摘要:高寒濕地碳循環(huán)過(guò)程受溫度升高的深刻影響,然而高寒沼澤濕地固碳微生物群落對(duì)溫度升高的響應(yīng)的研究尚不完善。本研究通過(guò)開(kāi)頂箱進(jìn)行增溫處理,利用高通量測(cè)序技術(shù),探討了青海湖沼澤濕地cbbL固碳微生物群落特征對(duì)溫度升高的響應(yīng)模式。結(jié)果顯示:變形菌門是青海湖沼澤濕地cbbL固碳微生物的優(yōu)勢(shì)菌群,固碳微生物群落結(jié)構(gòu)對(duì)增溫響應(yīng)明顯。LEfSe分析顯示,綱水平到屬水平的酸硫桿菌的相對(duì)豐度均顯著降低,而科水平和屬水平的硫鹽嗜生菌的相對(duì)豐度顯著增加,可作為增溫處理下的重要指示性菌群。冗余分析顯示土壤pH是最重要的影響因子。此外,固碳微生物的群落多樣性與全碳含量呈現(xiàn)了高度相關(guān)性,增溫顯著降低了土壤濕度及碳氮含量。本研究為未來(lái)研究氣候變化影響下高寒沼澤生態(tài)系統(tǒng)的變化提供了堅(jiān)實(shí)的基礎(chǔ),同時(shí)對(duì)闡明碳循環(huán)的機(jī)制具有重要意義。
關(guān)鍵詞:模擬增溫;固碳微生物;氣候變化;碳固定;高寒濕地
中圖分類號(hào):X172 """""""文獻(xiàn)標(biāo)識(shí)碼:A """""""文章編號(hào):1007-0435(2025)03-0728-11
Response of cbbL"Carbon Sequestration Microorganisms to Simulated Warming in the Marsh Wetland of Qinghai Lake
ZHANG Ni1,2,3,"CHEN Ke-long1,2,3*,"YANG Zi-wei1,2,3,"YANG Yan-li1,2,3,"LI Ying1,2,3,"WANG Ming-yu1,2,3
(1.Qinghai Province Key Laboratory of Physical Geography and Environmental Process,"College of Geographical Science,"Qinghai Normal University,"Xining,"Qinghai Province 810008,"China;"2.Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education),"Qinghai Normal University,"Xining,"Qinghai Province 810008,"China;"3.National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai,"National Forestry and Grassland Administration,"Haibei,"Qinghai Province 812200,"China)
Abstract:The carbon cycle process of alpine wetland is deeply affected by temperature increase due to global warming,"but the response of carbon sequestration microbial community to temperature increase in alpine wetland is limited. In this study,"the response model of cbbL"carbon sequestration microbial community to simulated temperature increase in Qinghai Lake wetland was investigated by using high-throughput sequencing technology. The results showed that Proteobacteria was the dominant group of cbbL"carbon sequestration microorganisms in Qinghai Lake wetland,"and the community structure of carbon sequestration microorganisms had obvious response to temperature increase. LEfSe analysis showed that the relative abundance of Acidithiobacillus"decreased significantly from class level to genus level,"while the relative abundance of Thiohalophilus"at family level and genus level increased significantly,"which could be used as an important indicator of bacteria group under warming treatment. Redundancy analysis showed that soil pH was the most important factor. In addition,"the community diversity of carbon sequestration microorganisms was highly correlated with total carbon content,"and increasing temperature significantly reduced soil moisture and carbon and nitrogen contents. The results of this study provide a solid foundation for future research on the changes of alpine swamp ecosystem under the influence of climate change,"and have important significance for elucidating the mechanism of carbon cycle.
