摘要"泥水盾構(gòu)穿越復(fù)合地層時(shí),掘進(jìn)控制參數(shù)和泥水分離系統(tǒng)參數(shù)往往出現(xiàn)大幅波動(dòng),影響施工安全和掘進(jìn)效率。為提升施工過程的安全穩(wěn)定性,實(shí)現(xiàn)異常工況預(yù)測,依托望京隧道盾構(gòu)工程,針對(duì)地層狀況采用篩分、雙旋流、離心/壓濾固液分離協(xié)同控制技術(shù),采集盾構(gòu)機(jī)掘進(jìn)參數(shù)(掘進(jìn)速度、刀盤轉(zhuǎn)速和總推進(jìn)力等)和泥水分離系統(tǒng)運(yùn)行參數(shù)(進(jìn)漿量、進(jìn)漿密度和進(jìn)漿黏度等),通過Cook距離離群檢測和小波閾值去噪處理提升數(shù)據(jù)質(zhì)量;以雙旋流分離密度比值、黏度比值等12個(gè)參數(shù)為輸入,排漿量、排漿密度和排漿黏度為輸出,建立BP神經(jīng)網(wǎng)絡(luò)泥水分離系統(tǒng)參數(shù)的預(yù)測模型,并選取3個(gè)不同地層環(huán)段進(jìn)行預(yù)測對(duì)比分析。預(yù)測結(jié)果表明:預(yù)測平均絕對(duì)誤差均在5%以內(nèi),該預(yù)測模型在復(fù)合地層下仍具有較高的準(zhǔn)確性。
關(guān)鍵詞"盾構(gòu)隧道;"泥水分離;"Cook距離;"小波去噪;"BP神經(jīng)網(wǎng)絡(luò);"參數(shù)預(yù)測
泥水平衡盾構(gòu)在地面沉降控制和地層適應(yīng)性上具有顯著優(yōu)勢(shì),在城市核心區(qū)大直徑隧道修建中應(yīng)用越來越廣泛。在施工過程中,需要采用性能優(yōu)良的膨潤土泥漿來保持開挖面的穩(wěn)定,一般情況下,掘土1"m3要產(chǎn)生2~3"m3的廢棄泥水,若不經(jīng)妥善的泥水分離處理,不僅會(huì)浪費(fèi)資源和污染生態(tài)環(huán)境,還會(huì)明顯影響盾構(gòu)的整體掘進(jìn)速度和效率[1-3]。在北京鐵路地下直徑線、廣州獅子洋通道、武漢越江隧道、杭州慶春路過江隧道、濟(jì)南穿黃隧道等項(xiàng)目中,維修泥水進(jìn)排漿輸送系統(tǒng)、泥水分離系統(tǒng)等相關(guān)故障耗費(fèi)了大量工期[4-6]。為了提升泥水盾構(gòu)施工效率,目前主要研究掘進(jìn)過程參數(shù),而泥水分離參數(shù)和掘進(jìn)參數(shù)交互分析與模擬甚少,故二者之間的交互作用分析及模擬成為熱點(diǎn)。
泥水分離系統(tǒng)的重要評(píng)價(jià)指標(biāo)包括排漿密度、黏度和排漿量,掘進(jìn)過程中應(yīng)保持前兩個(gè)指標(biāo)穩(wěn)定,數(shù)值過高影響系統(tǒng)的輸送能力,數(shù)值過低不利于掌子面的穩(wěn)定,排漿量則體現(xiàn)了系統(tǒng)的處理能力。這3個(gè)指標(biāo)彼此存在非線性關(guān)系,且波動(dòng)較大,導(dǎo)致數(shù)據(jù)之間的交互作用分析和模擬十分困難。人工神經(jīng)網(wǎng)絡(luò)具有良好的自學(xué)習(xí)適應(yīng)能力、非線性映射能力和并行信息處理能力,為未知的及非線性系統(tǒng)的建模提供了新的思路。該方法克服了傳統(tǒng)技術(shù)在處理模糊、不確定信息時(shí)的許多弊端,因此,在地下工程中得到廣泛應(yīng)用[7-9]。
