摘要:目的" 建立N6-甲基腺苷(m6A)相關(guān)的長鏈非編碼RNA(lncRNA)標(biāo)記預(yù)測口腔癌的預(yù)后。方法" 基于TCGA數(shù)據(jù)庫中HNSC隊列的mRNA表達數(shù)據(jù)、臨床信息和已發(fā)表文獻中的m6A調(diào)控基因,通過Pearson相關(guān)性評估篩選m6A相關(guān)lncRNAs(mrlncRNAs)。通過單因素、LASSO及多因素回歸分析構(gòu)建口腔癌的mrlncRNAs預(yù)后模型并進行驗證。結(jié)合臨床特征構(gòu)建列線圖模型,綜合評估預(yù)后模型的性能。結(jié)果" 總獲得與15個預(yù)后相關(guān)的mrlncRNAs,在訓(xùn)練數(shù)據(jù)集中構(gòu)建的模型ROC曲線下的面積(AUC)發(fā)現(xiàn),3年、4年和5年AUC分別為0.735、0.735和0.806,在測試集和整個數(shù)據(jù)集中AUC均大于0.6;高風(fēng)險組的預(yù)后差于低風(fēng)險組(P<0.05);預(yù)后風(fēng)險評分與T分期相關(guān)(P<0.05),與病理分期和N分期無關(guān)(P>0.05);高風(fēng)險組中CD8+T細胞、濾泡輔助性T細胞和Treg細胞的比例比低風(fēng)險組低(P<0.05);較高的TMB與較差的預(yù)后相關(guān)(P<0.05);高風(fēng)險組的免疫檢查點分子的表達比低風(fēng)險組低(P<0.05)。結(jié)論" 基于15個mrlncRNAs特征構(gòu)建的nomogram模型對于評估口腔癌具有良好的預(yù)后價值和預(yù)測準(zhǔn)確性,而且有助于口腔癌患者的風(fēng)險分層和預(yù)測免疫療效,對于提高口腔癌患者生存率具有重要意義。
關(guān)鍵詞:口腔癌;N6-甲基腺苷;非編碼RNA;預(yù)后模型;腫瘤微環(huán)境
中圖分類號:R739.8" " " " " " " " " " " " " " " " " " " "文獻標(biāo)識碼:A" " " " " " " " " " " " " "DOI:10.3969/j.issn.1006-1959.2025.05.006
文章編號:1006-1959(2025)05-0038-11
Abstract: Objective" To establish N6-methyladenosine (m6A)-related long non-coding RNA (lncRNA) markers to predict the prognosis of oral cancer. Methods" Based on the mRNA expression data, clinical information and m6A regulatory genes in the published literature of the HNSC cohort in the TCGA database, m6A-related lncRNAs (mrlncRNAs) were screened by Pearson correlation evaluation. The prognostic model of mrlncRNAs in oral cancer was constructed and verified by univariate, LASSO and multivariate regression analysis. Combined with clinical features, a nomogram model was constructed to comprehensively evaluate the performance of the prognostic model. Results" A total of 15 prognostic-related mrlncRNAs were obtained. The area under the ROC curve (AUC) of the model constructed in the training data set was found to be 0.735,0.735 and 0.806 for 3 years, 4 years and 5 years, respectively, and the AUC in the test set and the entire data set was greater than 0.6; the prognosis of the high-risk group was worse than that of the low-risk group (Plt;0.05). The prognostic risk score was correlated with T stage (Plt;0.05), but not with pathological stage and N stage (Pgt;0.05). The proportion of CD8+ T cells, follicular helper T cells and Treg cells in the high-risk group was lower than that in the low-risk group (Plt;0.05). Higher TMB was associated with poorer prognosis (Plt;0.05). The expression of immune checkpoint molecules in the high risk group was lower than that in the low risk group (Plt;0.05). Conclusion" The nomogram model based on the characteristics of 15 mrlncRNAs has good prognostic value and predictive accuracy for evaluating oral cancer, and is helpful to predict the risk stratification and immune efficacy of patients with oral cancer, which is of great significance for improving the survival rate of patients with oral cancer.
