Research progress on the relationship between event?related potential and cognitive impairment in schizophrenia patients
LAN Yu1, LANG Xiao'e2*, LI Wenxin1
1.The First Clinical College of Medicine, Shanxi Medical University, Shanxi 030001 China;2.First Hospital of Shanxi Medical University
*Corresponding Author" LANG Xiao'e, E?mail: langxiaoe@yeah.net
Keywords" schizophrenia; cognitive impairment; event?related potential; review
摘要" 認知功能損害是精神分裂癥的核心癥狀之一,然而其病理生理學機制尚不明確。事件相關電位作為一種安全無創(chuàng)、操作簡單的神經(jīng)電生理學檢測方法,主要用于反映大腦對刺激事件不同的認知加工過程,研究精神分裂癥病人事件相關電位的變化可能有助于理解其認知功能損害的神經(jīng)機制,為精神分裂癥的臨床診斷和精準化治療提供客觀依據(jù)。
關鍵詞" 精神分裂癥;認知功能損害;事件相關電位;綜述
doi:10.12102/j.issn.1009-6493.2024.24.028
精神分裂癥是一種病因未明、起病緩慢、病程較長且具有高復發(fā)率和高致殘率的重性精神疾病。最新流行病調(diào)查報告顯示,精神分裂癥全球終身患病率約為0.6%[1]。眾所周知,精神分裂癥病人存在不同程度的認知功能損害,主要表現(xiàn)為記憶力、注意力、視覺空間結構、言語功能和執(zhí)行功能等方面的缺陷[2?3]。研究發(fā)現(xiàn),精神分裂癥病人認知功能損害不僅在疾病發(fā)作期就已顯現(xiàn),在癥狀緩解期也持續(xù)存在[4?5],嚴重影響病人社會功能的恢復。這不僅給病人個人生活質(zhì)量造成了很大的影響,也給病人家庭成員帶來了巨大的心理和經(jīng)濟負擔[6?7]。近年來,隨著腦電技術的研究發(fā)展,事件相關電位(ERP)成為評估認知功能的重要電生理指標,常見的ERP包括P50、P300、失匹配負波(MMN)、P100、N200和關聯(lián)性負變(CNV)等?,F(xiàn)就精神分裂癥病人ERP與認知功能損害的關系綜述如下。
1" P50與認知功能損害關系
感覺門控是指大腦對外界感覺刺激進行篩選和過濾,以抑制無關信息輸入的能力[8?9]。P50是反映感覺門控功能可靠的神經(jīng)電生理指標,是受試者在接收到聽覺刺激約50 ms后出現(xiàn)的正電位波。通常采用條件?測試刺激范式檢測病人P50成分,檢測指標通常為S1潛伏期、S2潛伏期、S1波幅和S2波幅,以及由S2波幅除以S1波幅得到的P50比值[10]。P50比值越大,表明大腦排除干擾能力越差[11]。研究發(fā)現(xiàn),精神分裂癥高危人群、首發(fā)和慢性精神分裂癥病人均存在顯著的P50抑制缺陷,導致無關感覺信息不能被高效濾過而出現(xiàn)各種精神癥狀[12?13]。一項包含6 755例受試者的薈萃分析發(fā)現(xiàn),P50抑制缺陷在精神分裂癥中不隨時間進展,在緩解期保持穩(wěn)定,并證實了精神分裂癥病人無癥狀的一級親屬中也存在P50抑制缺陷[14],提示P50抑制缺陷是精神分裂癥的一種內(nèi)表型指征。在探討精神分裂癥病人P50抑制缺陷與其認知功能損害的相關性研究中,一些學者并沒有觀察到P50抑制缺陷與病人的認知功能損害有相關性,他們推測感覺門控異常環(huán)路與神經(jīng)認知功能損害可能并不存在一條直接通路[15?16]。然而有更多學者證實了P50抑制缺陷與多個認知領域損害存在關聯(lián)[17?19]。有研究發(fā)現(xiàn),首發(fā)精神分裂癥病人S1潛伏期和S2潛伏期與陽性和陰性癥狀量表(PANSS)的認知因子得分呈正相關[20],表明較長的S1和S2潛伏期與更嚴重的認知功能損害相關。