]. Environmental Research
Letters, 2014, 9(9):091001.
[182] DE SOUZA MACHADO A A, LAU C W, KLOAS W, et al.
Microplastics can change soil properties and affect plant
performance[J]. Environmental Science amp; Technology, 2019, 53
(10):6044-6052.
[183] GONG W W, ZHANG W, JIANG M Y, et al. Species-dependent
response of food crops to polystyrene nanoplastics and microplastics
[J]. Science of the Total Environment, 2021, 796:148750.
[184] 江俊濤, 陳宏偉, 閻薪竹, 等. 聚丙烯微塑料添加對大豆和花生生
長及生理生態(tài)特征的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2023, 42(4):
761-768. JIANG J T, CHEN H W, YAN X Z, et al. Effects of
polypropylene microplastics on the growth and ecophysiological
characteristics of soybean(Glycine max) and peanut(Arachis
hypogaea L.)[J]. Journal of Agro - Environment Science, 2023, 42
(4):761-768.
[185] BERIOT N, PEEK J, ZORNOZA R, et al. Low density-microplastics
detected in sheep faeces and soil:a case study from the intensive
vegetable farming in southeast Spain[J]. Science of the Total
Environment, 2021, 755:142653.
[186] ABBASI S, MOORE F, KESHAVARZI B, et al. PET-microplastics
as a vector for heavy metals in a simulated plant rhizosphere zone[J].
Science of the Total Environment, 2020, 744:140984.
[187] DONG Y M, GAO M L, SONG Z G, et al. Microplastic particles
increase arsenic toxicity to rice seedlings[J]. Environmental
Pollution, 2020, 259:113892.
[188] YANG X, LI Z H, MA C, et al. Microplastics influence on Hg
methylation in diverse paddy soils[J]. Journal of Hazardous
Materials, 2022, 423:126895.
[189] MAHADAPPA P, KRISHNASWAMY N, KARUNANIDHI M, et al.
Effect of plastic foreign body impaction on rumen function and
heavy metal concentrations in various body fluids and tissues of
buffaloes[J]. Ecotoxicology and Environmental Safety, 2020, 189:
109972.
[190] ZHANG Z K, ZHAO L, JIN Q W, et al. Combined contamination of
microplastic and antibiotic alters the composition of microbial
community and metabolism in wheat and maize rhizosphere soil[J].
Journal of Hazardous Materials, 2024, 473:134618.
[191] ZHU J H, LIU S Q, SHEN Y, et al. Microplastics lag the leaching of
phenanthrene in soil and reduce its bioavailability to wheat[J].
Environmental Pollution, 2022, 292:118472.
[192] AVIO C G, GORBI S, MILAN M, et al. Pollutants bioavailability and
toxicological risk from microplastics to marine mussels[J].
Environmental Pollution, 2015, 198:211-222.
[193] PITTURA L, AVIO C G, GIULIANI M E, et al. Microplastics as
vehicles of environmental PAHs to marine organisms:combined
chemical and physical hazards to the Mediterranean mussels,
Mytilus galloprovincialis[J]. Frontiers in Marine Science, 2018, 5:
103.
[194] GONZáLEZ-SOTO N, CAMPOS L, NAVARRO E, et al. Effects of
microplastics alone or with sorbed oil compounds from the water
accommodated fraction of a North Sea crude oil on marine mussels
(Mytilus galloprovincialis)[J]. Science of the Total Environment,
2022, 851:157999.
[195] NGUYEN M K, RAKIB M R J, LIN C, et al. A comprehensive
review on ecological effects of microplastic pollution:an interaction
with pollutants in the ecosystems and future perspectives[J]. Trends
in Analytical Chemistry, 2023, 168:117294.
[196] ZHANG H X, HUANG Y M, AN S S, et al. Mulch-derived
microplastic aging promotes phthalate esters and alters organic
carbon fraction content in grassland and farmland soils[J]. Journal
of Hazardous Materials, 2024, 461:132619.
[197] DENG Y F, YAN Z H, SHEN R Q, et al. Microplastics release
phthalate esters and cause aggravated adverse effects in the mouse
gut[J]. Environment International, 2020, 143:105916.
[198] XIAO H Y, LIU Y J, YU H X, et al. Combined toxicity influence of
polypropylene microplastics and di-2-ethylhexyl phthalate on
physiological-biochemical characteristics of cucumber(Cucumis
sativus L.)[J]. Plant Physiology and Biochemistry, 2023, 201:
107811.
(責(zé)任編輯:李丹)