摘要"堿礦渣再生混凝土是以堿激發(fā)膠凝材料替代水泥、再生骨料取代天然石子制備而成的新型混凝土,能有效降低波特蘭水泥用量,提高廢棄混凝土利用率,但尚未見(jiàn)對(duì)其力學(xué)性能的相關(guān)研究。為研究堿礦渣再生混凝土的基本力學(xué)性能,以鋼纖維取代率和再生骨料取代率為主要試驗(yàn)參數(shù),進(jìn)行抗壓試驗(yàn)、劈裂抗拉試驗(yàn)和抗折試驗(yàn)。研究結(jié)果表明:隨著再生粗骨料取代率的增加,堿礦渣再生混凝土的抗壓強(qiáng)度fcu、劈裂抗拉強(qiáng)度ft和抗折強(qiáng)度fw均降低,再生粗骨料取代率為100%時(shí)的降低幅度分別為30%、10%、15%;堿礦渣再生混凝土抗壓強(qiáng)度和劈裂抗拉強(qiáng)度隨鋼纖維體積取代率增加先提高后降低,鋼纖維體積取代率為0.6%時(shí),抗壓強(qiáng)度和抗折強(qiáng)度達(dá)到最大值;堿礦渣再生混凝土抗折強(qiáng)度隨鋼纖維體積取代率增加而增加。
關(guān)鍵詞"再生骨料混凝土;"抗壓強(qiáng)度;"抗拉強(qiáng)度;"抗折強(qiáng)度;"鋼纖維;"體積取代率
水泥生產(chǎn)消耗大量的化石燃料,排放大量的二氧化碳,據(jù)統(tǒng)計(jì),水泥生產(chǎn)碳排放量約占全球碳排放總量的7%,因此,尋找可替代水泥的建筑材料具有極大的工程應(yīng)用價(jià)值[1-3]。堿礦渣混凝土(alkali-activated slag concrete,AASC)是以廢棄礦渣為膠凝材料,以氫氧化鈉和水玻璃等為堿性激發(fā)劑制備而成的混凝土[4-5]。堿礦渣混凝土可以有效利用廢棄礦渣,是綠色建材未來(lái)的發(fā)展趨勢(shì)之一[6-8]?;炷翉U塊經(jīng)過(guò)破碎、清洗和篩分等工序后,制成再生粗骨料。由再生粗骨料制作而成的混凝土稱為再生混凝土(recycled aggregate concrete,RAC)。RAC用于工程建設(shè),既可以緩解天然骨料短缺的問(wèn)題,又可以對(duì)建筑廢棄物進(jìn)行合理利用,符合建筑業(yè)綠色、環(huán)保、可持續(xù)的發(fā)展方向[9-10]。堿礦渣再生混凝土(alkali-activated slag recycled aggregate concrete,AAS-RAC)是以堿激發(fā)礦渣為膠凝材料,以再生骨料為粗骨料制備而成的新型混凝土,可充分利用堿礦渣膠凝材料和再生骨料的優(yōu)勢(shì),是可持續(xù)發(fā)展的綠色建材之一。
與普通混凝土相比,AASC具有凝結(jié)速度快、早期強(qiáng)度高、熱穩(wěn)定強(qiáng)、耐火性能強(qiáng)[11]、耐久性好的優(yōu)點(diǎn)[12-14]。Laskar等[15]研究表明,AASC的凝結(jié)速度遠(yuǎn)快于普通硅酸鹽水泥,其初凝時(shí)間和終凝時(shí)間分別為11、21 min。Atis等[16]發(fā)現(xiàn),AASC具有早強(qiáng)和快硬的特點(diǎn),在115 ℃熱養(yǎng)護(hù)的條件下,AASC的24 h強(qiáng)度最高可達(dá)120 MPa。Pan等[17]研究發(fā)現(xiàn),AASC在200 ℃和400 ℃下抗壓強(qiáng)度增加約22%和15%。Palomo等[18]指出,堿礦渣砂漿在浸入各種侵蝕性溶液(去離子水、硫酸鈉溶液和硫酸)中時(shí)性能非常穩(wěn)定。雖然AASC具有諸多優(yōu)勢(shì),但其同樣存在收縮大、韌性差的缺點(diǎn)[19]。Duran等[20]研究發(fā)現(xiàn),堿礦渣砂漿的收縮是普通硅酸鹽水泥的3~6倍。這是由于AAS生成的水化硅酸鈣(C-S-H)密度較高,使得AASC試件的體積變小,多余水分流失,進(jìn)而增加了AASC干燥收縮[21]。AASC由于其材料內(nèi)部廣泛存在微裂縫,表現(xiàn)出較高的脆性[22]。為降低AASC收縮,增加其延性,研究者做了大量的努力,通常的做法為在AASC中摻入纖維[23-24]。Zhou等[25]研究表明,玄武巖纖維對(duì)強(qiáng)度提高效果優(yōu)于聚丙烯纖維。