Xia等[17]在探討慢性精神分裂癥感覺門控P50抑制缺陷和其認知功能損害的相關性研究中發(fā)現(xiàn)慢性精神分裂癥病人S2波幅和P50比值顯著高于正常人,并且S2波幅與其言語功能和視覺空間結構得分呈負相關。此外,Hamilton等[18]發(fā)現(xiàn),慢性精神分裂癥病人P50比值與信息處理速度和工作記憶顯著相關,具體表現(xiàn)為P50抑制缺陷越嚴重,病人信息處理速度和工作記憶損害越嚴重。在關于P50抑制缺陷與認知功能損害的性別差異研究中,Xia等[21]發(fā)現(xiàn)男性首發(fā)精神分裂癥病人S1潛伏期和S2潛伏期越長,其認知功能損害越嚴重。Wang等[22]研究發(fā)現(xiàn),女性慢性精神分裂癥病人S1潛伏期越長,其推理和問題解決能力越差。分子遺傳學研究表明,染色體15q13?14位點上的α7煙堿型乙酰膽堿受體基因(CHRNA7)啟動子區(qū)域的多態(tài)性與P50抑制有關[23]。CHRNA7基因編碼的α7煙堿型乙酰膽堿受體(α7nAChR)主要位于大腦海馬、紋狀體、丘腦等腦區(qū)[24]。托烷司瓊是一種高親和力的α7nAChR激動劑,有學者在對精神分裂癥病人使用托烷司瓊治療1 d后便可以減輕病人的P50抑制缺陷和認知功能損害,這一研究結果提示長期使用α7nAChR激動劑有望使精神分裂癥感覺門控功能和認知功能恢復到正常水平[25]。提示P50抑制缺陷可能是精神分裂癥病人認知功能損害的有效生物標志物。
2" P300與認知功能損害關系
P300是受試者在主動意識狀態(tài)下由oddball范式誘發(fā)的ERP成分,是受試者在接受特定刺激約300 ms后引出的一種晚期正相波[26]。研究表明,P300與學習能力、注意、記憶和理解力等認知功能有關,并且與所受刺激的物理特性無關,可以較穩(wěn)定和客觀地反映受試者的認知功能[27]。P300作為一種重要的ERP成分,已經(jīng)在精神分裂癥領域得到廣泛應用。大量文獻表明精神分裂癥病人P300潛伏期較正常人明顯延長,P300波幅較正常人明顯降低[28?31],且精神分裂癥無癥狀的一級親屬也出現(xiàn)了P300異常[32]。在有關P300成分與認知功能損害的相關性研究中,F(xiàn)rancisco等[31]發(fā)現(xiàn)精神分裂癥病人P300波幅降低與執(zhí)行功能損害有關,Wang等[33]報道了精神分裂癥病人P300波幅降低與語言加工和工作記憶損害有關。除此之外,一項有關ERP對認知訓練療法治療精神分裂癥譜系障礙效果的預測價值的研究表明,更高的基線P300波幅與更好的注意力、記憶力和加工速度等認知功能改善有關[34]。進一步研究發(fā)現(xiàn),P300由兩個功能不同的成分組成,分別是P3a和P3b[35]。P3a主要位于額葉區(qū)域,由罕見的非靶刺激所誘發(fā),即使在無任務狀態(tài)下也能被觀察到,P3b主要位于顳頂葉區(qū)域,由罕見的目標刺激所誘發(fā),當受試者被要求執(zhí)行與刺激相關的任務時可被觀察到。Andersen等[36]研究發(fā)現(xiàn),精神分裂癥病人P3a波幅降低與其注意力損害存在關聯(lián),此外,Hochberger等[37]報告了精神分裂癥病人P3a波幅減少與工作記憶、非言語記憶和執(zhí)行功能等方面的認知功能損害存在關聯(lián)。然而,也有研究報道P3a波幅與認知功能損害缺乏相關性[38?39]。在關于精神分裂癥病人P3b與認知功能損害的相關研究中,大多數(shù)研究發(fā)現(xiàn)P3b波幅與不同領域的認知功能呈正相關。Klein等[40]研究發(fā)現(xiàn),精神分裂癥病人P3b波幅比正常人低,且P3b波幅越低,病人的注意/警覺性損害越嚴重;Kruiper等[39]研究發(fā)現(xiàn),精神分裂癥病人P3b波幅降低與其注意和工作記憶損害有關。綜上所述,P300已經(jīng)在精神分裂癥病人認知領域的研究中取得了非常有意義的進展,并且可以被用作評估精神分裂癥病人認知功能的電生理指標。
3" MMN與認知功能損害關系