Key words:Simulated warming;Carbon sequestration microorganism;Climate change;Carbon fixation;Alpine wetlands
近年來(lái),化石燃料的大量燃燒和土地利用方式的變化導(dǎo)致大氣中溫室氣體濃度急劇增加,全球氣候變暖加劇[1-2]。據(jù)預(yù)測(cè),到2100年,全球年平均氣溫上升將大于4℃[3],并嚴(yán)重影響土壤有機(jī)質(zhì)的儲(chǔ)量和穩(wěn)定性,進(jìn)而干擾全球碳循環(huán)[4-5]。土壤微生物作為地球上最豐富、最多樣化的生物群體[6],是陸地生物地球化學(xué)循環(huán)過(guò)程的關(guān)鍵引擎[7]。氣溫上升將直接或間接地改變土壤溫度、水分和氧化還原條件,從而影響微生物群落結(jié)構(gòu)[8-9]。溫度升高還會(huì)促進(jìn)嗜熱微生物的生長(zhǎng),加速有機(jī)質(zhì)的分解,最終導(dǎo)致微生物多樣性降低和土壤碳損失[10-11]。此外,溫度上升引起的微生物變化很可能會(huì)加劇氣候變化的正反饋效應(yīng),并進(jìn)一步加速全球變暖[12]。然而,部分微生物也能通過(guò)熱馴化機(jī)制來(lái)抑制土壤碳的消耗[13-14]。近年研究發(fā)現(xiàn),微生物在固碳中的作用很可能被低估了[15]。與植物類似,固定二氧化碳的微生物能夠?qū)⒍趸嫁D(zhuǎn)化為有機(jī)物,在大氣固碳方面發(fā)揮著重要作用[16]。它們每年在陸地生態(tài)系統(tǒng)中固定高達(dá)4.9 Pg C[17]。這些微生物主要通過(guò)卡爾文-本森循環(huán)"(Calvin-Benson-Bassham,CBB)"吸收二氧化碳,進(jìn)而影響有機(jī)碳的更新和循環(huán)[18]。在CBB循環(huán)中,核酮糖-1,5-二磷酸羧化酶/加氧酶"(RubisCO)"是負(fù)責(zé)CO2固定的關(guān)鍵酶,存在四種不同的形式。而cbbL基因作為其中一種分子生物標(biāo)志物,已被廣泛用于研究進(jìn)行二氧化碳固定的細(xì)菌群落的結(jié)構(gòu)和功能[19]。
濕地作為全球公認(rèn)的碳匯,其碳儲(chǔ)存能力對(duì)全球碳循環(huán)具有重要影響。據(jù)統(tǒng)計(jì),全球三分之一的土壤碳庫(kù)儲(chǔ)存在濕地生態(tài)系統(tǒng)中[20],這一事實(shí)突顯了濕地在全球碳平衡中的關(guān)鍵角色。濕地中的土壤固碳微生物群落特征受多種環(huán)境因素的共同影響,這一點(diǎn)已被大量研究所證實(shí)。例如,Keshri等[21]對(duì)阿拉伯海潮間帶土壤的研究表明,土壤類型不僅影響固碳相關(guān)的功能基因的豐度,還顯著影響微生物群落結(jié)構(gòu)。Wang等[22]則通過(guò)比較不同類型濕地土壤中的卡爾文循環(huán)功能基因cbbL的豐度和固碳細(xì)菌群落特征,發(fā)現(xiàn)季節(jié)變化對(duì)cbbL基因豐度的影響更為顯著。此外,Liao等[23]的研究發(fā)現(xiàn),海岸帶鹽沼濕地土壤固碳細(xì)菌群落對(duì)植物群落變化有明顯的響應(yīng),表明植物群落與土壤碳儲(chǔ)存之間存在緊密聯(lián)系。Wang等[24]還探究了不同氮水平對(duì)巖溶濕地地下水自養(yǎng)型CO2固定細(xì)菌群落特征的影響,指出氮素的流入會(huì)增加自養(yǎng)型固定CO2細(xì)菌群落的豐度,但可能導(dǎo)致多樣性降低。青藏高原作為中國(guó)濕地的重要組成部分,其濕地面積占全國(guó)濕地總面積的20%[25]。然而,青藏高原正在經(jīng)歷比全球平均溫度上升速度快兩倍的變暖,這可能導(dǎo)致該地區(qū)的土壤碳儲(chǔ)量進(jìn)一步降低[26-27]。盡管已有研究關(guān)注了青藏高原濕地土壤碳儲(chǔ)存的問(wèn)題,但關(guān)于青藏高原沼澤濕地的固碳微生物對(duì)增溫的動(dòng)態(tài)響應(yīng)的研究尚不完善。因此,本研究通過(guò)野外模擬增溫試驗(yàn),旨在評(píng)估青藏高原東北部青海湖高寒沼澤濕地的土壤固碳微生物對(duì)增溫的響應(yīng)。具體來(lái)說(shuō),本研究將探討以下兩個(gè)問(wèn)題:(1)"增溫如何影響cbbL固碳微生物的多樣性?(2)"增溫對(duì)cbbL固碳微生物群落物種組成的影響?