Zhang等[26]將0.5%含量的聚丙烯纖維摻入后,試件的早期抗壓強(qiáng)度在第1天和第3天分別提高至68%和20%。Bernal等[27]將SF摻入AASC內(nèi),其研究表明,當(dāng)SF體積含量為1.5%時(shí),AASC的抗拉強(qiáng)度和抗折強(qiáng)度分別提高了24%和38%。與天然骨料相比,再生骨料內(nèi)部存在更多的孔隙,其表觀密度更低,壓碎值更高[28],因此,與普通混凝土相比,RAC的強(qiáng)度明顯降低。為了改善RAC的力學(xué)性能,提高其在工程中的泛用性,許多學(xué)者進(jìn)行了嘗試。肖建莊等[29]采用熱處理去除再生骨料表層黏附的殘留砂漿,研究表明,處理后再生骨料的殘留砂漿含量、吸水率和壓碎指標(biāo)分別降低了8.2%、1.9%和4.3%。Katkhuda等[30]利用酸處理去除其表面附著的砂漿,同時(shí)加入玄武巖纖維,RAC的劈裂抗拉強(qiáng)度和抗折強(qiáng)度分別提高了40.17%和82.65%。
AAS-RAC具有AASC和RAC優(yōu)勢(shì)的同時(shí),也存在脆性較大和強(qiáng)度較低的問(wèn)題。筆者通過(guò)摻入鋼纖維來(lái)改善AAS-RAC的力學(xué)性能,制備了8組共72個(gè)不同配比的AAS-RAC試件,研究再生骨料取代率和鋼纖維體積取代率對(duì)AAS-RAC立方體抗壓強(qiáng)度fcu、劈裂抗拉強(qiáng)度ft和抗折強(qiáng)度fw的影響。
1"試驗(yàn)準(zhǔn)備
?;郀t礦渣的比表面積和比重分別為440"m2/kg和2.45,平均粒徑為2.4 μm,其化學(xué)成分和粒度分布圖分別見(jiàn)表1和圖1。粗骨料采用再生骨料。細(xì)骨料選用河沙,細(xì)度模量為2.6,容重為2 480 kg/m3。天然粗骨料選用碎石,粒徑范圍為5~25 mm,容重為2 620 kg/m3。試驗(yàn)中的水均采用天津市自來(lái)水。
堿激發(fā)劑由液態(tài)硅酸鈉、固體氫氧化鈉組成,激發(fā)劑中SiO2和Na2O的摩爾比為1.7,堿激發(fā)劑中含水量為56%。固體NaOH的純度為96%。試驗(yàn)選取鋼纖維以用來(lái)改善堿礦渣再生骨料混凝土的力學(xué)性能。鋼纖維由蘇州史尉康金屬制品有限公司提供,纖維的詳細(xì)力學(xué)性能如表2所示。
1.2"試件設(shè)計(jì)及配合比
制作8種不同配比的堿礦渣再生混凝土試件。試件設(shè)計(jì)考慮了鋼纖維體積取代率(0、0.3%、0.6%、0.9 %)和再生骨料取代率(0、25%、50%、75%、100%)的影響。具體試件設(shè)計(jì)及配合比如表3所示,表中組別由3部分組成:纖維/鋼纖維體積取代率/再生骨料取代率。以S/0.3/100為例,表示鋼纖維體積取代率為0.3%,再生骨料取代率為100%。每組試件的抗壓強(qiáng)度、劈裂抗拉強(qiáng)度和抗折強(qiáng)度均取3個(gè)同條件試件的平均值。
AAS-RAC試件制備時(shí),首先將再生骨料與部分水混合,進(jìn)行預(yù)濕處理;其次將液態(tài)Na2SiO3、固態(tài)NaOH和水按比例均勻混合;再次將預(yù)濕后再生骨料、礦粉、砂置于攪拌機(jī)中均勻攪拌60 s;隨后加入堿性激發(fā)劑,并均勻攪拌60 s;最后將混合物置于試模內(nèi),放在振動(dòng)臺(tái)上振動(dòng)30 s。為防止試件中的水分蒸發(fā)影響試件性能,將試件用塑料薄膜完全密封,放于溫度(20±2)℃、相對(duì)濕度(90±2)%的養(yǎng)護(hù)室,直至試驗(yàn)開(kāi)始。
對(duì)AAS-RAC的立方體抗壓強(qiáng)度、劈裂抗拉強(qiáng)度和抗折強(qiáng)度進(jìn)行了測(cè)試。立方體受壓試件尺寸為100 mm×100 mm×100 mm,劈裂抗拉強(qiáng)度試驗(yàn)試件尺寸為100 mm×100 mm×100 mm,抗折強(qiáng)度試驗(yàn)試件尺寸為100 mm×100 mm×400 mm。試驗(yàn)按《混凝土物理力學(xué)性能試驗(yàn)方法標(biāo)準(zhǔn)》(GB/T 50081—2019)[31]進(jìn)行,立方體抗壓試驗(yàn)加載速率為0.6 MPa/s,劈裂抗拉試驗(yàn)和抗折試驗(yàn)加載速率為0.06 MPa/s。
