摘要:隨著人口爆炸、工業(yè)和高新產(chǎn)業(yè)發(fā)展的持續(xù),工廠和居民對清潔用水需求日益增加,水霧收集器件不斷涌現(xiàn),而現(xiàn)有水霧收集器件多采用飛秒激光刻蝕等方式達(dá)到符合要求的浸潤性表面,對設(shè)備要求較高。本文基于簡便的室溫自發(fā)膠凝作用,溫和構(gòu)建凝膠聚合物基質(zhì),通過引入反應(yīng)組分以控制膠凝成形期間的微觀形貌與表面能分布,經(jīng)室溫修飾形成超疏水聚合物復(fù)合材料。以針織物為基底、摩擦為手段構(gòu)制Janus針織物涂層,利用其潤濕不對稱性實(shí)現(xiàn)單向?qū)瘢M(jìn)而在捕霧集水的同時減緩水蒸發(fā)以提升應(yīng)用效率,達(dá)到低成本且高效的霧收集。
關(guān)鍵詞:霧收集;單向?qū)?;針織物;涂層;摩擦制備;Janus
中圖分類號:TS195.597
文獻(xiàn)標(biāo)志碼:A
文章編號:10017003(2025)01004908
DOI:10.3969 j.issn.1001-7003.2025.01.006
基金項目:新疆維吾爾自治區(qū)自然科學(xué)基金青年科學(xué)基金項目(2022D01C68);新疆維吾爾自治區(qū)重點(diǎn)研發(fā)任務(wù)專項項目(2022B01045-4);新疆維吾爾自治區(qū)天池博士計劃科研啟動項目(TCBS202011);新疆大學(xué)博士啟動基金項目(BS210215)
作者簡介:張靜(1999),女,碩士研究生,研究方向?yàn)榧徔椈F收集功能材料。通信作者:陳誠,副教授,450548205@qq.com。
水是生命之源,但由于近百年來世界人口的急劇擴(kuò)增、工業(yè)用水量的劇增和環(huán)境污染的進(jìn)一步惡化,使得世界各地呈現(xiàn)不同程度的水資源危機(jī),尤其在沙漠和基礎(chǔ)設(shè)施有限的內(nèi)陸地區(qū),缺水問題已經(jīng)對人類的基本生存造成了極大的威脅[1-2]。夜晚至清晨的時間段溫度較低,近地面的水汽可在此時間段懸浮成液態(tài)水滴,這些小水滴積聚便可形成霧。霧中每立方厘米含有10~1 000個微小液滴[3],其尺寸為1~50 μm[3],總量占全球淡水資源總量的10%[4],因而霧滴被視為一種可獲取的淡水資源。因此在沙漠或山地等淡水資源匱乏但富含水霧的環(huán)境下,基于有利地形和溫度差異實(shí)施水霧收集是一種有效緩解淡水資源短缺的手段[5-6]。
當(dāng)前水霧收集材料的潤濕性能大致可分為超疏水和超親水兩類[7-8],制備方法大多為化學(xué)刻蝕法、3D打印法、模板法、浸涂法等[9-11]。Han等[12]以SiO2作為殼材,聚苯乙烯(PS)作為芯材,利用模板刻蝕法制得中空多孔二氧化硅材料,在其殼層上接枝聚吡咯(Ppy)后成功制備出超親水性光熱中空納米膠囊(SPHN),該材料的特殊結(jié)構(gòu)可吸附水霧達(dá)到蓄水儲水作用;Zhang等[13]通過光蝕刻、酸蝕刻、陽極氧化和氟烷基硅烷改性等處理構(gòu)建了一種耐久性良好的超疏水表面,可用于水霧收集。超疏水性水霧收集材料能夠輕易地在其表面凝結(jié)霧滴,再不斷匯聚為較大的液滴后收集以達(dá)到捕霧集水目的,但此類材料在大氣中難以捕獲較小的霧滴,致使霧收集效率受到限制;超親水性水霧收集材料能夠捕獲空氣中微小霧滴,并迅速發(fā)生浸潤行為,但在潤濕后會形成水膜,此時微小霧滴便難以再次在表面凝結(jié),導(dǎo)致霧收集效率降低。另外,在長期的水霧收集過程中,上述僅具備單一潤濕性能的水霧收集材料易受環(huán)境影響,進(jìn)一步導(dǎo)致其水霧收集效率降低[14-15]。鑒于此,越來越多的科研人員致力于開發(fā)具備潤濕不對稱性的水霧收集材料,以期通過其特有的潤濕梯度與差異提升收集淡水的效能。