1 材料與方法
1.1 研究區(qū)概況
研究區(qū)位于青海湖東側(cè)的小泊湖實(shí)驗(yàn)站(36°41′~36°42′"N、100°46′~100°47′"E),該區(qū)年均溫介于-0.8℃~1.1℃之間,年均蒸發(fā)量達(dá)到了1502 mm,降水集中在生長(zhǎng)季(5—9月),年均降水量為324.5~412.8 mm。區(qū)域平均海拔為3228米,大風(fēng)日數(shù)較多,日照時(shí)間長(zhǎng),2430~3330 h不等。植物種類呈現(xiàn)單一化,優(yōu)勢(shì)種為藏嵩草(Kobresia tibetica)和華扁穗"(Blvsmus sinocompressus)[28]。
1.2 樣品采集和理化測(cè)定
該區(qū)增溫實(shí)驗(yàn)于2011年按照國(guó)際凍原計(jì)劃設(shè)置,增溫幅度約為1.3℃,試驗(yàn)區(qū)的具體布設(shè)與參考文獻(xiàn)一致[29]。在2020年6月(生長(zhǎng)季初期)采集土壤樣品。每個(gè)樣品均由五個(gè)土芯組成,這些土芯是通過(guò)五點(diǎn)取樣法,使用直徑為4.5厘米的土鉆從0~10厘米深的表層土中收集??偣膊杉?份土壤樣品,包括自然對(duì)照(Bck)和開(kāi)頂箱增溫(BW)兩個(gè)處理組,每個(gè)處理組有3個(gè)重復(fù)。收集后的土壤樣品首先經(jīng)過(guò)篩分(孔徑為2 mm),然后分別儲(chǔ)存在冰袋中立即送回實(shí)驗(yàn)室。一部分土壤樣品儲(chǔ)存在-4℃,用于后續(xù)的物理化學(xué)分析,而另一部分則儲(chǔ)存在-80℃,用于分子分析。
為了監(jiān)測(cè)土壤含水量和溫度,使用了TDR-300土壤水分探頭(Spectrum Technologies Inc.)和LI-8100(LI-COR Inc.)設(shè)備。pH探針(FE20-FiveEasy pH,"Mettler Toledo)按照1∶2.5的土水比測(cè)定了土壤pH值。為測(cè)定總碳(Total carbon,TC)和總氮(Total nitrogen,"TN)的含量,采用了元素分析儀(Vario EL III,"Elemental Analysis System GmbH)。在整個(gè)采樣和分析過(guò)程中嚴(yán)格遵循相關(guān)標(biāo)準(zhǔn)和操作規(guī)程,以確保數(shù)據(jù)的準(zhǔn)確性和可靠性。
1.3 DNA提取、PCR及原始數(shù)據(jù)處理
采用PowerSoil DNA分離試劑盒"(Mobio,"Carlsbad,CA,USA)提取土壤DNA,采用1%濃度的瓊脂糖凝膠電泳檢測(cè)土壤DNA質(zhì)量。使用固碳微生物標(biāo)準(zhǔn)擴(kuò)增引物擴(kuò)增F(5′-GACTTCACCAA-AGACGACGA-3′)和R(5′-TCGAACTTGATTT-CTTTCCA-3′)的cbbL基因片段[30]。PCR反應(yīng)體系及循環(huán)條件參考文獻(xiàn)進(jìn)行[31]。瓊脂糖凝膠DNA Recovery Kit對(duì)目標(biāo)條帶粘接劑進(jìn)行回收純化后進(jìn)行Illumina MiSeq高通量測(cè)序。原始數(shù)據(jù)先通過(guò)cutadapt軟件切除序列的引物片段,丟棄不匹配的引物序列,Vsearch對(duì)序列進(jìn)行拼接質(zhì)控。然后以97%的相似度對(duì)高質(zhì)量序列聚類為操作分類單元(OTU)表。最后利用核苷酸序列數(shù)據(jù)庫(kù)(NT)(ftp://ftp.ncbi.nih.gov/blast/db/)"對(duì)序列比對(duì)注釋。
1.4 統(tǒng)計(jì)分析
R軟件(版本4.1.2)的MicrobiotaProcess軟件包中的grgrarecurve函數(shù)繪制稀釋曲線,"get_alphaindex函數(shù)計(jì)算ACE指數(shù)、Chao1指數(shù)、Simpson指數(shù)和Shannon指數(shù),以量化微生物群落的α多樣性。為了評(píng)估不同樣本間的β多樣性,利用get_pcoa函數(shù)進(jìn)行了主坐標(biāo)分析(PCoA)。Stats包的aov函數(shù)來(lái)執(zhí)行方差分析,以進(jìn)一步探究不同因素對(duì)微生物群落的影響。為了探究理化因子之間以及理化因子與微生物群落之間的相關(guān)性和繪制相關(guān)網(wǎng)絡(luò)熱圖,采用了linkET包中的mantel_test函數(shù)計(jì)算相關(guān)性和p值,并使用qcorrplot函數(shù)繪制了相關(guān)網(wǎng)絡(luò)熱圖。UpsetR包的upset函數(shù)繪制OTU直方圖。Wilcoxon秩和檢驗(yàn)來(lái)檢驗(yàn)組間的顯著性,使用pheatmap包繪制了相關(guān)熱圖以呈現(xiàn)各個(gè)環(huán)境因子與各個(gè)屬水平優(yōu)勢(shì)菌群之間的關(guān)聯(lián)模式。所有的圖表和可視化由ggplot2包完成,以確保圖形的美觀和準(zhǔn)確性。
2 結(jié)果與分析
2.1 cbbL固碳微生物的群落多樣性對(duì)增溫的響應(yīng)