2"試驗(yàn)結(jié)果與討論
2.1.1"再生骨料取代率的影響
再生骨料取代率對(duì)AAS-RAC立方體抗壓強(qiáng)度的影響如圖2所示。當(dāng)再生骨料取代率為100%時(shí),AAS-RAC立方體抗壓強(qiáng)度最低,為47.7 MPa。以天然骨料為粗骨料的堿礦渣混凝土的立方體抗壓強(qiáng)度最高,為67.4 MPa。且隨著再生骨料取代率的增加,AAS-RAC的立方體抗壓強(qiáng)度降低。再生骨料取代率為25%、50%、75%、100%時(shí),AAS-RAC的立方體抗壓強(qiáng)度分別比天然骨料混凝土低7.2%、10.5%、24.8%、30.3%。這是由于再生骨料的強(qiáng)度低于天然骨料,隨著低強(qiáng)度骨料的摻入,AAS-RAC的立方體抗壓強(qiáng)度降低。Nazarimofrad等[32]研究指出,再生骨料強(qiáng)度對(duì)RAC抗壓強(qiáng)度影響較為顯著。再生骨料在制作時(shí),材料內(nèi)部會(huì)出現(xiàn)微裂縫,這使得RAC孔隙率增大,受壓時(shí)在裂縫空隙處產(chǎn)生應(yīng)力集中[33],進(jìn)而降低了AAS-RAC的立方體抗壓強(qiáng)度。
2.1.2"鋼纖維體積取代率的影響
試驗(yàn)研究表明,鋼纖維的摻入可有效增加AAS-RAC立方體抗壓強(qiáng)度。為研究鋼纖維體積取代率對(duì)AAS-RAC立方體抗壓強(qiáng)度的影響,將不同鋼纖維體積取代率試件立方體抗壓強(qiáng)度列于圖3。可以看出,隨鋼纖維體積取代率的提高,AAS-RAC立方體抗壓強(qiáng)度先增加后降低,相比未摻纖維AAS-RAC立方體抗壓強(qiáng)度,鋼纖維體積取代率為0.3%、0.6%、0.9%時(shí),立方體抗壓強(qiáng)度的提高37%、51%、41%。適量的鋼纖維可以提高立方體抗壓強(qiáng)度,過(guò)量則會(huì)降低。主要原因?yàn)檫m量的鋼纖維可有效抑制AAS-RAC試件內(nèi)部微裂縫發(fā)展,進(jìn)而增加了混凝土強(qiáng)度。過(guò)多的鋼纖維摻入易在混凝土內(nèi)部成團(tuán),無(wú)法均勻分布,成團(tuán)的鋼纖維周圍存在空隙,進(jìn)而降低了堿礦渣再生骨料的立方體抗壓強(qiáng)度[34]。
2.2"AAS-RAC劈裂抗拉強(qiáng)度
2.2.1"再生骨料取代率的影響
再生骨料取代率對(duì)AAS-RAC劈裂抗拉強(qiáng)度的影響如圖4所示。可以看出,與沒(méi)有摻入再生骨料的AAS-RAC相比,再生骨料取代率為25%、50%、75%和100%時(shí),AAS-RAC劈裂抗拉強(qiáng)度分別降低了0.5%、1.8%、1.9%和9.7%。對(duì)混凝土廢塊進(jìn)行二次處理過(guò)程中,再生骨料內(nèi)部會(huì)產(chǎn)生許多微裂縫,進(jìn)而降低了AAS-RAC劈裂抗拉強(qiáng)度[35]。隨著再生骨料取代率的增加,AAS-RAC的劈裂抗拉強(qiáng)度減小,這是由于骨料強(qiáng)度降低,從而降低了AAS-RAC劈裂抗拉強(qiáng)度,但減小幅度不大。張麗娟[36]對(duì)不同配比的鋼纖維再生混凝土進(jìn)行研究,結(jié)果表明,再生骨料取代率對(duì)劈裂抗拉強(qiáng)度影響最小,鋼纖維體積率對(duì)劈裂抗拉強(qiáng)度影響顯著。
2.2.2"鋼纖維體積取代率的影響
鋼纖維體積取代率對(duì)AAS-RAC劈裂抗拉強(qiáng)度的影響如圖5所示。可以看出,與無(wú)鋼纖維的AAS-RAC相比,鋼纖維體積取代率為0.3%、0.6%、0.9%的AAS-RAC的劈裂抗拉強(qiáng)度分別提高了10%、60%、43%。章文嬌等[37]試驗(yàn)表明,將鋼纖維摻入再生混凝土中,可顯著增強(qiáng)其劈裂抗拉強(qiáng)度,當(dāng)摻量為117 kg/m3時(shí),抗拉強(qiáng)度增強(qiáng)率達(dá)49.2%。