本文基于簡便易操作的室溫自發(fā)膠凝作用,溫和構(gòu)建凝膠聚合物基質(zhì),通過引入高級烷基醇和納米級無機(jī)生物質(zhì)材料以控制膠凝成形期間的微觀形貌與表面能分布,經(jīng)室溫修飾形成超疏水聚合物復(fù)合材料。以針織物為基底、摩擦為實(shí)施手段,構(gòu)制特殊潤濕性Janus針織物涂層,利用其潤濕不對稱特性實(shí)現(xiàn)單向?qū)窆δ?,可大幅降低收集水分的再蒸發(fā)率,使環(huán)境霧氣自超疏水面定向輸運(yùn)至超親水面,展現(xiàn)出高效的捕霧集水能力。
1 試 驗(yàn)
1.1 試劑與儀器
試劑:分析純雙季戊四醇五丙烯酸酯(5Acl)、分析純支化聚乙烯亞胺(BPEI)、化學(xué)純四氫呋喃(THF)、化學(xué)純十八胺(OTCA)、化學(xué)純十四醇(TD)(阿拉丁試劑(上海)有限公司),化學(xué)純無水乙醇(EtOH)(天津市北聯(lián)精細(xì)化學(xué)品開發(fā)有限公司),分析純羥基磷灰石(HA)(上海麥克林生化科技有限公司),分析純氫氧化鈉(片)、分析純亞甲基藍(lán)(MB)(天津市北聯(lián)精細(xì)化學(xué)品開發(fā)有限公司),商品級油溶紅(河南金鴻彩化工產(chǎn)品有限公司),分析純正己烷(天津市鑫鉑特護(hù)工有限公司),DM5128無醛黏合劑(廣東德美精細(xì)化工集團(tuán)股份有限公司),分析純二氯甲烷(天津市致遠(yuǎn)化學(xué)試劑有限公司)。
儀器:CP153電子天平(奧豪斯儀器常州有限公司),JC2000D1接觸角測量儀(上海中晨數(shù)字技術(shù)設(shè)備有限公司),A6100攝像機(jī)(索尼(中國)有限公司),KLS-088自動霧化噴霧器(中山市凱樂詩電器有限公司),DF-101Z智能集熱式恒溫磁力攪拌鍋(鞏義市英峪儀器廠)。
1.2 方 法
在離心管中加入特定質(zhì)量的5Acl及適量的EtOH,搖晃至5Acl充分溶解后加入TD、HA,試驗(yàn)過程中多次調(diào)整HA的用量,用以探求最佳的物理構(gòu)型與潤濕性能,搖晃均勻后加入23%的BPEI。在室溫條件下充分反應(yīng)12 h,用無水乙醇進(jìn)行充分清洗,隨后加入適量THF、OTCA,搖晃至OTCA完全溶于THF中。在25 ℃反應(yīng)48 h后用無水乙醇充分清洗,放置空氣氛圍自然晾干,最終制得十四醇 羥基磷灰石低表面能膠凝聚合物(Low Surface Energy-Gelatinization Polymer@Tetradecanol Hydroxyapatite,LSE-GP@TD OH)。
滌蓋棉針織物的滌綸面呈超疏水,棉面呈超親水,較其他織物而言,其本身具有單向?qū)裉匦?,且擁有良好的吸濕透濕性能,可通過相應(yīng)的后續(xù)處理提升其單向?qū)裥阅軄韺?shí)現(xiàn)水霧收集。因此,本文選取8 cm×8 cm的滌蓋棉作為基材,配制一定比例的氫氧化鈉溶液置于水浴鍋中,待升溫至95 ℃時,用鑷子夾取滌蓋棉織物,將其完全浸入氫氧化鈉溶液,恒溫處理1 h后取出織物烘干,制得超親水性滌蓋棉織物。利用DM5128黏合劑對LSE-GP@TD HA進(jìn)行噴霧處理后,均勻摩擦至堿減量處理后的滌蓋棉織物滌綸面對其進(jìn)行超疏水整理,隨后放至80 ℃烘箱進(jìn)行固化,最終制得單向?qū)窨椢铩?/p>
1.3 性能測試及表征
1.3.1 接觸角與滾動角
采用JC2000D1接觸角測量儀,用5 μL的去離子水測量樣品接觸角、10 μL的去離子水測量樣品滾動角。