用于神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)預(yù)處理非常重要,主要方法有K-Means聚類法、均勻設(shè)計(jì)法、SDAE網(wǎng)絡(luò)降噪法、小波變換表示法、Mahalanobis距離法和滑動(dòng)平均法。李亞等[10]和Elbaz等[11]基于K-Means聚類法建立了預(yù)測模型,該模型比標(biāo)準(zhǔn)模型收斂更快,精度更高;張玉平等[12]通過均勻設(shè)計(jì)法確定BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練樣本,采用附加動(dòng)量法優(yōu)化網(wǎng)絡(luò)結(jié)構(gòu),縮減了訓(xùn)練時(shí)間且反演過程收斂穩(wěn)定;Xiao等[13]基于SDAE和GANs處理融合數(shù)據(jù),重構(gòu)了SDAE網(wǎng)絡(luò)中的降噪環(huán)節(jié)并提升了降噪效果,保留了數(shù)據(jù)的主要特征,避免數(shù)據(jù)訓(xùn)練不足導(dǎo)致的過擬合;Shahsenov等[14]通過連續(xù)小波變換表示數(shù)據(jù)特征,并分析小波類型和偽頻率范圍的靈敏度,在神經(jīng)網(wǎng)絡(luò)訓(xùn)練學(xué)習(xí)中取得了良好效果;徐一帆等[15]和孫峻楓等[16]基于Mahalanobis距離法檢測離群數(shù)據(jù)并采用滑動(dòng)平均法去噪,建立BP神經(jīng)網(wǎng)絡(luò)并預(yù)測復(fù)合地層掘進(jìn)參數(shù),均取得了良好預(yù)測效果。樣本數(shù)據(jù)質(zhì)量顯著影響神經(jīng)網(wǎng)絡(luò)預(yù)測效率和精度,Cook距離離群法和小波閾值去噪法在提升數(shù)據(jù)質(zhì)量方面有顯著優(yōu)勢(shì);前者基于Cook距離公式,某點(diǎn)的Cook距離越大,表示剔除該點(diǎn)后參數(shù)估計(jì)值的變化越大,即為強(qiáng)影響數(shù)據(jù)[17];后者基于小波分解函數(shù)和閾值降噪函數(shù),通過小波函數(shù)變換收到的含噪信號(hào),產(chǎn)生小波系數(shù)并分層后選擇合適閾值函數(shù)降噪,最終得到去噪信號(hào)[18]。
筆者依托京沈客專京冀段望京隧道盾構(gòu)工程,針對(duì)隧道穿越地層復(fù)雜、盾構(gòu)排放泥漿不能及時(shí)有效處理導(dǎo)致掘進(jìn)速度與泥水分離效率難以匹配,進(jìn)而造成進(jìn)漿密度增加、黏度增大、掘進(jìn)扭矩增大、設(shè)備磨損加快、效率降低等綜合問題,采用篩分、雙旋流、離心/壓濾固液分離協(xié)同控制技術(shù),形成泥水“分級(jí)分離-循環(huán)利用”系統(tǒng)。通過監(jiān)測泥水分離系統(tǒng)參數(shù)(進(jìn)排漿量、進(jìn)排漿黏度、兩級(jí)旋流比值等)和掘進(jìn)過程參數(shù)等,利用Cook距離離群檢測、小波閾值降噪對(duì)數(shù)據(jù)進(jìn)行預(yù)處理并建立BP神經(jīng)網(wǎng)絡(luò)預(yù)測分析排漿密度、黏度和排漿量的變化,通過評(píng)估預(yù)測結(jié)果針對(duì)性地調(diào)整泥水分離系統(tǒng)參數(shù)和掘進(jìn)控制參數(shù),為現(xiàn)場施工提供技術(shù)支撐和指導(dǎo)。
1"工程概況