Afroughsabet等[38]試驗(yàn)發(fā)現(xiàn),將1%的鋼纖維分別摻入再生混凝土和普通混凝土中,鋼纖維的摻入對(duì)RAC劈裂強(qiáng)度的提升效果更為顯著,這是由于鋼纖維與再生骨料之間產(chǎn)生了更強(qiáng)的黏結(jié)力。但過(guò)量加入鋼纖維會(huì)對(duì)AAS-RAC的強(qiáng)度產(chǎn)生負(fù)面影響,這與鋼纖維對(duì)AAS-RAC抗壓強(qiáng)度的影響類似。混凝土在外部荷載作用下產(chǎn)生縱向和橫向變形,隨著外部荷載增加,試件中部的橫向變形達(dá)到混凝土的極限值產(chǎn)生縱向裂紋,當(dāng)試件中部混凝土拉應(yīng)變達(dá)到極限拉應(yīng)變混凝土發(fā)生破壞[39]。而混凝土劈裂抗拉破壞同樣為試件劈裂中截面混凝土受拉破壞[40],因此,鋼纖維對(duì)AAS-RAC的抗壓強(qiáng)度和劈裂抗拉強(qiáng)度有類似的影響。
2.3"AAS-RAC抗折強(qiáng)度
2.3.1"再生骨料取代率的影響
再生骨料取代率對(duì)AAS-RAC抗折強(qiáng)度的影響如圖6所示??梢钥闯觯偕橇先〈实脑黾訒?huì)使AAS-RAC抗折強(qiáng)度降低。再生骨料取代率為25%、50%、75%、100%時(shí),AAS-RAC抗折強(qiáng)度分別降低了6.7%、9.7%、11.7%、15.3%。這是因?yàn)樵偕橇系膹?qiáng)度遠(yuǎn)低于天然骨料,這與再生骨料對(duì)AAS-RAC抗壓強(qiáng)度的影響相似。秦紅杰 [41]研究指出,再生混凝土試件的破壞裂縫通常穿過(guò)再生骨料發(fā)展,再生骨料的初始損傷使再生骨料強(qiáng)度較天然骨料低,當(dāng)構(gòu)件出現(xiàn)裂縫時(shí),裂縫會(huì)貫穿再生骨料,導(dǎo)致再生混凝土抗折強(qiáng)度降低。
2.3.2"鋼纖維體積取代率的影響
鋼纖維體積取代率對(duì)AAS-RAC抗折強(qiáng)度的影響如圖7所示??梢杂^察到,隨著鋼纖維體積取代率的增加,AAS-RAC抗折強(qiáng)度增加。當(dāng)鋼纖維體積取代率為0.9%時(shí),抗折強(qiáng)度最大為5.16 MPa,比無(wú)纖維AAS-RAC提高22.9%。霍俊芳等[42]研究發(fā)現(xiàn),RAC的抗折強(qiáng)度隨著鋼纖維體積取代率的增加而增加,當(dāng)鋼纖維體積取代率分別為0.5%、1.5%、2%時(shí),抗折強(qiáng)度分別增加17.0%、26.4%、34.0%。鋼纖維可以有效抑制堿礦渣再生骨料混凝土試件內(nèi)部裂縫的產(chǎn)生,同時(shí)鋼纖維可橋接于AAS-RAC材料內(nèi)部微裂縫兩側(cè),進(jìn)而限制了微裂縫的發(fā)展和延伸,提高AAS-RAC抗折強(qiáng)度[43-44]。
2.4"機(jī)理分析
2.4.1"再生骨料取代率的影響
再生骨料取代率對(duì)AAS-RAC基本力學(xué)性能的影響如圖8所示,其中,f為試件的強(qiáng)度,fN0為再生骨料取代率為0時(shí)試件的強(qiáng)度。從圖8可以看出,3條曲線的趨勢(shì)較為一致,立方體抗壓強(qiáng)度、劈裂抗拉強(qiáng)度和抗折強(qiáng)度均隨著再生骨料取代率的增加而降低。這是由于AAS-RAC與普通混凝土的破壞形態(tài)存在一定差異,普通混凝土的破壞為界面過(guò)渡區(qū)微裂縫開(kāi)展及延伸導(dǎo)致的最終破壞。而再生粗骨料力學(xué)性能弱于天然粗骨料,導(dǎo)致堿礦渣再生混凝土除界面過(guò)渡區(qū)微裂縫破壞,還存在大量貫穿粗骨料材料內(nèi)部的破壞。同時(shí)可以看出,再生粗骨料取代率對(duì)AAS-RAC抗壓強(qiáng)度影響最為顯著,對(duì)劈裂抗拉強(qiáng)度影響最小,當(dāng)再生粗骨料取代率為100%時(shí),抗壓強(qiáng)度和劈裂抗拉強(qiáng)度分別降低了30.3%和9.7%。
2.4.2"鋼纖維體積取代率的影響