各個(gè)樣品的測(cè)序曲線逐漸趨于平緩,這表明所獲得的數(shù)據(jù)量已經(jīng)足夠反映樣本的真實(shí)情況(圖1a)。對(duì)cbbL固碳微生物群落的Alpha多樣性分析顯示,增溫處理對(duì)其影響并不顯著(圖1b)。但是,增溫處理在一定程度上仍然降低了青海湖沼澤濕地cbbL固碳微生物的豐富度和均勻度。在這6個(gè)樣品中,從cbbL固碳微生物群落中獲得的有效序列數(shù)介于26 972至49 551之間。序列基于97%的相似度聚類為OTUs,分組共有的OTU數(shù)量為700個(gè),Bck、BW的特有OTU數(shù)目分別為188,128(圖2)。主坐標(biāo)分析(PCoA)結(jié)果也表明增溫處理會(huì)改變cbbL固碳微生物群落(圖3)。
2.2 cbbL固碳微生物的物種組成及功能類群對(duì)增溫的響應(yīng)
對(duì)青海湖沼澤濕地的cbbL固碳微生物群落深入分析的結(jié)果顯示,變形菌門(Proteobacteria)是該區(qū)域最主要的優(yōu)勢(shì)菌門(圖4),其相對(duì)豐度波動(dòng)82.86%~95.81%。此外,放線菌門(Actinobacteria,2.99%)、藍(lán)藻門(Cyanobacteria,4.95%)和綠藻門(Chlorophyta,1.62%)也是相對(duì)豐度超過(guò)1%的優(yōu)勢(shì)菌門。在屬水平上,有49.57%的菌群尚未被分類,而相對(duì)豐度超過(guò)1%的優(yōu)勢(shì)菌群共有11個(gè)"(圖5)。其中,硫桿菌屬(Thiobacillus)的相對(duì)豐度最高,為11.62%,其次是紅螺菌屬(Rhodospirillum,8.40%)和硫氧化菌屬(Sulfuricaulis,6.72%)。
為了更清晰地了解增溫對(duì)青海湖沼澤濕地cbbL固碳微生物物種組成的影響,我們進(jìn)行了LEfSe分析,并篩選出了15個(gè)具有組間差異的生物標(biāo)志物(圖6)。分析結(jié)果顯示,增溫導(dǎo)致紅藻門(Rhodophyta)、紅藻綱(Florideophyceae)、酸硫桿菌綱(Acidithiobacillia)、酸硫桿菌目(Acidithiobacillales)、酸硫桿菌科(Acidithiobacillaceae)、甲基桿菌科(Methylobacteriaceae)、叢毛單胞菌科(Comamonadaceae)、甲基桿菌屬(Methylobacterium)、酸硫桿菌屬(Acidithiobacillus)和魚腥藻屬(Anabaena)這十個(gè)菌群的相對(duì)豐度降低。相反,微鞘藻科(Microcoleaceae)、硫堿嗜生菌科(Thioalkalispiraceae)、硫堿嗜生菌屬(Thiohalophilus)、浮絲藻屬(Planktothrix)和外硫紅螺菌屬(Ectothiorhodospira)這五個(gè)菌群的相對(duì)豐度則有所增加。
FAPROTAX功能預(yù)測(cè)結(jié)果顯示,青海湖沼澤濕地的cbbL固碳微生物的功能類群為41個(gè)。在十大主要功能類群中(圖7),包括光能自養(yǎng)(Photoautotrophy)、硝酸呼吸(Nitrate respiration)、氮呼吸(nitrogen respiration)、暗硫化物氧化(Dark sulfide oxidation)、有氧化能異養(yǎng)(Aerobic chemoheterotrophy)、化能異養(yǎng)(Chemoheterotrophy)、硝酸鹽還原(Nitrate reduction)、光養(yǎng)(Phototrophy)、暗硫代硫酸鹽氧化(Dark thiosulfate oxidation)"以及硫化合物的暗氧化(Dark oxidation of sulfur compounds)。增溫處理并沒(méi)有顯著改變功能類群的相對(duì)豐度,對(duì)沼澤濕地土壤功能的影響較小。
2.3 環(huán)境因子變化及其與cbbL固碳微生物群落的相互關(guān)系
增溫處理下,青海湖沼澤濕地的含水量、全碳和全氮含量顯著下降,而土壤溫度則顯著上升(圖8)。相關(guān)性網(wǎng)絡(luò)圖進(jìn)一步顯示,pH與其他環(huán)境因子之間并未呈現(xiàn)出顯著的相關(guān)性(圖9)。值得注意的是,全碳和全氮含量與土壤濕度之間存在顯著的正相關(guān)關(guān)系,而這三者與土壤溫度之間則呈現(xiàn)顯著的負(fù)相關(guān)。盡管環(huán)境因子對(duì)cbbL固碳微生物的Alpha多樣性和物種組成的影響并不顯著,但其Alpha多樣性與全碳含量的相關(guān)性較高。RDA冗余分析發(fā)現(xiàn)cbbL固碳微生物群落受環(huán)境因子的影響較?。▓D10)。相關(guān)性熱圖發(fā)現(xiàn),cbbL固碳微生物的優(yōu)勢(shì)菌屬與環(huán)境因子之間多呈現(xiàn)為正相關(guān)關(guān)系,然而,這些優(yōu)勢(shì)菌屬與各個(gè)環(huán)境因子間的關(guān)系不顯著(圖11)。
3 討論
3.1 增溫對(duì)含cbbL固碳微生物多樣性和環(huán)境因子的影響