口腔癌(oral cancer)是全球第11大最常見的癌癥,其中90%以上是口腔鱗狀細胞癌,由于其具有相對較高的發(fā)病率和死亡率,已成為一個全球性的健康問題[1, 2]??谇话┑奶攸c是預(yù)后差,淋巴轉(zhuǎn)移率高[3]。盡管手術(shù)、放療和化療在口腔癌治療方面取得了很大進展,但晚期口腔癌(Ⅲ期和Ⅳ期)的5年生存率約為20%[4]。因此,尋找新的生物標(biāo)志物對口腔癌的診斷和個性化治療具有重要意義。長鏈非編碼RNA(long noncoding RNA, lncRNA)是轉(zhuǎn)錄物長度超過200個核苷酸且不編碼蛋白質(zhì)的RNA分子,但能通過轉(zhuǎn)錄和轉(zhuǎn)錄后調(diào)控基因表達參與細胞生長、分化和增殖[5,6]。越來越多的證據(jù)表明[7,8],lncRNA在口腔癌的生存率中起著至關(guān)重要的作用。此外,lncRNAs的表達模式在口腔癌的診斷和治療中發(fā)揮著作用[9],如LncRNA MALAT1可作為口腔鱗狀細胞癌的生物標(biāo)志物和治療靶點[10]。此外,N6-甲基腺苷(N6-Methyladenosine, m6A)作為最常見的RNA修飾,不僅存在于信使RNAs(messenger RNAs, mRNAs)中,也存在于lncRNAs中[11]。m6A甲基化影響幾乎所有的RNA代謝方面,包括RNA易位、剪接、穩(wěn)定和翻譯[12]。迄今為止,已有多項研究發(fā)現(xiàn)m6A可通過影響lncRNA表達影響癌癥進展[13,14],如m6A甲基轉(zhuǎn)移酶METTL3誘導(dǎo)的lncRNA GBAP1通過激活BMP/SMAD通路促進肝癌進展[15]。同時,鑒于lncRNA在細胞/組織的特異性,lncRNA更容易用于預(yù)測癌癥患者的預(yù)后[16]。因此,本研究構(gòu)建了具有預(yù)后價值的m6A相關(guān)的lncRNAs(m6A-related lncRNAs, mrlncRNAs)風(fēng)險模型,并預(yù)測了風(fēng)險模型與免疫微環(huán)境的相關(guān)性,為口腔癌的治療提供新的潛在靶點。
1材料與方法
1.1數(shù)據(jù)下載和獲取
通過UCSC Xena平臺(https://xenabrowser.net/datapages/)獲得GDC TCGA頭頸鱗狀細胞癌(TCGA-HNSC)轉(zhuǎn)錄組和體細胞突變譜隊列,以及相應(yīng)的臨床數(shù)據(jù)集,剔除非口腔癌相關(guān)部位的樣本,共獲得369個口腔癌相關(guān)的樣本(包含32正常樣本,337腫瘤樣本),樣本信息見表1。隨后,通過腫瘤樣本的轉(zhuǎn)錄組提取出mRNA的表達矩陣,然后通過GENCODE網(wǎng)站的lncRNA注釋文件鑒定出14 071個lncRNAs。從文獻中選擇21個已知的m6A調(diào)控基因[17-19]。
1.2口腔癌中mrlncRNAs的鑒定
對lncRNAs與m6A進行Pearson相關(guān)性評估,其中mrlncRNAs定義為lncRNA表達與m6A調(diào)控因子的相關(guān)系數(shù)絕對值>0.5且P-value<0.001的lncRNA。
1.3口腔癌中mrlncRNAs相關(guān)預(yù)后模型的建立與驗證
將337例TCGA-HNSC隊列定義為整個數(shù)據(jù)集,以1∶1的比例隨機劃分,并分配給訓(xùn)練數(shù)據(jù)集(168例)或測試數(shù)據(jù)集(169例)。然后,用訓(xùn)練數(shù)據(jù)集生成預(yù)后風(fēng)險模型,再用測試數(shù)據(jù)和整個數(shù)據(jù)集對預(yù)后模型進行評估。本研究使用R包survival和survminer進行單變量Cox比例風(fēng)險回歸模型,以確定與預(yù)后密切相關(guān)的mrlncRNAs(P<0.05)。然后,使用R包glmnet進行LASSO回歸評估來避免過擬合。最后,通過多變量Cox回歸分析確定每個預(yù)后因子的回歸系數(shù),建立預(yù)后風(fēng)險評估模型,預(yù)測患者生存率。公式為:風(fēng)險分數(shù)=∑差異基因的回歸系數(shù)χi×歸一化處理后的基因表達量βi。