鋼纖維體積取代率對(duì)AAS-RAC基本力學(xué)性能的影響如圖9所示,其中f為試件的強(qiáng)度,fS0為未摻鋼纖維試件的強(qiáng)度。從圖9可以看出,鋼纖維體積取代率對(duì)AAS-RAC的立方體抗壓強(qiáng)度和劈裂抗拉強(qiáng)度的影響效果較為一致,均為先增加后降低。適量的鋼纖維可橋接于裂縫兩側(cè),有效抑制AAS-RAC試件內(nèi)部微裂縫發(fā)展延伸,進(jìn)而增加了混凝土強(qiáng)度[45]。當(dāng)摻入過(guò)多的鋼纖維時(shí),鋼纖維在AAS-RAC內(nèi)部出現(xiàn)成團(tuán)的現(xiàn)象,成團(tuán)的鋼纖維使得混凝土中孔洞的數(shù)量和大小增加,進(jìn)而降低了AAS-RAC的立方體抗壓強(qiáng)度和劈裂抗拉強(qiáng)度??拐蹚?qiáng)度隨鋼纖維體積取代率的增加而增加。主要原因是鋼纖維的抗拉強(qiáng)度遠(yuǎn)高于混凝土,而抗折破壞的實(shí)質(zhì)為試件受拉區(qū)混凝土受拉破壞導(dǎo)致,高強(qiáng)度、高彈模的鋼纖維搭接于開(kāi)裂混凝土兩側(cè),混凝土開(kāi)裂后可繼續(xù)承擔(dān)拉應(yīng)力,進(jìn)而增加了AAS-LWAC抗折強(qiáng)度。同時(shí)可以看出,鋼纖維體積取代率對(duì)立方體抗壓強(qiáng)度影響最為顯著,對(duì)抗折強(qiáng)度的影響最小,雖然纖維的摻入會(huì)使AAS-RAC的抗折強(qiáng)度不斷增加,但在鋼纖維體積取代率為0.9%時(shí),抗折強(qiáng)度的增加幅度小于劈裂抗拉強(qiáng)度和立方體抗壓強(qiáng)度。
3nbsp;結(jié)論
研究了堿礦渣再生粗骨料混凝土抗壓性能、劈裂抗拉性能和抗折性能,考慮了再生粗骨料取代率和鋼纖維體積取代率對(duì)其力學(xué)性能影響,主要結(jié)論如下:
1)AAS-RAC抗壓強(qiáng)度fcu、劈裂抗拉強(qiáng)度ft和抗折強(qiáng)度fw均隨再生粗骨料取代率增加而降低。這是由于再生粗骨料內(nèi)部存在原始界面過(guò)渡區(qū),表面存在大量微裂縫,這使得再生粗骨料力學(xué)性能較弱,進(jìn)而降低了AAS-RAC力學(xué)性能。
2)適量鋼纖維會(huì)提高AAS-RAC抗壓強(qiáng)度fcu和劈裂抗拉強(qiáng)度ft,但過(guò)量鋼纖維反而會(huì)降低AAS-RAC的fcu和ft。這是由于適量鋼纖維可橋接于荷載作用下產(chǎn)生的微裂縫兩側(cè),進(jìn)而抑制了微裂縫發(fā)展及延伸,提高了AAS-RAC強(qiáng)度。過(guò)量鋼纖維易在混凝土材料內(nèi)部產(chǎn)生團(tuán)簇效應(yīng),進(jìn)而降低了AAS-RAC強(qiáng)度。
3)與鋼纖維對(duì)AAS-RAC抗壓強(qiáng)度fcu和劈裂抗拉強(qiáng)度ft影響不同,鋼纖維體積取代率小于0.9%時(shí),AAS-RAC抗折強(qiáng)度fw隨鋼纖維體積取代率的增加而提高。這是由于AAS-RAC抗折破壞為試件受拉區(qū)混凝土受拉失效破壞,發(fā)展較為迅速,而受拉區(qū)鋼纖維橋接于裂縫兩側(cè),抑制受拉區(qū)裂縫開(kāi)展,同時(shí)可替代受拉區(qū)開(kāi)裂混凝土承受部分拉應(yīng)力,進(jìn)而提高了AAS-RAC的抗折強(qiáng)度fw。
4)再生粗骨料取代率對(duì)AAS-RAC的抗壓強(qiáng)度fcu的影響最為顯著,而對(duì)劈裂抗拉強(qiáng)度ft的影響最弱。鋼纖維體積取代率對(duì)AAS-RAC抗壓強(qiáng)度fcu的影響最為顯著,其次為劈裂抗拉強(qiáng)度ft,而對(duì)抗折強(qiáng)度fw影響最弱。
參考文獻(xiàn)
1 FLOWER D J M,"SANJAYAN J G."Green house gas emissions due to concrete manufacture [J]. The International Journal of Life Cycle Assessment,"2007,"12(5):"282-288.
2 VISHWAKARMA V,"RAMACHANDRAN D."Green Concrete mix using solid waste and nanoparticles as alternatives-A review [J]. Construction and Building Materials,"2018,"162:"96-103.