望京隧道為雙洞單線隧道,使用2臺(tái)泥水盾構(gòu)機(jī)施工,開挖直徑為10.9 m,盾構(gòu)掘進(jìn)長度為3 740 m,刀盤采用輻條式,最大開口率為49%,最大掘進(jìn)速度為50 mm/min,最大進(jìn)排漿流量為1 800"m3/h。穿越地層以黏土層、粉質(zhì)黏土層、粉土層和粉細(xì)砂層等細(xì)顆粒地層為主,地質(zhì)剖面圖如圖1所示,泥水分離主要流程圖如圖2所示。先用雙層式振動(dòng)篩選機(jī)進(jìn)行粗顆粒篩分,小于3 mm的顆粒隨泥漿直接進(jìn)入一級(jí)旋流器。一級(jí)旋流器上端溢流出的小于75 μm泥漿顆粒進(jìn)入二級(jí)旋流器,溢流出的小于20 μm泥漿顆粒送至沉淀池。經(jīng)過二級(jí)旋流器分離的泥漿滿足配置新泥漿的粒徑要求,送至調(diào)整池供制漿系統(tǒng)使用。
2"盾構(gòu)泥水分離系統(tǒng)參數(shù)分析
在工程中對(duì)掘進(jìn)參數(shù)和泥漿特性參數(shù)進(jìn)行監(jiān)測,以保證系統(tǒng)運(yùn)行的平穩(wěn)性,具體監(jiān)測參數(shù)如下:第1類為盾構(gòu)機(jī)掘進(jìn)參數(shù):掘進(jìn)速度、刀盤轉(zhuǎn)速、總推進(jìn)力、貫入度;第2類為泥水分離系統(tǒng)運(yùn)行參數(shù):進(jìn)漿量、進(jìn)漿密度、進(jìn)漿黏度、排漿量、排漿密度、排漿黏度、初篩后的密度與黏度、一級(jí)旋流處理后的密度與黏度、二級(jí)旋流處理后的密度與黏度、二次初篩后的密度與黏度、二次進(jìn)漿的密度與黏度、沉淀池出料及經(jīng)過調(diào)整池后進(jìn)入盾構(gòu)機(jī)掌子面的密度與黏度。運(yùn)行過程中每天進(jìn)行多次測量,以保證泥水分離系統(tǒng)的正常運(yùn)行,從而保障泥水盾構(gòu)機(jī)的正常運(yùn)行。
盾構(gòu)機(jī)掘進(jìn)速度隨環(huán)號(hào)變化曲線如圖3所示。由圖3可見,掘進(jìn)速度總體波動(dòng)較大,數(shù)值主要在15~45 mm/min內(nèi)變化。結(jié)合圖1穿越地層結(jié)構(gòu)圖進(jìn)行分析,0~300環(huán)掘進(jìn)速度處于較低水平波動(dòng)狀態(tài),工作狀態(tài)處于始發(fā)端,速度較低且存在波動(dòng);地層結(jié)構(gòu)包含多種土層,如粉土、黏土、粉質(zhì)黏土等,盾構(gòu)穿越復(fù)合地層時(shí),掌子面巖體軟硬不均極易導(dǎo)致掘進(jìn)參數(shù)出現(xiàn)大幅波動(dòng),使得盾構(gòu)掘進(jìn)系統(tǒng)以及泥水配套措施都受到了一定影響。300~1 000環(huán)掘進(jìn)速度處于相對(duì)較高水平且波動(dòng)較小,穿越地層主要包括粉質(zhì)黏土和粉細(xì)砂,地質(zhì)相對(duì)穩(wěn)定,數(shù)據(jù)也相對(duì)穩(wěn)定。從1 000環(huán)到最終,掘進(jìn)速度頻繁出現(xiàn)大范圍波動(dòng),說明后半段地層性質(zhì)更復(fù)雜,地層對(duì)于掘進(jìn)系統(tǒng)和泥水分離系統(tǒng)的影響加重,因此需要根據(jù)地層情況來調(diào)整泥水分離系統(tǒng),從而保障盾構(gòu)機(jī)的掘進(jìn)速度。