1.4繪制生存曲線和ROC曲線
R包中survivvalROC用于繪制受試者工作特征(receiver operating characteristic, ROC)曲線,并量化曲線下面積(area undercurve, AUC),以評估風(fēng)險評分模型的敏感性和特異性。選擇真陽性和假陽性差異最顯著的ROC曲線,并選擇曲線的轉(zhuǎn)折點作為最佳截止值,根據(jù)該曲線將病例分為低風(fēng)險組或高風(fēng)險組。利用R中的survminer軟件包,基于Kaplan-Meier曲線對比分析各組總生存(overall survival, OS)終點。
1.5構(gòu)建和驗證列線圖
將年齡、性別、病理分期、風(fēng)險評分等納入單因素Cox回歸模型,篩選影響口腔癌患者預(yù)后的獨立危險因素。此外,本研究使用R包rms將臨床變量(如年齡、性別、病理分期)與風(fēng)險評分一起構(gòu)建預(yù)后nomogram,并根據(jù)校正曲線和一致性指數(shù)(concordanceindex, C-index)評估風(fēng)險評分的適用性。最后,根據(jù)Wilcoxon檢驗研究風(fēng)險評分模型與病例臨床特征之間的關(guān)系。
1.6口腔癌腫瘤微環(huán)境中潛在的免疫治療相關(guān)信號的探索
首先,根據(jù)構(gòu)建的預(yù)后模型將訓(xùn)練數(shù)據(jù)集分為高風(fēng)險組和低風(fēng)險組,分組標(biāo)準(zhǔn)同上述一致,以ROC曲線的轉(zhuǎn)折點作為最佳截止值,根據(jù)該曲線將病例分為低風(fēng)險組或高風(fēng)險組。此外,使用CIBERSORT算法估計TCGA-HNSC隊列中每個樣本中22種腫瘤浸潤免疫細胞的比例[20]。然后,使用非配對t檢驗比較高風(fēng)險和低風(fēng)險評分組之間免疫景觀的統(tǒng)計差異。
此外,利用maftoolsR軟件包計算腫瘤突變負荷(tumor mutation burden, TMB)值,并可視化高風(fēng)險組和低風(fēng)險組的突變譜[21]。隨后,采用非配對t檢驗比較低風(fēng)險組和高風(fēng)險組間TMB值的差異,并繪制Kaplan-Meier曲線以比較不同TMB值OS的差異。最后,采用Wilcoxon檢驗比較低風(fēng)險組和高風(fēng)險組間免疫檢查點及其配體mRNA水平的差異。
2結(jié)果
2.1口腔癌的mrlncRNAs相關(guān)預(yù)后模型的構(gòu)建與驗證
圖1展示了本研究的工作流程。根據(jù)Pearson相關(guān)分析后,本研究總共獲得485個mrlncRNAs。隨后,本研究使用單因素Cox回歸分析來探討TCGA隊列中mrlncRNAs與口腔癌患者總生存率之間的關(guān)系。單因素Cox回歸模型結(jié)果顯示,32個mrlncRNAs與口腔癌患者的總生存率相關(guān)(P<0.05),見表2。隨后,LASSO回歸分析進一步鑒定出15個具有最大預(yù)后價值的mrlncRNAs,見圖2A、圖2B。然后,進行多變量Cox回歸分析,基于訓(xùn)練數(shù)據(jù)集建立mrlncRNAs相關(guān)風(fēng)險評分模型,各基因的風(fēng)險比見圖2C。根據(jù)計算的風(fēng)險評分,本研究將口腔癌患者分為低風(fēng)險組和高風(fēng)險組。Kaplan-Meier分析結(jié)果顯示,高風(fēng)險組患者的OS較低風(fēng)險組患者差(P<0.0001),見圖2D。隨著風(fēng)險評分的增加,OS有惡化的趨勢,且高風(fēng)險組的死亡比例高于低風(fēng)險組,見圖2E。此外,3年、4年和5年的ROC曲線下AUC值分別為0.735、0.735和0.806,見圖2F。