1.3.2 傅里葉變換紅外光譜(FTIR)
借助紅外光譜儀在500~12 000 cm-1內(nèi)進(jìn)行掃描測試,對TD、HA、LSE-GP、LSE-GP@TD HA的特征官能團(tuán)進(jìn)行表征。
1.3.3 X射線衍射分析(XRD)
利用X射線粉末衍射儀測試TD、HA、LSE-GP、LSE-GP@TD HA的XRD曲線。
1.3.4 單向?qū)裥?/p>
通過相機(jī)攝像,用針管吸取2 mL的去離子水滴加到對照樣及樣品表面,記錄0、50、100 s時樣品導(dǎo)濕狀態(tài)及水滴完全透過單向?qū)窨椢锏臅r間。
1.3.5 單向?qū)袼俾?/p>
采用相機(jī)攝像,分別滴加5 μL的去離子水在原始滌蓋棉和LSE-GP@TD HA基單向?qū)窨椢锏臏炀]面,記錄水滴完全透過織物的時間。
1.3.6 水霧收集速率
采用KLS-088自動霧化噴霧器模擬自然界的霧氣,噴口距各類樣品的垂直距離為5 cm,將出霧速率固定在20 cm s,樣品織物的大小為8 cm×8 cm,記錄0、15、30、40、50、60 min時的集水量。
2 結(jié)果與分析
2.1 LSE-GP@TD HA的合成與性能分析
將5Acl和BPEI置于EtOH中使其發(fā)生凝膠化,引入TD、HA調(diào)控潤濕性能,基于5Acl的丙烯酸酯基與BPEI的氨基的1,4-共軛加成反應(yīng)構(gòu)筑反應(yīng)性微納結(jié)構(gòu)。將其浸泡在溶有OTCA的THF溶液中進(jìn)行低表面能修飾,即OTCA的氨基與凝膠體系上未反應(yīng)的丙烯酸酯基反應(yīng),從而使長烷基鏈接枝到凝膠產(chǎn)物以實(shí)現(xiàn)超疏水化。由圖1(a)(b)可見,LSE-GP@TD HA展現(xiàn)出良好的抗水沖擊性、內(nèi)外結(jié)構(gòu)完整且拒水性均勻。在各類基材表面分別均勻摩擦LSE-GP@TD HA后所形成的表面上,滴加亞甲基藍(lán)染色水溶液,該液滴呈現(xiàn)圓球狀,未發(fā)生浸潤現(xiàn)象,說明上述摩擦表面達(dá)到明顯的抗?jié)櫇裥Ч?。?jīng)潤濕性能測試,發(fā)現(xiàn)砂紙上的摩擦表面接觸角為153°,滾動角為1°;棉織物的摩擦表面接觸角為162°,滾動角為10°;滌綸織物的摩擦表面接觸角為158°,滾動角為10°;瓦楞紙的摩擦表面接觸角為161°,滾動角為3°(圖1(c))。綜上,各涂層的接觸角都大于150°,滾動角小于或等于10°,達(dá)到了仿荷葉效應(yīng)的低黏附超疏水功能,表明合成產(chǎn)物通過在基材表面進(jìn)行簡單摩擦即可賦予其良好的抗?jié)櫇衲芰Α?/p>
將LSE-GP@TD HA均勻摩擦至滌綸織物的傾斜表面,可見滴落在傾斜狀態(tài)的滌綸織物摩擦表面的液滴攜污垢滾落,且織物涂層表面不沾有任何污垢及液滴,如圖2(a)所示;向滌綸織物摩擦表面滴加的各類污水滴可快速滾落,織物涂層表面沒有任何液滴殘留,如圖2(b~f)所示;而將污水滴滴加到滌綸織物涂層的平面,其液滴呈現(xiàn)圓球狀,并沒有發(fā)生浸潤鋪展行為,上述結(jié)果表明LSE-GP@TD HA基滌綸織物涂層具有明顯的仿荷葉效應(yīng)的自清潔及動靜態(tài)抗污效果。
2.2 LSE-GP@TD HA的理化信息表征