微生物Alpha多樣性的下降會(huì)破壞土壤生態(tài)系統(tǒng)的基本功能,減少功能冗余,損害土壤生態(tài)系統(tǒng)的整體穩(wěn)定性[32-33]。本研究發(fā)現(xiàn),溫度升高降低了青海湖沼澤濕地cbbL固碳細(xì)菌群落的Alpha多樣性,但這種變化并不顯著。Yu等[34]研究了變暖對(duì)溫帶草原細(xì)菌群落及其功能的影響,他們發(fā)現(xiàn)增溫顯著增加了土壤細(xì)菌的Alpha多樣性。與前者研究結(jié)果相反,Zhao等[35]研究了模擬變暖對(duì)不同生態(tài)系統(tǒng)土壤微生物群落多樣性和組成的影響,發(fā)現(xiàn)在高溫條件下,Chao1和Shannon指數(shù)顯著降低。而Hu等[36]在青藏高原的研究表明增溫對(duì)細(xì)菌群落的Alpha多樣性無(wú)顯著影響,與本研究一致。cbbL固碳微生物群落多樣性的下降通常與土壤性質(zhì)的變化有關(guān)[19]。沼澤濕地土壤濕度及全碳全氮含量在增溫處理后顯著降低,與Alpha多樣性的變化趨勢(shì)一致,可能是全碳含量的降低限制了固碳微生物的繁殖[37]。沼澤濕地經(jīng)增溫處理后溫度顯著升高,與Alpha多樣性呈相反的變化趨勢(shì)。Liao等人的研究也發(fā)現(xiàn)土壤含cbbL細(xì)菌群落與土壤溫濕度顯著相關(guān),pH也是重要的影響因素之一[38]。然而,沼澤濕地增溫處理并未顯著影響土壤pH,土壤理化因子含量與cbbL固碳微生物群落的Alpha多樣性的相關(guān)性也較低,兩者之間不存在統(tǒng)計(jì)學(xué)上的顯著關(guān)系。上述結(jié)果的差異原因可能是生態(tài)系統(tǒng)的不同,對(duì)cbbL固碳微生物群落多樣性的影響不同[39]。
3.2 增溫改變了含cbbL固碳微生物的物種組成
關(guān)鍵菌群是高度聯(lián)系的,它們?cè)谖⑸锶郝渲衅鹬匾饔?sup>[40-41]。溫度的變化并未引起固碳微生物優(yōu)勢(shì)菌群的轉(zhuǎn)換,這主要是由于土壤對(duì)環(huán)境變化的緩沖能力和微生物群落的快速進(jìn)化適應(yīng)[42]。青海湖沼澤濕地cbbL固碳微生物群落的關(guān)鍵菌群絕大多數(shù)屬于變形菌門,這與以往研究結(jié)果一致[23,"31]。環(huán)境適應(yīng)性強(qiáng)、生長(zhǎng)繁殖快、對(duì)基質(zhì)的吸收能力強(qiáng)可能是變形菌門占據(jù)優(yōu)勢(shì)的主要原因[43]。放線菌門也是關(guān)鍵菌群之一,它們能降解類似幾丁質(zhì)頑固的碳[44]。增溫處理下,該菌群的相對(duì)豐度有所下降,這可能會(huì)降低沼澤濕地分解頑固碳的能力。沼澤濕地cbbL固碳微生物的屬水平優(yōu)勢(shì)菌群為硫桿菌屬、紅螺菌屬和硫氧化菌屬。Li 等人的研究結(jié)果迥異,他們發(fā)現(xiàn)攜帶cbbL的微生物主要以貪噬菌屬(Variovorax)和慢生根瘤菌屬(Bradyrhizobium)為主[31]。Zhang 等[45]研究了不同禁牧?xí)r間下碳循環(huán)的微生物群落,結(jié)果顯示,在屬水平上cbbL功能基因微生物群落主要由假諾卡氏菌屬(Pseudonocardia)、慢生根瘤菌屬(Bradyrhizobium)和中慢生根瘤菌屬(Mesorhizobium)組成。Li 等[46]研究了施氮對(duì)退化高寒草甸不同坡度土壤固碳微生物多樣性的影響,表明硫氧化菌屬為優(yōu)勢(shì)菌屬,平均豐度為56.5%。此外,Zhang等[47]對(duì)青海湖三種濕地類型的cbbL固碳微生物群落的研究也發(fā)現(xiàn)沼澤濕地的優(yōu)勢(shì)菌屬為硫桿菌屬,與本研究結(jié)果趨于一致。沼澤濕地固碳微生物物種組成不受環(huán)境因子的顯著影響,這一結(jié)果可能與環(huán)境因子之間的相互作用有關(guān)。線性判別分析顯示,增溫顯著改變了15個(gè)菌群的相對(duì)豐度,其中6個(gè)為屬水平菌群,但它們的相對(duì)豐度較低,這些菌群通常可以作為環(huán)境的指示物種。
4 結(jié)論
基于開(kāi)頂箱模擬增溫實(shí)驗(yàn),本研究揭示了青海湖沼澤濕地的cbbL固碳微生物群落對(duì)溫度升高的具體響應(yīng),發(fā)現(xiàn)土壤pH是屬水平優(yōu)勢(shì)菌群最重要的影響因子,增溫處理顯著提高了土壤溫度,也顯著降低了土壤濕度和碳氮的儲(chǔ)量。固碳微生物的群落多樣性對(duì)溫度升高的響應(yīng)與碳氮變化趨勢(shì)一致,但該變化并不顯著。此外,酸硫桿菌的相對(duì)豐度均顯著降低,硫鹽嗜生菌的相對(duì)豐度顯著增加,可作為增溫處理下的重要指示性菌群。本研究為研究高寒沼澤濕地生態(tài)系統(tǒng)溫度升高對(duì)固碳微生物群落的調(diào)控機(jī)制提供了新的認(rèn)識(shí)。
參考文獻(xiàn)
[1]"ZHAO X Q,HUANG J,LU J,et al. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine[J]. Ecotoxicology and Environmental Safety,2019,170:218-226
[2]"ZHAO J X,LUO T X,WEI H X,et al. Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe[J]. Agricultural and Forest Meteorology,2019,279:107761
[3]"ALEXANDER L V,ALLEN S K,BINDOFF N L,et al. Climate change 2013:"The physical science basis,"in contribution of Working Group I (WGI)"to the Fifth Assessment Report (AR5)"of the Interg "overnmental Panel on Climate Change (IPCC)[J]. Computational Geometry,2013,43(22):866-871
[4]"CROWTHER T W,TODD-BROWN K E O,ROWE C W,et al. Quantifying global soil carbon losses in response to warming[J]. Nature,2016,540(7631):104-108