3 MALHOTRA V M."Introduction: Sustainable development and concrete technology [J]. Concrete International,"2002,"24(7):"22.
4 PROVIS J L,"VAN DEVENTER J S J."Alkali activated materials [M]. Dordrecht:"Springer Netherlands,"2014.
5 DAS S,"SAHA P,"JENA S P,"et al."Geopolymer concrete: Sustainable green concrete for reduced greenhouse gas emission-A review [J]. Materials Today: Proceedings,"2022,"60:"62-71.
6 AMER I,"SAHA P,"JENA S P,"et al."A review on alkali-activated slag concrete [J]. Ain Shams Engineering Journal,"2021,"12(2):"1475-1499.
7 PROVIS J L."Alkali-activated materials [J]. Cement and Concrete Research,"2018,"114:"40-48.
8 SANDANAYAKE M,"GUNASEKARA C,"LAW D,"et al."Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction [J]. Journal of Cleaner Production,"2018,"204:"399-408.
9 SILVA R V,"DE BRITO J,"DHIR R K."Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production [J]. Construction and Building Materials,"2014,"65(1):"201-217.
10 EGUCHI K,"TERANISHI K,"NAKAGOMEA,"et al."Application of recycled coarse aggregate by mixture to concrete construction [J]. Construction and Building Materials,"2007,"21(7):"1542-1551.
11 HOSAN A,"HAQUE S,"SHAIKH F."Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures: A comparative study [J]. Journal of Building Engineering,"2016,"8:"123-130.
12 MONTICELLI C,"NATALI M E,"BALBO A,"et al."Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical and chemical characterization [J]. Cement and Concrete Research,"2016,"80:"60-68.
13 BABAEE M."Chloride-induced corrosion of reinforcement in low-calcium fly ash-based geopolymer concrete [J]. Cement and Concrete Research,"2016,"88:"96-107.
14 FERNANDEZ-JIMENEZ A,"GARCíA-LODEIRO I,"PALOMO A."Durability of alkali-activated fly ash cementitious materials [J]. Journal of Materials Science,"2007,"42(9):"3055-3065.