繪制系統(tǒng)的進(jìn)排漿量、進(jìn)排漿黏度和進(jìn)排漿密度變化曲線如圖4所示。由圖4可見,各曲線大致可分為3個(gè)部分,在0~300環(huán)和1 400~1 800環(huán)處于波動(dòng)較大范圍,在300~1 400環(huán)處于較穩(wěn)定狀態(tài),與掘進(jìn)區(qū)段的地質(zhì)結(jié)構(gòu)分布也一致,在粉細(xì)砂和黏土地層(300~1 400環(huán)),泥水特性參數(shù)變化相對(duì)平穩(wěn);其余環(huán)段,地質(zhì)結(jié)構(gòu)復(fù)雜,對(duì)盾構(gòu)刀盤切削掌子面土體及泥水分離系統(tǒng)均產(chǎn)生了消極影響。其中,進(jìn)排漿量均值差為152"m3/h,最大流量差為416"m3/h;進(jìn)排漿黏度均值差為1.3 s,最大黏度差為6 s;進(jìn)排漿密度均值差為0.07 g/cm3,最大密度差為0.50 g/cm3。由以上結(jié)果可知,在黏土、粉質(zhì)黏土等細(xì)顆粒地層,泥水分離系統(tǒng)通過預(yù)篩分、兩級(jí)旋流、沉淀和調(diào)整等步驟,實(shí)現(xiàn)了在城區(qū)細(xì)顆粒地層中大直徑泥水盾構(gòu)的高效掘進(jìn)。
3"盾構(gòu)泥水分離系統(tǒng)參數(shù)預(yù)測分析
1)"數(shù)據(jù)離群檢測
盾構(gòu)實(shí)際掘進(jìn)過程中往往會(huì)存在一些異常值,采用Cook距離異常值檢測方法進(jìn)行離群檢測,此方法常用于各種數(shù)據(jù)分析中異常數(shù)據(jù)的判斷。Cook距離公式如式(1)所示,通常情況下離群判斷標(biāo)準(zhǔn)如式(2)所示,即正常值與離群值的邊界[19]。
如圖5所示,虛線邊界上方為離群值,通過數(shù)據(jù)標(biāo)簽在數(shù)據(jù)庫中將其剔除。Cook距離離群檢測方法去除了對(duì)整體影響較大的異常離群值,但又保留了合理范圍內(nèi)的較大值,體現(xiàn)了數(shù)據(jù)的內(nèi)在規(guī)律特性。
2)"數(shù)據(jù)小波去噪
為進(jìn)一步提升數(shù)據(jù)的整體質(zhì)量,選擇小波去噪法對(duì)盾構(gòu)掘進(jìn)參數(shù)進(jìn)行去噪處理。利用小波分析對(duì)數(shù)據(jù)去噪后,通過少量有用信號(hào)分量即可表示原始信號(hào),小波分析的多變率分析能夠保護(hù)數(shù)據(jù)的非平穩(wěn)特征;通過相關(guān)操作和選擇不同函數(shù),使用小波分析能夠達(dá)到理想效果。
小波閾值去噪法關(guān)鍵是閾值函數(shù)的選擇,常用的函數(shù)有軟閾值函數(shù)和硬閾值函數(shù),其表達(dá)式分別如式(3)和式(4)所示[20]。
Sym小波函數(shù)具有較好的對(duì)稱性,一定程度上能夠減少對(duì)信號(hào)進(jìn)行分析和重構(gòu)時(shí)的相位失真。通過Matlab輸入wavemenu命令調(diào)取小波分析工具箱GUI工作環(huán)境,選擇一維小波分析,導(dǎo)入需要去噪的數(shù)據(jù),選擇SymSym2小波函數(shù)分析,分解為3層。去噪方法選擇閾值估計(jì)方法,閾值函數(shù)的選擇必須與所要解決的問題相匹配,對(duì)環(huán)段①進(jìn)行軟硬閾值處理效果對(duì)比,聲噪比(SNR)和均方根誤差(RMSE)如表1所示??梢钥闯?,軟閾值處理后的SNR指標(biāo)更高,比硬閾值高4.33 dB,RMSE指標(biāo)中軟閾值處理結(jié)果也相對(duì)較低,故軟閾值降噪綜合效果更優(yōu)。因此,選擇軟閾值去噪處理,處理后效果對(duì)比如圖6所示。