[5]"KOVEN C D,HUGELIUS G,LAWRENCE D M,et al. Higher climatological temperature sensitivity of soil carbon in cold than warm climates[J]. Nature Climate Change,2017,7:817-822
[6]"DELGADO-BAQUERIZO M,ELDRIDGE D J,OCHOA V,et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe[J]. Ecology Letters,2017,20(10):1295-1305
[7]"CAVICCHIOLI R,RIPPLE W J,TIMMIS K N,et al. Scientists' warning to humanity:microorganisms and climate change[J]. Nature Reviews Microbiology,2019,17(9):569-586
[8]"CHEN J,ELSGAARD L,VAN GROENIGEN K J,et al. Soil carbon loss with warming:"New evidence from carbon-degrading enzymes[J]. Global Change Biology,2020,26(4):1944-1952
[9]"JOHNSTON E R,HATT J K,HE Z,et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths[J]. Proceedings of the National Academy of Sciences,2019,116(30):15096-15105
[10]"齊志遠(yuǎn),馬騰飛,伊李凱,等. 短期OTC增溫對(duì)晉北農(nóng)牧交錯(cuò)帶溫性草地土壤微生物的影響[J]. 草地學(xué)報(bào),2024,32(6):1789-1799
[11]"NOTTINGHAM A T,SCOTT J J,SALTONSTALL K,et al. Microbial diversity declines in warmed tropical soil and respiration rise exceed predictions as communities adapt[J]. Nature Microbiology,2022,7(10):1650-1660
[12]"FENG J J,WANG C,LEI J S,et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community[J]. Microbiome,2020,8(1):3
[13]"GUO X,GAO Q,YUAN M T,et al. Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming[J]. Nature Communications,2020,11(1):4897
[14]"MELILLO J M,STEUDLER P A,ABER J D,et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science,2002,298(5601):2173-2176
[15]"HART K M,KULAKOVA A N,ALLEN C C R,et al. Tracking the fate of microbially sequestered carbon dioxide in soil organic matter[J]. Environmental Science amp; Technology,2013,47(10):5128-5137
[16]"LYNN T M,GE T D,YUAN H Z,et al. Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems[J]. Microbial Ecology,2017,73(3):645-657
[17]"YUAN H Z,GE T D,CHEN C Y,et al. Significant role for microbial autotrophy in the sequestration of soil carbon[J]. Applied and Environmental Microbiology,2012,78(7):2328-2336
[18]"SELESI D,SCHMID M,HARTMANN A. Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL)"in differently managed agricultural soils[J]. Applied and Environmental Microbiology,2005,71(1):175-184
[19]"QIN J,LI M,ZHANG H F,et al. Nitrogen deposition reduces the diversity and abundance of cbbL"gene-containing CO2-fixing microorganisms in the soil of the Stipa baicalensis"steppe[J]. Frontiers in Microbiology,2021,12:570908
[20]"NAHLIK A M,F(xiàn)ENNESSY M S. Carbon storage in US wetlands[J]. Nature Communications,2016,7:13835