為研究LSE-GP@TD HA的化學(xué)信息,本文采用FTIR及XRD分析TD、HA、LSE-GP、LSE-GP@TD HA的特征官能團(tuán)及衍射圖譜,表征LSE-GP@TD HA的化學(xué)組成。由圖3(a)可見,TD的FTIR特征圖譜中,在2 920.11 cm-1和2 850.67 cm-1處出現(xiàn)明顯的吸收峰,這歸屬于飽和C─H鍵的伸縮振動;另外在1 064.66 cm-1處出現(xiàn)的吸收峰來源于十四醇中所含伯醇的C─OH伸縮振動。HA的特征圖譜中,在567.04 cm-1和601.76 cm-1處出現(xiàn)的伸縮振動峰對應(yīng)于HA中O←P(OH)的彎曲振動,在3 068.17 cm-1處的弱吸收峰歸屬于HA的—OH基團(tuán);將LSE-GP的特征圖譜與LSE-GP@TD HA的特征圖譜進(jìn)行對比觀察可得,LSE-GP并未出現(xiàn)TD和HA的特征吸收峰,而LSE-GP@TD HA曲線中HA和TD的特征吸收峰明顯存在,說明LSE-GP@TD HA中含有HA和TD成分。
圖3(b)展示了TD、HA、LSE-GP、LSE-GP@TD HA的XRD圖譜,可見TD曲線在21.83°和24.87°處出現(xiàn)特征峰,且峰形較尖銳、強(qiáng)度較高,說明十四醇的結(jié)晶性能較好,HA曲線在25.93°和32.01°附近有清晰的特征衍射峰,分別對應(yīng)羥基磷灰石(002)和(211)晶面的特征衍射峰。LSE-GP@TD HA曲線中未觀察到明顯的TD特征衍射峰,原因可能為TD的含量較少,抑或是HA的引入影響了其結(jié)晶度;HA的特征峰在LSE-GP@TD HA出現(xiàn)的位置高度一致,說明產(chǎn)物結(jié)晶性能完整,同時進(jìn)一步證實(shí)目標(biāo)產(chǎn)物得以成功制備。
2.3 LSE-GP@TD HA基單向?qū)窨椢锏闹苽浼靶阅芊治?/p>
向滌蓋棉的棉面滴加2 mL水滴,液滴完全鋪展浸潤,未發(fā)生運(yùn)輸現(xiàn)象,如圖4(a)(b)所示;而滴加在滌綸面的水滴能從疏水面運(yùn)至親水面,然而其輸運(yùn)時間較長(4.12 s);隨后對
其進(jìn)行堿減量處理,處理后的滌蓋棉織物雙面具有良好的親水性,如圖4(c)(d)所示,水滴僅能潤濕織物,而未發(fā)生定向水運(yùn)輸。由此可說明,堿減量處理后的滌蓋棉織物不具備單向?qū)衲芰?,原始滌蓋棉織物可實(shí)施定向水輸運(yùn),但其速率較為緩慢。將經(jīng)DM5128黏合劑噴霧處理后的LSE-GP@TD HA均勻摩擦至堿減量處理后的滌蓋棉織物的滌綸面,從而制得LSE-GP@TD HA基涂層織物,如圖4(e)(f)所示。據(jù)前述測試結(jié)果可知,該成形涂層織物一面為超疏水性,另一面呈超親水性,達(dá)到顯著的潤濕不對稱狀態(tài),當(dāng)水滴滴至超親水面,則立刻浸潤鋪展;與之相反,水滴能夠從超疏水面迅速地運(yùn)輸?shù)匠H水面,其時間僅為1.45 s,表明該Janus涂層織物展現(xiàn)出單向水輸運(yùn)特性。由圖4(g)(h)可見,水滴需要31.13 s才能從原始滌蓋棉織物的滌綸面輸送至棉面,而Janus涂層織物的超疏水面輸送水滴至超親水面僅需3.51 s,這說明Janus涂層織物具有良好的單向?qū)衲芰Α?/p>
由圖5(a)(b)可見,LSE-GP@TD HA基Janus涂層織物的滌綸面接觸角為152°、滾動角為9°,呈超疏水性;棉面的接觸角為0°,呈超親水性。由圖5(c)可見,亞甲基藍(lán)染色水溶液會由超疏水面導(dǎo)向超親水面,右下角展示織物正反兩面,對比觀察可得超親水面液滴痕跡明顯,證明其具有單向?qū)裉匦浴S蓤D5(d)(e)可見,LSE-GP@TD HA基單向?qū)窨椢锍杷娉蠒r,水會從超疏水面透到超親水面形成水膜,根據(jù)水油不互溶原理,此時展現(xiàn)過水阻輕油(正己烷)的分離行為;超親水面朝上時,油會從超親水透到超疏水面形成油膜,展現(xiàn)過重油(二氯甲烷)阻水的分離行為。因此,該單向?qū)窨椢锍杷娉蠒r,可過水阻輕油;超親水面朝上時,可過重油阻水,從而實(shí)現(xiàn)選擇性油水分離。