15 LASKAR S M,"TALUKDAR S."Development of ultrafine slag-based geopolymer mortar for use as repairing mortar [J]. Journal of Materials in Civil Engineering,"2017,"29(5):"04016292.
16 ATI? C D,"G?RüR E B,"KARAHAN O,"et al."Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration [J]. Construction and Building Materials,"2015,"96:"673-678.
17 PAN Z,"SANJAYAN J G."Stress-strain behaviour and abrupt loss of stiffness of geopolymer at elevated temperatures [J]. Cement and Concrete Composites,"2010,"32(9):"657-664.
18 PALOMO A,"BLANCO-VARELA M T,"GRANIZO M L,"et al."Chemical stability of cementitious materials based on metakaolin [J]. Cement and Concrete Research,"1999,"29(7):"997-1004.
19 COLLINS F,"SANJAYAN J G."Effect of pore size distribution on drying shrinking of alkali-activated slag concrete [J]. Cement and Concrete Research,"2000,"30(9):"1401-1406.
20 DURAN ATI? C,"BILIM C,"?ELIK ?,"et al."Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar [J]. Construction and Building Materials,"2009,"23(1):"548-555.
21 THOMAS J J,"ALLEN A J,"JENNINGS H M."Density and water content of nanoscale solid C-S-H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage [J]. Cement and Concrete Research,"2012,"42(2):"377-383.
22 COLLINS F,"SANJAYAN J G."Microcracking and strength development of alkali activated slag concrete [J]. Cement and Concrete Composites,"2001,"23(4/5):"345-352.
23 RANJBAR N,"ZHANG M."Fiber-reinforced geopolymer composites: A review [J]. Cement and Concrete Composites,"2020,"107:"103498.
24 ALOMAYRI T,"SHAIKH F U A,"LOW I M."Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites [J]. Composites Part B: Engineering,"2014,"60:"36-42.
25 ZHOU X Y,"ZENG Y S,"CHEN P,"et al."Mechanical properties of basalt and polypropylene fibre-reinforced alkali-activated slag concrete [J]. Construction and Building Materials,"2021,"269:"121284.
26 ZHANG Z H,"YAO X,"ZHU H J,"et al."Preparation and mechanical properties of polypropylene fiber reinforced calcined Kaolin-fly ash based geopolymer [J]. Journal of Central South University of Technology,"2009,"16(1):"49-52.
27 BERNAL S,"DE GUTIERREZ R,"DELVASTO S,nbsp;et al."Performance of an alkali-activated slag concrete reinforced with steel fibers [J]. Construction and Building Materials,"2010,"24(2):"208-214.
28 SOARES D,"DE BRITO J,"FERREIRA J,"et al."Use of coarse recycled aggregates from precast concrete rejects: Mechanical and durability performance [J]. Construction and Building Materials,"2014,"71:"263-272.
29 肖建莊,"吳磊,"范玉輝."微波加熱再生粗骨料改性試驗(yàn)[J]."混凝土,"2012(7):"55-57.
XIAO J Z,"WU L,"FAN Y H."Test on modification of recycled coarse aggregate by microwave heating [J]. Concrete,"2012(7):"55-57."(in Chinese)
30 KATKHUDA H,"SHATARAT N."Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment [J]. Construction and Building Materials,"2017,"140:"328-335.
31 混凝土物理力學(xué)性能試驗(yàn)方法標(biāo)準(zhǔn):"GB/T 50081—2019 [S]. 北京:"中國(guó)建筑工業(yè)出版社,"2019.
Standard for test methods of concrete physical and mechanical properties:"GB/T 50081—2019 [S]. Beijing:"China Architecture amp; Building Press,"2019."(in Chinese)
32 NAZARIMOFRAD E,"SHAIKH F U A,"NILI M."Effects of steel fibre and silica fume on impact behaviour of recycled aggregate concrete [J]. Journal of Sustainable Cement-Based Materials,"2017,"6(1):"54-68.
33 郭樟根,"陳晨,"范秉杰,"等."再生粗細(xì)骨料混凝土基本力學(xué)性能試驗(yàn)研究[J]."建筑結(jié)構(gòu)學(xué)報(bào),"2016,"37(Sup2):"94-102.
GUO Z G,"CHEN C,"FAN B J,"et al."Experimental research on mechanical behavior of concrete made of coarse and fine recycled aggregates [J]. Journal of Building Structures,"2016,"37(Sup2):"94-102."(in Chinese)
34 ANIKE E E,"SAIDANI M,"OLUBANWO A O,"et al."Effect of mix design methods on the mechanical properties of steel fibre-reinforced concrete prepared with recycled aggregates from precast waste [J]. Structures,"2020,"27:"664-672.