使用整個數(shù)據(jù)集和測試數(shù)據(jù)集對預(yù)后模型進行驗證:與訓(xùn)練數(shù)據(jù)集中的發(fā)現(xiàn)一致,整個數(shù)據(jù)集(圖2G)和測試數(shù)據(jù)集(圖2H)中高風(fēng)險組的OS比低風(fēng)險組更差;測試數(shù)據(jù)集中3年OS的預(yù)后模型AUC為0.637,4年OS為0.628,5年OS為0.670,見圖2I;整個數(shù)據(jù)集中3年OS為0.670,4年OS為0.670,5年OS為0.715,見圖2J。
2.2評估m(xù)rlncRNAs相關(guān)的預(yù)后特征
患者的年齡(>60歲)、腫瘤分期(Ⅳ期)、風(fēng)險評分等特征與OS有相關(guān)性(P<0.05),見圖3A。3、4和5年的生存概率見圖3B,當(dāng)評估肝癌患者的總得分為100分時,則預(yù)測未來3、4和5年的生存概率分別是40%、38%和28%。校正曲線顯示,預(yù)測曲線接近理想曲線,性能良好,見圖3C~3E。Wilcoxon檢驗顯示,在整個數(shù)據(jù)集上,較高的風(fēng)險評分與病理分期和N分期無關(guān),但與較高的T分期相關(guān),見圖3F~3H。
2.3 mrlncRNAs預(yù)后特征的免疫浸潤和體細胞突變分析
基于CIBERSORT算法估計了每個口腔癌患者中22種免疫細胞的比例,發(fā)現(xiàn)在CD8+T細胞、濾泡輔助性T細胞和Treg細胞的細胞比例在低風(fēng)險組和高風(fēng)險組存在顯著差異,見圖4A。高風(fēng)險組和低風(fēng)險組的突變圖譜見圖4B,其中TP53、TTN、FAT1、CDKN2A、PIK3CA、NOTCH1的突變概率在兩組中無顯著性差異。對基因BRWD3和EGFR分別進行生存曲線分析,兩個基因均能作為獨立的預(yù)后因子(P<0.05),見圖4C和4D。
2.4 mrlncRNAs預(yù)后特征的療效預(yù)測
高風(fēng)險組和低風(fēng)險組TMB比較,差異無統(tǒng)計學(xué)意義(P=0.094),見圖5A、5B。高TMB與預(yù)后不良顯著相關(guān),見圖5C。采用Wilcoxon檢驗比較高風(fēng)險組和低風(fēng)險組免疫檢查點及其配體的表達水平,結(jié)果發(fā)現(xiàn)低風(fēng)險組中CTLA-4(P=0.0048)和PD-1(P=0.0024)表達水平較高,PD-L1(P=0.17)無顯著性差異,見圖5D~5F。
3討論
隨著近年來lncRNAs研究的深入,其與m6A調(diào)控因子的相關(guān)性逐漸引起了科研人員的重視。關(guān)于m6A調(diào)節(jié)因子或lncRNAs特征預(yù)測模型用于預(yù)測腫瘤特別是HNSC患者預(yù)后的已發(fā)表文獻很多[22,23]。如Chen J等[22]基于m6A調(diào)節(jié)因子構(gòu)建的預(yù)后標(biāo)記可用于有效區(qū)分HNSCC患者的預(yù)后。Zhu W等[23]通過對TCGA數(shù)據(jù)集的分析,構(gòu)建了HNSCC的14-lncRNAs預(yù)測特征,可以顯著區(qū)分HNSCC患者中的高風(fēng)險組患者和低風(fēng)險組患者,能更好地預(yù)測其預(yù)后。然而,目前尚無相關(guān)研究系統(tǒng)探索mrlncRNAs的口腔癌預(yù)測模型,以評估口腔癌患者的預(yù)后。因此,本研究構(gòu)建了口腔癌的mrlncRNAs預(yù)后模型,為預(yù)測口腔癌患者的預(yù)后提供新的思路。