2.4 紡織基水霧收集器件的應(yīng)用效果
對棉織物、滌蓋棉織物、堿減量處理滌蓋棉織物及LSE-GP@TD HA基單向?qū)窨椢镞M(jìn)行水霧收集測試,其中噴霧速率為20 cm s。將四種測試織物固定在漏斗上,漏斗下方放置10 mL量筒,噴霧口距離樣品織物約5 cm,記錄四種樣品在0、15、30、40、50、60 min時收集的水量,如圖6所示。由圖6(a~c)可見,從40 min開始,棉織物、滌蓋棉織物及堿減量處理滌蓋棉織物收集的水量增加并不明顯,經(jīng)60 min測試后,觀察到棉織物的水收集量為5.9 mL、滌蓋棉織物的水收
集量為5.6 mL、堿減量處理滌蓋棉織物的水收集量為6 mL。由圖6(d)可見,LSE-GP@TD HA基單向?qū)窨椢?0 min時水收集量為5 mL,從此時間點(diǎn)開始的水霧收集量明顯增加,50 min時的水收集量為7.8 mL,60 min后總收集水量為10.3 mL,相較于前述測試樣品,其水霧收集效果突出。上述測試結(jié)果表明,LSE-GP@TD HA基單向?qū)窨椢镙^對照樣的水霧收集總量提高了42%~46%,因此該單向?qū)窨椢锞哂杏糜跇?gòu)造紡織基捕霧集水器件的潛力,有望實(shí)現(xiàn)低成本、易操作地收集霧水。
2.5 水霧收集機(jī)理分析
由圖7(a)可見,滌蓋棉的滌綸面具有疏水性,棉面呈親水性,是疏水 親水織物,將其進(jìn)行堿減量處理后,滌棉兩面都呈超親水性,是超親水 超親水織物,再將LSE-GP@TD HA摩擦至滌綸面后,滌綸面具有超疏水性,棉面依舊呈現(xiàn)為超親水性。由圖7(b)可見,滌蓋棉織物疏水面能夠凝結(jié)水滴,運(yùn)輸至親水面,但因滌綸面的疏水性并不顯著,當(dāng)實(shí)施長時間的水霧收集后,滌綸面的疏水性會被破壞即被打濕,繼而形成水膜,此時疏水面便難以捕捉細(xì)小的霧滴,導(dǎo)致水霧收集速率下降。由圖7(c)可見,霧滴能夠在超親水 超親水織物表面快速浸潤,但在形成水膜后,便很難再次捕獲霧滴,導(dǎo)致其水霧收集速率降低。由圖7(d)可見,當(dāng)霧流接觸到超疏水面時,小液滴會不斷擴(kuò)增成大液滴,并不斷受到超親水面的吸引,在靜水壓、毛細(xì)效應(yīng)作用下自發(fā)地轉(zhuǎn)移到超親水面進(jìn)行匯聚,最終捕集輸送的水滴在重力的作用下掉落,達(dá)到集水目的;水霧收集期間超親水面可形成水膜,導(dǎo)致前期收集的水分無法從超親水面透過,使其再蒸發(fā)率大幅度降低。因此,基于摩擦制備的單向?qū)裢繉俞樋椢锟梢栽陟F氣氛圍中實(shí)現(xiàn)有效的淡水收集。
3 結(jié) 論
本文構(gòu)筑的LSE-GP@TD HA具有優(yōu)良的超疏水特性,在堿減量處理滌蓋棉織物滌綸表面上進(jìn)行摩擦構(gòu)制后,該織物呈現(xiàn)單向?qū)裉匦裕焕闷涠ㄏ蛩斶\(yùn)能力能夠在霧氣氛圍中捕獲水霧,進(jìn)而聚集成水滴以實(shí)現(xiàn)淡水收集。與傳統(tǒng)水霧收集材料相比,LSE-GP@TD HA基單向?qū)窨椢锏乃F收集效率為10.3 mL h,有解決裝置制作工藝復(fù)雜、成本高等問題的可能性。同時,該單向?qū)窨椢镆?guī)避了一些常規(guī)水霧收集材料存在的收集水分再蒸發(fā)問題,能夠改善或避免收集水分再蒸發(fā),可為水霧收集材料提供新的研發(fā)思路。
參考文獻(xiàn):
[1]王煦漫, 盧俊龍, 張彩寧, 等. 超疏水棉織物制備及其霧收集性能[J]. 西安工程大學(xué)學(xué)報, 2024, 38(3): 1-7.