研究輸入層節(jié)點(diǎn)數(shù)目設(shè)置為12(掘進(jìn)速度、刀盤扭矩、刀盤轉(zhuǎn)速、總推進(jìn)力、貫入度、進(jìn)漿量、進(jìn)漿密度、進(jìn)漿黏度、一級(jí)分離密度/初篩分離密度、二級(jí)分離密度/一級(jí)分離密度、一級(jí)分離黏度/初篩分離黏度和二級(jí)分離黏度/一級(jí)分離黏度),輸出層節(jié)點(diǎn)數(shù)目設(shè)置為3(排漿量、排漿密度、排漿黏度)。整體神經(jīng)結(jié)構(gòu)模型如圖7所示,根據(jù)經(jīng)驗(yàn)公式S=2N+1,式中S為隱層神經(jīng)元數(shù),N為輸入節(jié)點(diǎn)個(gè)數(shù),多次優(yōu)化隱含層層數(shù)與神經(jīng)元個(gè)數(shù),以預(yù)測環(huán)段①進(jìn)行網(wǎng)絡(luò)結(jié)構(gòu)搜尋,結(jié)果如表2所示,最終設(shè)置網(wǎng)絡(luò)結(jié)構(gòu)為12-10-3。學(xué)習(xí)速率取0.01,迭代次數(shù)取10 000,精度目標(biāo)值取0.01。
共監(jiān)測到55 738個(gè)數(shù)據(jù)點(diǎn),BP神經(jīng)網(wǎng)絡(luò)可用樣本共1 798條。根據(jù)地層分布狀況和數(shù)值變化規(guī)律,分別選取101~200環(huán)、801~900環(huán)和1 501~1 600環(huán)3個(gè)部分中的數(shù)據(jù)作為樣本數(shù)據(jù)進(jìn)行訓(xùn)練,選取的區(qū)段示意如圖3中①、②、③區(qū)域所示。其中前70%作為訓(xùn)練組,后30%作為驗(yàn)證組。
預(yù)測模型對(duì)于目標(biāo)的預(yù)測值與實(shí)際值對(duì)比如圖8所示。為進(jìn)一步驗(yàn)證小波變換降噪效果和評(píng)估本神經(jīng)網(wǎng)絡(luò)的預(yù)測能力,需計(jì)算預(yù)測值和實(shí)際值的相對(duì)誤差并進(jìn)行評(píng)價(jià)分析,相對(duì)誤差如式(8)所示,最大誤差、最小誤差和平均誤差取相對(duì)誤差的絕對(duì)值。小波變換降噪處理效果對(duì)比如圖9所示,網(wǎng)絡(luò)結(jié)構(gòu)設(shè)置均與前文相同,可以看到,通過采用小波變換對(duì)樣本數(shù)據(jù)進(jìn)行降噪處理后,預(yù)測結(jié)果準(zhǔn)確度顯著提升。
圖10為整體預(yù)測相對(duì)誤差箱狀圖,由圖10可見,經(jīng)過離群檢測、小波降噪并通過所建的BP神經(jīng)網(wǎng)絡(luò)對(duì)排漿量、排漿密度和排漿黏度預(yù)測,樣本數(shù)據(jù)的平均絕對(duì)誤差均在5%以下,總體上達(dá)到了較高精度,已達(dá)到指導(dǎo)隧道盾構(gòu)掘進(jìn)和泥水分離系統(tǒng)運(yùn)轉(zhuǎn)的要求[22]。對(duì)比3種預(yù)測結(jié)果可以看出,環(huán)段①和環(huán)段③所處地層為復(fù)合地層,地質(zhì)種類較復(fù)雜,地層顆粒粒徑變化范圍大,但仍表現(xiàn)出了良好的預(yù)測能力,環(huán)段③的誤差值保持在5%以內(nèi),環(huán)段①的最大誤差為10.78%;環(huán)段②處于地質(zhì)較單一地層,主要包含黏土和粉質(zhì)黏土,預(yù)測誤差均值表現(xiàn)較好,但對(duì)于極少數(shù)異常工況預(yù)測誤差達(dá)13.62%,說明仍對(duì)極少數(shù)異常工況無法準(zhǔn)確預(yù)測,但整體效果可以肯定。