本研究基于15個mrlncRNAs(AC018752.1、AC073569.2、AC099850.3、ACL139035.1、AC023509.1、AC098851.1、AL627309.5、JPX、TNFRSF10A-AS1、ELOA-AS1、LINCO2246、AL132639.3)構(gòu)建了口腔癌預(yù)后風(fēng)險評估模型。已有研究發(fā)現(xiàn)[24],lncRNA AC099850.3通過PRR11/PI3K/AKT軸促進肝細胞癌的增殖和侵襲,與患者預(yù)后相關(guān)。同時,AC099850.3/NCAPG軸還能預(yù)測肺腺癌患者的預(yù)后不良[25]。AC099850.3與其他lncRNAs分子構(gòu)成了一個新的口腔鱗狀細胞癌預(yù)后模型,該模型對預(yù)后預(yù)測和免疫評價具有一定的價值[26]。另外,m6A相關(guān)lncRNAAC023509.1是膀胱癌潛在的預(yù)后和免疫治療反應(yīng)性生物標(biāo)志物[27]。lncRNA JPX不僅通過靶向miR-516b-5p/VEGFA軸促進食管鱗狀細胞癌進展[28],同時發(fā)現(xiàn)在口腔鱗狀細胞癌細胞中高表達[29]。lncRNA TNFRSF10A-AS1通過直接結(jié)合致癌基因MPZL1促進胃癌發(fā)展,并與患者預(yù)后相關(guān)[30]。除此之外,TNFRSF10A-AS1還可以作為評估結(jié)腸癌患者預(yù)后的新的潛在和有前景的預(yù)測因子[31]。lncRNA ELOA-AS1可以作為低級別膠質(zhì)瘤的獨立預(yù)后危險因素[32]。lncRNA AL132639.3可作為兒童急性淋巴細胞白血病的新型診斷生物標(biāo)志物[33]。然而,其他9個mrlncRNAs在癌癥相關(guān)研究中并未見報道。因此,本研究首次探索了口腔癌中mrlncRNAs的預(yù)測模型,且對口腔癌的預(yù)測預(yù)后均有不錯的準(zhǔn)確性,同時mrlncRNAs特征作為獨立預(yù)后因素計算的風(fēng)險評分比TNM分期和腫瘤分級等常見臨床特征更能預(yù)測口腔癌的OS。
同其他預(yù)后模型類型[34],本研究還建立了一個基于mrlncRNAs風(fēng)險評分和臨床病理特征的nomogram,并將其整合到一個單一的數(shù)值算法中,以預(yù)測每個口腔癌患者的預(yù)后。此外,lncRNAs作為免疫系統(tǒng)中基因表達的關(guān)鍵調(diào)控因子[35],在指導(dǎo)多種免疫細胞的發(fā)育和控制動態(tài)轉(zhuǎn)錄程序方面具有重要意義[36]。例如,lncRNA TCL6與免疫細胞相關(guān),在乳腺癌患者中表現(xiàn)出較差的預(yù)后[37]。本研究構(gòu)建的mrlncRNAs預(yù)后特征能夠評估口腔癌患者的免疫浸潤。本研究發(fā)現(xiàn)CD8+T細胞、濾泡輔助性T細胞和Treg細胞在高風(fēng)險評分患者中比在低風(fēng)險評分患者中下調(diào)。腫瘤浸潤性CD8+T細胞通常表明更好的免疫治療反應(yīng)和預(yù)后[38]。在大多數(shù)腫瘤類型中,濾泡輔助性T細胞的增加與較好的預(yù)后相關(guān)[39]。在口腔癌前病變和口腔癌的發(fā)展過程中,Treg細胞通過被耗盡或下調(diào),以增強抗腫瘤免疫反應(yīng)[40]。本研究中mrlncRNAs模型中高風(fēng)險組患者預(yù)后較差,這可能與這些免疫細胞下調(diào)有關(guān)。此外,Galon J等[41]提出基于腫瘤免疫細胞密度分析的免疫評分可以預(yù)測患者的預(yù)后,該方法比TNM分析更準(zhǔn)確。因此,本研究構(gòu)建的mrlncRNAs風(fēng)險模型與腫瘤免疫細胞浸潤高度相關(guān),這可能通過確定免疫治療的反應(yīng)為個性化治療提供見解。
TMB和免疫檢查點的表達影響免疫治療的療效[42],本研究發(fā)現(xiàn)高TMB組與不良預(yù)后相關(guān),且高風(fēng)險組患者免疫檢查點(CTLA-4和PD-1)下調(diào)。近年來,有研究證明[43,44],CTLA-4和PD-1可以抑制多種癌癥的抗腫瘤免疫反應(yīng)。研究表明[45],免疫檢查點抑制劑在癌癥免疫治療領(lǐng)域取得了一定成就,腫瘤免疫治療具有重要意義??梢?,監(jiān)測免疫檢查點的表達水平對評價免疫治療效果具有重要意義,以上結(jié)果表明mrlncRNAs特征可以預(yù)測口腔癌患者的生存率和療效。