WANG X M, LU J L, ZHANG C N, et al. Preparation of superhydrophbic cotton fabric and its fog collection performance[J]. Journal of Xi’an Polytechnic University, 2024, 38(3): 1-7.
[2]TONG L H. Cyclodextrin Chemistry: Foundation and Application[M]. Beijing: Science Press, 2001.
[3]SALEHI M. Global water shortage and potable water safety: Today’s concern and tomorrow’s crisis[J]. Environment International, 2022, 158: 106936.
[4]MITTAL A, BRAJPURIYA R, GUPTA R. Solar steam generation using hybrid nanomaterials to address global environmental water pollution and shortage crisis[J]. Materials Today Sustainability, 2023, 21: 100319.
[5]AZEEM M, NOMAN M T, PETRU M. Surface wettability of vertical harps for fog collection[J]. Surfaces and Interfaces, 2022, 30: 101842.
[6]CASTELLI G, SANCHEZ A C, MESTRALLET A. Fog as unconventional water resource: Mapping fog occurrence and fog collection potential for food security in Southern Bolivia[J]. Journal of Arid Environments, 2023, 208: 104884.
[7]李慧慧, 王群, 賈偉科, 等. 多功能超疏水紡織品的制備及應(yīng)用研究進(jìn)展[J]. 現(xiàn)代紡織技術(shù), 2022, 30(3): 39-46.
LI H H, WANG Q, JIA W K, et al. Recent advances in the fabrication and application of multi-functional super-hydrophobic textiles[J]. Advanced Textile Technology, 2022, 30(3): 39-46.
[8]趙文瀟, 王群, 龔向宇, 等. 超疏水紡織品的構(gòu)建及其應(yīng)用研究[J]. 絲綢, 2023, 60(12): 42-50.
ZHAO W X, WANG Q, GONG X Y, et al. Study on the construction and applications of supergydrophobic textiles[J]. Journal of Silk, 2023, 60(12): 42-50.
[9]范郡哲, 孫文, 王立達(dá), 等. 超疏水不銹鋼網(wǎng)的制備與集霧性能研究[J]. 現(xiàn)代化工, 2022, 42(11): 100-105.
FAN J Z, SUN W, WANG L D, et al. Preparation of superhydrophobic stainless steel mesh and research on its performance in fog collection[J]. Modern Chemical Industry, 2022, 42(11): 100-105.
[10]LIANG Z H, FENG R, WU J M, et al. Temperature-gradient-induced enhanced fog collection on polymer brush surfaces[J]. Chemical Engineering Journal, 2023, 455: 140785.
[11]張笑迎, 王晗. PDMS超疏水表面的制備及集霧應(yīng)用[J]. 化工管理, 2021(6): 9-11.
ZHANG X Y, WANG H. Preparation and fogging application of PDMS superhydrophobic surface[J]. Chemical Engineering Management, 2021(6): 9-11.
[12]HAN X F, ZHONG L S, ZHANG L, et al. Efficient atmospheric water harvesting of superhydrophilic photothermic nanocapsule[J]. Small, 2023, 19(47): 2303358.
[13]BAI H Y, WANG X S, LI Z, et al. Improved liquid collection on a dual-asymmetric superhydrophilic origami[J]. Advanced Materials, 2023, 35(17): 2211596.
[14]ZHAN D Y, CHEN X G, XIA Y, et al. Improved fog collection on a hybrid surface with acylated cellulose coating[J]. ACS Applied Materials amp; Interfaces, 2024, 16(21): 27657-27667.
[15]YU A H, HE S P, FU F Y, et al. Solid-like slippery surface for anti-icing and efficient fog collection[J]. Materials Today Sustainability, 2024, 26: 100754.