4"結(jié)論
針對(duì)現(xiàn)階段泥水盾構(gòu)掘進(jìn)過程參數(shù)提取處理和泥水分離系統(tǒng)預(yù)測研究問題,依托實(shí)際工程,創(chuàng)新組合運(yùn)用Cook距離離群檢測和小波閾值去噪法提升數(shù)據(jù)質(zhì)量,并以12個(gè)掘進(jìn)控制參數(shù)和泥水分離系統(tǒng)運(yùn)行參數(shù)為輸入建立BP神經(jīng)網(wǎng)絡(luò)對(duì)排漿量、排漿密度和排漿黏度進(jìn)行預(yù)測分析,主要結(jié)論如下:
1)對(duì)望京隧道區(qū)間中的掘進(jìn)速度參數(shù)與泥漿特性進(jìn)行直觀分析,將Cook距離離群檢測法和小波閾值去噪法組合應(yīng)用到采集的盾構(gòu)掘進(jìn)控制參數(shù)和泥水分離系統(tǒng)運(yùn)行參數(shù)處理中,軟閾值降噪得到的SNR指標(biāo)相對(duì)更高,RMSE指標(biāo)相對(duì)更低,在不改變數(shù)據(jù)內(nèi)在規(guī)律的前提下提高了數(shù)據(jù)的整體質(zhì)量,提升了預(yù)測精度。
2)以盾構(gòu)掘進(jìn)控制參數(shù)和泥水分離系統(tǒng)運(yùn)行參數(shù)(包含二級(jí)旋流器處理后的密度、黏度特性等)建立復(fù)雜地層下盾構(gòu)泥水分離參數(shù)預(yù)測模型,分別選取3個(gè)不同環(huán)段的排漿量、排漿密度和排漿黏度進(jìn)行預(yù)測分析,在復(fù)合地層條件下平均絕對(duì)誤差均在5%以內(nèi)。
參考文獻(xiàn)
1 蘇清貴,"翟志國,"鄧亨義."泥水盾構(gòu)施工廢棄泥漿的環(huán)保處理技術(shù)[J]."隧道建設(shè),"2012,"32(Sup2):"222-226.
SU Q G,"ZHAI Z G,"DENG H Y."Treatments of waste slurry of slurry shield machine [J]. Tunnel Construction,"2012,"32(Sup2):"222-226."(in Chinese)
2 林存剛,"吳世明,"張忠苗,"等."泥水盾構(gòu)隧道施工引起的地面沉降分析及預(yù)測[J]."土木建筑與環(huán)境工程,"2012,"34(5):"25-32.
LIN C G,"WU S M,"ZHANG Z M,"et al."Analysis and prediction of ground settlements due to slurry shield tunneling in a river-crossing tunnel [J]. Journal of Civil, Architectural & Environmental Engineering,"2012,"34(5):"25-32."(in Chinese)
3 廖晨."超大直徑泥水盾構(gòu)穿越施工對(duì)周邊環(huán)境的影響研究[D]."廣州:"廣州大學(xué),"2020.