綜上所述,基于15個mrlncRNAs特征不僅具有良好的預(yù)后價值和預(yù)測準(zhǔn)確性,而且有助于口腔癌患者的風(fēng)險分層和預(yù)測免疫療效,為口腔癌的個體化治療提供指導(dǎo)。
參考文獻:
[1]Siegel RL,Miller KD,Jemal A.Cancer statistics, 2018[J].CA Cancer J Clin,2018,68(1):7-30.
[2]D'souza S,Addepalli V.Preventive measures in oral cancer: An overview[J].Biomed Pharmacother,2018,107:72-80.
[3]Noguti J,De Moura CF,De Jesus GP,et al.Metastasis from oral cancer: an overview[J].Cancer Genomics Proteomics,2012,9(5):329-335.
[4]van der Waal I.Are we able to reduce the mortality and morbidity of oral cancer; some considerations[J].Med Oral Patol Oral Cir Bucal,2013,18(1):e33-e37.
[5]Dhamija S,Diederichs S.From junk to master regulators of invasion: lncRNA functions in migration, EMT and metastasis[J].Int J Cancer,2016,139(2):269-280.
[6]Peng WX,Koirala P,Mo YY.LncRNA-mediated regulation of cell signaling in cancer[J].Oncogene,2017,36(41):5661-5667.
[7]Zhang S,Ma H,Zhang D,et al.LncRNA KCNQ1OT1 regulates proliferation and cisplatin resistance in tongue cancer via miR-211-5p mediated Ezrin/Fak/Src signaling[J].Cell Death Dis,2018,9(7):742.
[8]Chen S,Yang M,Wang C,et al.Forkhead box D1 promotes EMT and chemoresistance by upregulating lncRNA CYTOR in oral squamous cell carcinoma[J].Cancer Lett,2021,503:43-53.
[9]Momen-Heravi F,Bala S.Emerging role of non-coding RNA in oral cancer[J].Cell Signal,2018,42:134-143.
[10]Zhou X,Liu S,Cai G,et al.Long Non Coding RNA MALAT1 Promotes Tumor Growth and Metastasis by inducing Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma[J].Sci Rep,2015,5:15972.
[11]Lan Y,Liu B,Guo H.The role of M6A modification in the regulation of tumor-related lncRNAs[J].Mol Ther Nucleic Acids,2021,24:768-779.