35 陳會(huì)凡,"管巧艷,"劉洪波."礦渣再生骨料混凝土力學(xué)性能研究[J]."混凝土,"2012(5):"91-93.
CHEN H F,"GUAN Q Y,"LIU H B."Study on the mechanical behavior of concrete containing slag and recycled concrete aggregate [J]. Concrete,"2012(5):"91-93."(in Chinese)
36 張麗娟."鋼纖維再生混凝土配合比設(shè)計(jì)及其性能計(jì)算方法[D]."鄭州:"鄭州大學(xué),"2017.
ZHANG L J."Mixture design and performance calculation method of steel fiber reinforced recycled concrete [D]. Zhengzhou:"Zhengzhou University,"2017."(in Chinese)
37 章文姣,"鮑成成,"孔祥清,"等."混雜纖維摻量對(duì)再生混凝土力學(xué)性能的影響研究[J]."科學(xué)技術(shù)與工程,"2016,"16(13):"106-112, 123.
ZHANG W J,"BAO C C,"KONG X Q,"et al."Experimental study on mechanical properties of hybrid fiber basic of recycled concrete [J]. Science Technology and Engineering,"2016,"16(13):"106-112, 123."(in Chinese)
38 AFROUGHSABET V,"BIOLZI L,"OZBAKK-ALOGLU T."Influence of double hooked-end steel fibers and slag on mechanical and durability properties of high performance recycled aggregate concrete [J]. Composite Structures,"2017,"181:"273-284.
39 張義順,"金祖權(quán),"李小雷."混凝土在受壓下的破壞機(jī)理研究[J]."焦作工學(xué)院學(xué)報(bào)(自然科學(xué)版),"2002,"21(2):"123-126.
ZHANG Y S,"JIN Z Q,"LI X L."Study on the destruction mechanism of concrete under the pressure [J]. Journal of Jiaozuo Institute of Technology,"2002,"21(2):"123-126."(in Chinese)
40 程文瀼,"王鐵成,"顏德姮,"等."混凝土結(jié)構(gòu)[M]."3版."北京:"中國(guó)建筑工業(yè)出版社,"2005:"10.
CHENG W R,"WANG T C,"YAN D H."Concrete structure [M]. Beijing:"China Architecture amp; Building Press,"2005:"10."(in Chinese)
41 秦紅杰."再生混凝土抗折強(qiáng)度尺寸效應(yīng)的試驗(yàn)研究及細(xì)觀數(shù)值模擬[D]."長(zhǎng)沙:"湖南大學(xué),"2020.
QIN H J."Experimental study and mesoscopic numerical simulation on the size effect of flexural strength of recycled aggregate concrete [D]. Changsha:"Hunan University,"2020."(in Chinese)
42 霍俊芳,"白笑笑,"姜鵬飛,"等."鋼纖維和聚丙烯纖維再生混凝土力學(xué)性能研究[J]."混凝土,"2019(8):"92-95, 99.
HUO J F,"BAI X X,"JIANG P F,"et al."Research on mechanical properties of steel fiber and polypropylene fiber recycled concrete [J]. Concrete,"2019(8):"92-95, 99."(in Chinese)
43 張學(xué)兵,"匡成鋼,"方志,"等."鋼纖維粉煤灰再生混凝土強(qiáng)度正交試驗(yàn)研究[J]."建筑材料學(xué)報(bào),"2014,"17(4):"677-684, 694.
ZHANG X B,"KUANG C G,"FANG Z,"et al."Orthogonal experimental study on strength of steel fiber reinforced fly ash recycled concrete [J]. Journal of Building Materials,"2014,"17(4):"677-684, 694."(in Chinese)
44 楊粉,"陳愛(ài)玖,"王靜,"等."鋼纖維再生混凝土劈拉、抗折強(qiáng)度試驗(yàn)研究[J]."混凝土,"2012(12):"11-14.
YANG F,"CHEN A J,"WANG J,"et al."Experiments of splitting tensile and flexural strength mechanical properties of steel fiber recycled concrete [J]. Concrete,"2012(12):"11-14."(in Chinese)
45 SHAH S F A,"CHEN B,"ODERJI S Y,"et al."Comparative study on the effect of fiber type and content on the performance of one-part alkali-activated mortar [J]. Construction and Building Materials,"2020,"243:"118221.