LIAO C."Research of the environmental influence induced by adjacent tunneling with a large-diameter slurry TBM [D]. Guangzhou:"Guangzhou University,"2020."(in Chinese)
4 羅慶中,"李娜,"賈光智."中國鐵路發(fā)展戰(zhàn)略研究[J]."科技導(dǎo)報(bào),"2020,"38(9):"26-31.
LUO Q Z,"LI N,"JIA G Z."Study on China ,s railway development strategy [J]. Science & Technology Review,"2020,"38(9):"26-31."(in Chinese)
5 趙海濤."京張高鐵大直徑泥水盾構(gòu)施工泥漿環(huán)保處理措施研究[J]."鐵道勘察,"2020,"46(1):"79-81, 94.
ZHAO H T."Study on mud environmental protection treatment measures for construction of large diameter slurry shield in Beijing-Zhangjiakou high-speed railway [J]. Railway Investigation and Surveying,"2020,"46(1):"79-81, 94."(in Chinese)
6 許維青,"李義華,"翟志國,"等."一種泥水盾構(gòu)機(jī)在細(xì)顆粒地層中施工的泥漿多級(jí)分離方法:"CN107416994B [P]. 2020-08-28.
XU W Q,"LI Y H,"ZHAI Z G,"et al."Multi-stage slurry separation method for construction of slurry shield machine in fine particle stratum:nbsp;CN107416994B [P]. 2020-08-28."(in Chinese).
7 MAHDEVARI S,"TORABI S R."Prediction of tunnel convergence using Artificial Neural Networks [J]. Tunnelling and Underground Space Technology,"2012,"28:"218-228.
8 沈翔,"袁大軍,"吳俊,"等."復(fù)雜地層條件下盾構(gòu)掘進(jìn)參數(shù)分析及預(yù)測[J]."現(xiàn)代隧道技術(shù),"2020,"57(5):"160-166.
SHEN X,"YUAN D J,"WU J,"et al."Analysis and prediction of driving parameters of shield tunnelling in complex strata [J]. Modern Tunnelling Technology,"2020,"57(5):"160-166."(in Chinese)
9 AYAWAH P E A,"SEBBEH-NEWTON S,"AZURE J W A,"et al."A review and case study of artificial intelligence and machine learning methods used for ground condition prediction ahead of tunnel boring machines [J]. Tunnelling and Underground Space Technology,"2022,"125:"104497.
10 李亞,"劉麗平,"李柏青,"等."基于改進(jìn)K-Means聚類和BP神經(jīng)網(wǎng)絡(luò)的臺(tái)區(qū)線損率計(jì)算方法[J]."中國電機(jī)工程學(xué)報(bào),"2016,"36(17):"4543-4552.
LI Y,"LIU L P,"LI B Q,"et al."Calculation of line loss rate in transformer district based on improved K-means clustering algorithm and BP neural network [J]. Proceedings of the CSEE,"2016,"36(17):"4543-4552."(in Chinese)
11 ELBAZ K,"YAN T,"ZHOU A,"et al."Deep learning analysis for energy consumption of shield tunneling machine drive system [J]. Tunnelling and Underground Space Technology,"2022,"123:"104405.
12 張玉平,"馬超,"李傳習(xí),"等."基于均勻設(shè)計(jì)及BP神經(jīng)網(wǎng)絡(luò)的大體積混凝土熱學(xué)參數(shù)反分析[J]."土木與環(huán)境工程學(xué)報(bào)(中英文),"2021,"43(2):"148-157.
ZHANG Y P,"MA C,"LI C X,"et al."Inverse analysis on thermal parameters of mass concrete based on uniform design and BP neural network [J]. Journal of Civil and Environmental Engineering,"2021,"43(2):"148-157."(in Chinese)
13 XIAO X,"XIAO Y,"ZHANG Y,"et al."A fusion data preprocessing method and its application in complex industrial power consumption prediction [J]. Mechatronics,"2021,"77:"102520.