A study on the rubbing preparation and performance of unidirectional moisture-conductive knitted fabric coatings for fog collection
ZHANG Jing, GUANG Jing, CHEN Chen
(1.Key Laboratory for Characteristic Textiles amp; Cleaner Dyeing and Finishing Technology, Xinjiang University, Urumqi 830017, China;
2.Key Laboratory for Smart amp; Green Textiles of Xinjiang, Urumqi 830017, China)
Abstract:Water is the source of life, but due to the rapid expansion of the world population, the dramatic increase in industrial water consumption and the further deterioration of environmental pollution in the last hundred years, the world has presented different degrees of water crisis, especially in the deserts and inland areas with limited infrastructure. The problem of water scarcity has posed a great threat to the basic survival of mankind, so it is urgent to develop fog harvesting technology to alleviate the water shortage problem. Fog is formed when water vapour nears the ground, and suspends as liquid water droplets during the cooler night to early morning hours to form fog. Fog containes 10-1 000 tiny droplets per cubic centimeter, with sizes ranging from 1-50 μm, and it accounts for 10 % of the freshwater resources in the world, and considers to be an accessible freshwater resource. Therefore, in environments such as deserts or mountains, where freshwater is scarce but fog is abundant, fog harvesting based on favourable terrain and temperature differences is an effective means of alleviating freshwater scarcity. Currently, the wetting properties of fog collection materials include superhydrophobic and superhydrophilic ones. Water droplets tend to condense on the surface of the hydrophobic material and grow into large droplets, and then they are removed from the surface. However, the superhydrophobic material surface could make larger droplets bounce back, causing it difficult to adhere the great mass of moisture in the mist. Droplets could be captured by superhydrophilic fog collection materials, but when the surface forms a water film, the tiny droplets would be difficult to condense on the surface again, leading to a reduction in fog collection efficiency. In addition, in the long-term process of fog collection, the single wetting performance of the fog collection material is vulnerable to environmental influences, which further leads to the reduction of the fog collection efficiency. In view of this, more and more researchers are committed to developing fog collection materials with wetting asymmetry in order to enhance the efficiency of freshwater collection through their unique wetting gradients.
In this paper, based on a simple spontaneous gelation at room temperature, a gel polymer matrix was mildly constructed, and superhydrophobic polymer composites were formed by room temperature modification through the introduction of advanced alkyl alcohols and nanoscale inorganic biomaterials to control the microscopic morphology as well as surface energy distribution during the gelation formation. The special wettability Janus knitted fabric coating was constructed by using knitted fabrics as the substrate and friction as the means of implementation. The unidirectional moisture conduction was achieved by using its wetting asymmetry property, which could significantly reduce the re-evaporation rate of the collected water, and made the ambient fog transported from the superhydrophobic surface to the superhydrophilic surface in a directional manner, showing the highly efficient ability of capturing the fog. The gelling polymer constructed in this paper has excellent superhydrophobic properties, and after rubbing the fabric on the polyester surface of alkali reduction-treated polyester-covered cotton fabrics, the fabrics exhibit unidirectional moisture conductivity. Its directional water transport capability coud be utilized to capture fog in the atmosphere, which could be aggregated into water droplets for freshwater collection. When the fog flow contacts the superhydrophobic surface of the coating, the small droplets would be continuously expanded into large droplets, and continuously attracted by the superhydrophilic water surface. Under hydrostatic pressure and capillary effect, fog spontaneously transferres to the superhydrophilic water surface for convergence, and ultimately falls under the action of gravity to achieve the purpose of water collection. The superhydrophilic water surface during the collection of fog could form a water film, which results in the fact that the collection of water could not be collected through the superhydrophilic water surface, leading to the significant reduction in the re-evaporation rate. Therefore, the unidirectional moisture-conducting coated knitted fabric prepared based on friction could achieve effective freshwater collection in a foggy atmosphere.
Compared with conventional fog collection materials, the Janus knitted fabric coating has a water collection of 5 mL at 40 min, and from this point onwards the fog collection increases significantly; the water collection at 50 min is 7.8 mL, and the total water collection after 60 min is 10.3 mL, which is an outstanding effect of fog collection in comparison with the cotton fabrics, polyester-covered cotton fabrics and alkali reduction-treated polyester-covered cotton fabrics. The Janus knitted fabric coating constructed in this paper has fog collection efficiency of 10.3 mL h, with the possibility of solving the problems of complexity and high cost of the device fabrication process.
Key words:fog collection; unidirectional moisture conduction; knitted fabric; coating; rubbing preparation; Janus