[12]Sun T,Wu R,Ming L.The role of m6A RNA methylation in cancer[J].Biomed Pharmacother,2019,112:108613.
[13]Chi H,Zhao S,Yang J,et al.T-cell exhaustion signatures characterize the immune landscape and predict HCC prognosis via integrating single-cell RNA-seq and bulk RNA-sequencing[J].Front Immunol,2023,14:1137025.
[14]Liu HT,Zou YX,Zhu WJ,et al.lncRNA THAP7-AS1, transcriptionally activated by SP1 and post-transcriptionally stabilized by METTL3-mediated m6A modification, exerts oncogenic properties by improving CUL4B entry into the nucleus[J].Cell Death Differ,2022,29(3):627-641.
[15]Liu R,Yin G,Tuo H,et al.METTL3-induced lncRNA GBAP1 promotes hepatocellular carcinoma progression by activating BMP/SMAD pathway[J].Biol Direct,2023,18(1):53.
[16]Bolha L,Ravnik-Glavac M,Glavac D.Long Noncoding RNAs as Biomarkers in Cancer[J].Dis Markers,2017,2017:7243968.
[17]He L,Li H,Wu A,et al.Functions of N6-methyladenosine and its role in cancer[J].Mol Cancer,2019,18(1):176.
[18]Zaccara S,Ries RJ,Jaffrey SR.Reading, writing and erasing mRNA methylation[J].Nat Rev Mol Cell Biol,2019,20(10):608-624.
[19]Chong W,Shang L,Liu J,et al.m6A regulator-based methylation modification patterns characterized by distinct tumor microenvironment immune profiles in colon cancer[J].Theranostics,2021,11(5):2201-2217.
[20]Newman AM,Liu CL,Green MR,et al.Robust enumeration of cell subsets from tissue expression profiles[J].Nat Methods,2015,12(5):453-457.
[21]Mayakonda A,Lin DC,Assenov Y,et al.Maftools: efficient and comprehensive analysis of somatic variants in cancer[J].Genome Res,2018,28(11):1747-1756.
[22]Chen J,Lu T,Zhong F,et al.A Signature of N6-methyladenosine Regulator-Related Genes Predicts Prognoses and Immune Responses for Head and Neck Squamous Cell Carcinoma[J].Front Immunol,2022,13:809872.
[23]Zhu W,Ye Z,Chen L,et al.A pyroptosis-related lncRNA signature predicts prognosis and immune microenvironment in head and neck squamous cell carcinoma[J].Int Immunopharmacol,2021,101(Pt B):108268.
[24]Zhong F,Liu S,Hu D,et al.LncRNA AC099850.3 promotes hepatocellular carcinoma proliferation and invasion through PRR11/PI3K/AKT axis and is associated with patients prognosis[J].J Cancer,2022,13(3):1048-1060.
[25]Bao J,Wu Y,Zhang K,et al.AC099850.3/NCAPG Axis Predicts Poor Prognosis and is Associated with Resistance to EGFR Tyrosine-Kinase Inhibitors in Lung Adenocarcinoma[J].Int J Gen Med,2022,15:6917-6930.
[26]Qiu L,Tao A,Liu F,et al.Potential prognostic value of a eight ferroptosis-related lncRNAs model and the correlative immune activity in oral squamous cell carcinoma[J].BMC Genom Data,2022,23(1):80.
[27]Lu M,Zhan H,Liu B,et al.N6-methyladenosine-related non-coding RNAs are potential prognostic and immunotherapeutic responsiveness biomarkers for bladder cancer[J].EPMA J,2021,12(4):589-604.
[28]He Y,Hua R,Yang Y,et al.LncRNA JPX Promotes Esophageal Squamous Cell Carcinoma Progression by Targeting miR-516b-5p/VEGFA Axis[J].Cancers (Basel),2022,14(11):2713.
[29]Yao Y,Chen S,Lu N,et al.LncRNA JPX overexpressed in oral squamous cell carcinoma drives malignancy via miR-944/CDH2 axis[J].Oral Dis,2021,27(4):924-933.