14 SHAHSENOV I,"MALIKOV R,"COOK P,"et al."Prediction of Gamma Ray data from pre-stack seismic reflection partial angle stacks using Continuous Wavelet Transform and convolutional neural network approach [J]. Journal of Applied Geophysics,"2022,"197:"104523.
15 徐一帆,"王士民,"何川,"等."基于BP神經(jīng)網(wǎng)絡(luò)的復(fù)合地層盾構(gòu)掘進(jìn)參數(shù)預(yù)測[J]."鐵道標(biāo)準(zhǔn)設(shè)計(jì),"2022,"66(7):"120-125.
XU Y F,"WANG S M,"HE C,"et al."Prediction of driving parameters of shield tunnel in composite strata based on back propagation neural network [J]. Railway Standard Design,"2022,"66(7):"120-125."(in Chinese)
16 孫峻楓,"陳凡,"宋天田,"等."基于神經(jīng)網(wǎng)絡(luò)的雙模盾構(gòu)復(fù)合地層掘進(jìn)參數(shù)預(yù)測模型[J]."鐵道標(biāo)準(zhǔn)設(shè)計(jì),2023,"67(5):"100-108.
SUN J F,"CHEN F,nbsp;SONG T T,"et al."Tunneling parameter prediction model of dual-mode shield in composite strata based on neural network[J]."Railway Standard Design,"2023,"67(5):"100-108.(in Chinese)
17 王志堅(jiān),"羅舒琪,"王斌會(huì)."基于穩(wěn)健Cook距離的時(shí)間序列異常值診斷[J]."統(tǒng)計(jì)與決策,"2022,"38(3):"40-44.
WANG Z J,"LUO S Q,"WANG B H."Outlier diagnosis of time series based on robust cook distance [J]. Statistics amp; Decision,"2022,"38(3):"40-44."(in Chinese)
18 章浙濤."小波分析理論及其在變形監(jiān)測中的應(yīng)用研究[D]."長沙:"中南大學(xué),"2014.
ZHANG Z T."Theory of wavelet analysis and its application in deformation monitoring [D]. Changsha:"Central South University,"2014."(in Chinese)
19 李成仁,"陸游,"袁豹."基于Cook距離的協(xié)方差函數(shù)擬合點(diǎn)優(yōu)選[J]."測繪工程,"2014,"23(5):"21-23.
LI C R,"LU Y,"YUAN B."Optimal selection of covariance function fitting points based on Cook distance [J]. Engineering of Surveying and Mapping,"2014,"23(5):"21-23."(in Chinese)
20 求森."基于小波分析和神經(jīng)網(wǎng)絡(luò)的城市軌道交通客流時(shí)間序列預(yù)測[D]."北京:"北京交通大學(xué),"2017.
QIU S."Prediction of urban rail transit passenger flow time series based on wavelet analysis and neural network [D]. Beijing:"Beijing Jiaotong University,"2017."(in Chinese)
21 李曉峰,"劉光中."人工神經(jīng)網(wǎng)絡(luò)BP算法的改進(jìn)及其應(yīng)用[J]."四川大學(xué)學(xué)報(bào)(工程科學(xué)版),"2000,"32(2):"105-109.
LI X F,"LIU G Z."The improvement of BP algorithm and its application [J]. Journal of Sichuan University (Engineering Science Edition),"2000,"32(2):"105-109."(in Chinese)
22 李明陽,"楊海濤,"鄒高明."復(fù)合地層土壓平衡盾構(gòu)掘進(jìn)參數(shù)模擬分析研究[J]."隧道建設(shè),"2012,"32(3):"287-295.
LI M Y,"YANG H T,"ZOU G M."Simulation analysis on boring parameters of EPB shield in complex strata [J]. Tunnel Construction,"2012,"32(3):"287-295."(in Chinese)