[21]"KESHRI J,YOUSUF B,MISHRA A,et al. The abundance of functional genes,cbbL,nifH,AmoA"and apsA,and bacterial community structure of intertidal soil from Arabian Sea[J]. Microbiological Research,2015,175:57-66
[22]"WANG X Y,LI W,XIAO Y T,et al. Abundance and diversity of carbon-fixing bacterial communities in Karst wetland soil ecosystems[J]. Catena,2021,204:105418
[23]"LIAO Q H,LU C,YUAN F,et al. Soil carbon-fixing bacterial communities respond to plant community change in coastal salt marsh wetlands[J]. Applied Soil Ecology,2023,189:104918
[24]"WANG X Y,LI W,CHENG A Q,et al. Community characteristics of autotrophic CO2-fixing bacteria in Karst wetland groundwaters with different nitrogen levels[J]. Frontiers in Microbiology,2022,13:949208
[25]"ZHAO Z L,"ZHANG Y L,"LIU L S,"et al. Recent changs in wetlands on the Tibetan Plateau.A review[J]. Journal of Geographical Sciences,2015,25(7):879-896
[26]"GONG S W,ZHANG T,GUO R,et al. Response of soil enzyme activity to warming and nitrogen addition in a meadow steppe[J]. Soil Research,2015,53(3):242
[27]"HARTLEY I P,HILL T C,CHADBURN S E,et al. Temperature effects on carbon storage are controlled by soil stabilisation capacities[J]. Nature Communications,2021,12(1):6713
[28]"章妮,暴涵,左弟召,等. 青海湖不同類型高寒濕地產(chǎn)甲烷菌群落特征[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào),2022,28(2):283-289
[29]"章妮,陳克龍,暴涵. 高寒濕地甲烷氧化菌群落對(duì)模擬增溫的響應(yīng)[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào),2022,28(5):1232-1238
[30]"CAMPBELL B J,CARY S C. Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents[J]. Applied and Environmental Microbiology,2004,70(10):6282-6289
[31]"LI N,WANG B R,HUANG Y M,et al. Response of cbbL-harboring microorganisms to precipitation changes in a naturally-restored grassland[J]. Science of the Total Environment,2022,838:156191
[32]"WALTERS K E,MARTINY J B H. Alpha-,beta-,and gamma-diversity of bacteria varies across habitats[J]. Plos One,2020,15(9):e0233872
[33]"ZHOU Z H,WANG C K,LUO Y Q. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature Communications,2020,11(1):3072
[34]"YU Y,LIU L,WANG J,et al. Effects of warming on the bacterial community and its function in a temperate steppe[J]. Science of the Total Environment,2021,792:148409
[35]"ZHAO J Y,XIE X,JIANG Y Y,et al. Effects of simulated warming on soil microbial community diversity and composition across diverse ecosystems[J]. Science of the Total Environment,2024,911:168793