[30]Sun D,Gou H,Wang D,et al.LncRNA TNFRSF10A-AS1 promotes gastric cancer by directly binding to oncogenic MPZL1 and is associated with patient outcome[J].Int J Biol Sci,2022,18(8):3156-3166.
[31]Wang Y,Zhang D,Li Y,et al.Constructing a novel signature and predicting the immune landscape of colon cancer using N6-methylandenosine-related lncRNAs[J].Front Genet,2023,14:906346.
[32]Nguyen QH,Nguyen T,Le DH.Identification and Validation of a Novel Three Hub Long Noncoding RNAs With m6A Modification Signature in Low-Grade Gliomas[J].Front Mol Biosci,2022,9:801931.
[33]Chen Z,Yang F,Liu H,et al.Identification of a nomogram based on an 8-lncRNA signature as a novel diagnostic biomarker for childhood acute lymphoblastic leukemia[J].Aging (Albany NY),2021,13(11):15548-15568.
[34]Li W,Gao Y,Jin X,et al.Comprehensive analysis of N6-methylandenosine regulators and m6A-related RNAs as prognosis factors in colorectal cancer[J].Mol Ther Nucleic Acids,2021,27:598-610.
[35]Chen YG,Satpathy AT,Chang HY.Gene regulation in the immune system by long noncoding RNAs[J].Nat Immunol,2017,18(9):962-972.
[36]Atianand MK,Caffrey DR,F(xiàn)itzgerald KA.Immunobiology of Long Noncoding RNAs[J].Annu Rev Immunol,2017,35:177-198.
[37]Zhang Y,Li Z,Chen M,et al.lncRNA TCL6 correlates with immune cell infiltration and indicates worse survival in breast cancer[J].Breast Cancer,2020,27(4):573-585.
[38]Garon EB,Hellmann MD,Rizvi NA,et al.Five-Year Overall Survival for Patients With Advanced Non?Small-Cell Lung Cancer Treated With Pembrolizumab: Results From the Phase I KEYNOTE-001 Study[J].J Clin Oncol,2019,37(28):2518-2527.
[39]Sautès-Fridman C,Lawand M,Giraldo NA,et al.Tertiary Lymphoid Structures in Cancers: Prognostic Value, Regulation, and Manipulation for Therapeutic Intervention[J].Front Immunol,2016,7:407.
[40]Zhang Y,Guo J,Jia R.Treg: A Promising Immunotherapeutic Target in Oral Diseases[J].Front Immunol,2021,12:667862.
[41]Galon J,Costes A,Sanchez-Cabo F,et al.Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J].Science,2006,313(5795):1960-1964.
[42]Chan TA,Yarchoan M,Jaffee E,et al.Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic[J].Ann Oncol,2019,30(1):44-56.
[43]Xu F,Jin T,Zhu Y,et al.Immune checkpoint therapy in liver cancer[J].J Exp Clin Cancer Res,2018,37(1):110.
[44]Chen D,Barsoumian HB,Yang L,et al.SHP-2 and PD-L1 Inhibition Combined with Radiotherapy Enhances Systemic Antitumor Effects in an Anti-PD-1-Resistant Model of Non-Small Cell Lung Cancer[J].Cancer Immunol Res,2020,8(7):883-894.
[45]Wang J,Li J,Tang G,et al.Clinical outcomes and influencing factors of PD-1/PD-L1 in hepatocellular carcinoma[J].Oncol Lett,2021,21(4):279.
收稿日期:2024-03-01;修回日期:2024-03-14
編輯/王萌
作者簡介:巴穎(1972.11-),女,遼寧遼陽人,碩士,主治醫(yī)師,主要從事基因組學(xué)研究及其在人類疾病早篩早診領(lǐng)域的應(yīng)用研究
通訊作者:張核子(1972.4-),男,湖南永州人,碩士,工程師,主要從事腫瘤早篩技術(shù)和ctDNA精準(zhǔn)醫(yī)療應(yīng)用的研究