MMN是受試者在非主動意識狀態(tài)下由oddball范式誘發(fā)的ERP成分,該范式由一組重復出現(xiàn)的標準刺激和少量隨機分散的偏差刺激組成,并且偏差刺激與標準刺激的持續(xù)時間、頻率或音調(diào)等物理特征有所不同[41]。MMN為偏差刺激誘發(fā)的波形減去標準刺激誘發(fā)的波形所得到的負相波,通常在受試者接受偏差刺激150~250 ms后出現(xiàn)[42]。MMN能反映受試者在無意識狀態(tài)下對新奇刺激信息自動加工的能力,是評估聽覺處理和感覺記憶的客觀指標之一。先前的研究發(fā)現(xiàn),首發(fā)精神分裂癥、慢性精神分裂癥病人和臨床高危人群均存在MMN缺陷,主要表現(xiàn)為MMN波幅降低[43?45]。且有研究表明,精神分裂癥病人MMN缺陷程度隨著病情進展而加重,提示MMN可能是疾病進展程度的生物學標志[46]。近年來越來越多的研究致力于探究精神分裂癥病人MMN缺陷與其認知功能損害之間的關系,但相關研究結果并不一致。大多數(shù)研究表明較低的MMN波幅與認知功能損害之間存在相關性。Rowland等[47]發(fā)現(xiàn),精神分裂癥病人MMN波幅越低,其工作記憶損害越嚴重;Baldeweg等[48]發(fā)現(xiàn),精神分裂癥病人較低的MMN波幅與較差的日常記憶和語言流暢性有關,此外,還有研究發(fā)現(xiàn)精神分裂癥病人較低的MMN波幅與其注意缺陷也存在關聯(lián)[49]。在一項使用機器學習方法研究精神分裂癥病人認知功能變化的縱向研究中,隨訪6個月時MMN波幅升高的精神分裂癥病人,其認知功能也較基線水平表現(xiàn)更好[50]。然而,有研究發(fā)現(xiàn),精神分裂癥病人MMN波幅與其認知功能損害不存在相關性[51?52],這可能是不同研究中使用的樣本量、電生理范式和評估工具不同而導致的。
4" 其他ERP成分與認知功能損害關系
P100是受試者在接受視覺刺激80~120 ms后產(chǎn)生的ERP成分,研究發(fā)現(xiàn)P100波幅與大腦皮層初級視覺加工有關[53]。據(jù)報道,與正常人相比,精神分裂癥病人在受到面部或非面部刺激時表現(xiàn)出更低的P100幅度,提示精神分裂癥病人早期視覺加工能力存在缺陷[54?55]。然而目前很少有研究報道P100與認知功能損害之間的關系,有一項研究報道了精神分裂癥病人P100波幅與注意功能有關,該研究發(fā)現(xiàn)注意力不集中可能對精神分裂癥病人在面對視覺干擾時產(chǎn)生一定的有益影響[56]。N200通常在專注于視覺注意和語言處理的范式中誘發(fā),是受試者在接受特定刺激約200 ms后出現(xiàn)的一種ERP成分[57],已經(jīng)有研究報道了精神分裂癥病人存在N200波幅降低的現(xiàn)象[58],但關于N200與認知功能損害的關系尚不清楚,有研究發(fā)現(xiàn),精神分裂癥病人N200波幅降低與其記憶力和注意力降低有關[40,59],然而其他研究并未發(fā)現(xiàn)精神分裂癥病人N200成分與其認知功能損害存在關聯(lián)[60?62]。CNV是受試者接受預警刺激和命令刺激并被要求對命令刺激做出反應時出現(xiàn)的ERP成分,與準備、期待等心理活動功能密切相關[63]。蔣凱等[64]在研究精神分裂癥病人CNV波幅與其認知功能的關系中發(fā)現(xiàn),精神分裂癥病人CNV波幅越低,其在持續(xù)操作和連線測試的表現(xiàn)越差。這一結果表明精神分裂癥病人CNV波幅越低,其認知功能損害越嚴重。綜上所述,P100波幅、N200波幅和CNV波幅可以在一定程度上反映精神分裂癥病人的認知功能水平,但仍還需要進一步的研究去更清楚地了解其與認知功能損害的關系。
5" 小結
對精神分裂癥病人ERP變化的研究有助于我們理解精神分裂癥認知功能損害的神經(jīng)機制,然而目前大多數(shù)研究往往沒有充分考慮到病程的長短以及抗精神病藥物的使用情況對研究結果產(chǎn)生的混雜影響,因此,開展疾病早期階段的研究可以減少病程和藥物使用等因素對研究結果的影響,并將有較高時間分辨率的ERP與有較高空間分辨率的磁共振技術相結合,或者將多個ERP協(xié)同使用,可能有助于了解精神分裂癥認知功能損害背后復雜的病理生理學機制,為精神分裂癥的治療提供新的策略。
參考文獻:
[1]" HUANG Y Q,WANG Y,WANG H,et al.Prevalence of mental disorders in China:a cross-sectional epidemiological study[J].The Lancet Psychiatry,2019,6(3):211-224.