[36]"HU Y L,WANG S,NIU B,et al. Effect of increasing precipitation and warming on microbial community in Tibetan alpine steppe[J]. Environmental Research,2020,189:109917
[37]"XIANG X J,GIBBONS S M,LI H,et al. Shrub encroachment is associated with changes in soil bacterial community composition in a temperate grassland ecosystem[J]. Plant and Soil,2018,425(1):539-551
[38]"LIAO H,HAO X L,QIN F,et al. Microbial autotrophy explains large-scale soil CO2"fixation[J]. Global Change Biology,2023,29(1):231-242
[39]"WANG C,LIU D W,BAI E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition[J]. Soil Biology and Biochemistry,2018,120:126-133
[40]"周學(xué)麗,史德軍,劉漢江,等. 有機(jī)肥改變了退化人工草地微生物群落網(wǎng)絡(luò)結(jié)構(gòu)和潛在功能[J]. 草地學(xué)報(bào),2023,31(9):2693-2702
[41]"HERREN C M,MCMAHON K D. Keystone taxa predict compositional change in microbial communities[J]. Environmental Microbiology,2018,20(6):2207-2217
[42]"ZHOU F Q,DING J J,LI T T,et al. Plant communities are more sensitive than soil microbial communities to multiple environmental changes in the Eurasian steppe[J]. Global Ecology and Conservation,2020,21:e00779
[43]"SALCHER M M,PERNTHALER J,ZEDER M,et al. Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake[J]. Environmental Microbiology,2008,10(8):2074-2086
[44]"SINGH B K,BARDGETT R D,SMITH P,et al. Microorganisms and climate change:terrestrial feedbacks and mitigation options[J]. Nature Reviews Microbiology,2010,8(11):779-790
[45]"ZHANG W B,LI J,STRUIK P C,et al. Recovery through proper grazing exclusion promotes the carbon cycle and increases carbon sequestration in semiarid steppe[J]. Science of the Total Environment,2023,892:164423
[46]"LI C Y,LI X L,SHI Y,et al. Effects of nitrogen addition on soil carbon-fixing microbial diversity on different slopes in a degraded alpine meadow[J]. Frontiers in Plant Science,2022,13:921278
[47]"ZHANG N,CHEN K L,WANG S Y,et al. Dynamic response of the cbbL carbon sequestration microbial community to wetland type in Qinghai Lake[J]. Biology,2023,12(12):1503
(責(zé)任編輯""彭露茜)
引用格式:章妮, 陳克龍, 楊紫唯,"等.青海湖沼澤濕地cbbL固碳微生物對(duì)模擬增溫的響應(yīng)[J].草地學(xué)報(bào),2025,33(3):728-738
Citation:ZHANG Ni, CHEN Ke-long, YANG Zi-wei, et al.Response of"cbbL"carbon sequestration microorganisms to simulated warming in the marsh wetland of Qinghai Lake[J].Acta Agrestia Sinica,2025,33(3):728-738
基金項(xiàng)目:第二次青藏高原綜合科學(xué)考察項(xiàng)目(2019QZKK0405);青海省重點(diǎn)研發(fā)與轉(zhuǎn)化計(jì)劃(2022-QY-204);青海省科技計(jì)劃(2023-ZJ-905T)資助
作者簡(jiǎn)介:章妮(1997-),女,漢族,湖北荊州人,博士研究生,主要從事濕地生態(tài)學(xué)研究,E-mail:1581146264@qq.com;*通信作者Author for correspondence,E-mail:ckl7813@163.com