[2]" WANG X,CHEN H F,LIU Y,et al.Association between depression status in adolescents and cognitive performance over the subsequent six years:a longitudinal study[J].Journal of Affective Disorders,2023,329:105-112.
[3]" GEBREEGZIABHERE Y,HABATMU K,MIHRETU A,et al.Cognitive impairment in people with schizophrenia:an umbrella review[J].European Archives of Psychiatry and Clinical Neuroscience,2022,272(7):1139-1155.
[4]" LAI S K,ZHONG S M,WANG Y,et al.The prevalence and characteristics of MCCB cognitive impairment in unmedicated patients with bipolar Ⅱ depression and major depressive disorder[J].Journal of Affective Disorders,2022,310:369-376.
[5]" ZANELLI J,MOLLON J,SANDIN S,et al.Cognitive change in schizophrenia and other psychoses in the decade following the first episode[J].The American Journal of Psychiatry,2019,176(10):811-819.
[6]" JAUHAR S,JOHNSTONE M,MCKENNA P J.Schizophrenia[J].Lancet,2022,399(10323):473-486.
[7]" GBD Mental Disorders Collaborators.Global,regional,and national burden of 12 mental disorders in 204 countries and territories,1990-2019:a systematic analysis for the global burden of disease study 2019[J].The Lancet Psychiatry,2022,9(2):137-150.
[8]" CHENG C H,HSIAO F J,HSIEH Y W,et al.Dysfunction of inferior parietal lobule during sensory gating in patients with amnestic mild cognitive impairment[J].Frontiers in Aging Neuroscience,2020,12:39.
[9]" SCHULZ S E,LUSZAWSKI M,HANNAH K E,et al.Sensory gating in neurodevelopmental disorders:a scoping review[J].Research on Child and Adolescent Psychopathology,2023,51(7):1005-1019.
[10]" FREEDMAN R,OLSEN-DUFOUR A M,OLINCY A.P50 inhibitory sensory gating in schizophrenia:analysis of recent studies[J].Schizophrenia Research,2020,218:93-98.
[11]" XIA L Y,YUAN L,DU X D,et al.P50 inhibition deficit in patients with chronic schizophrenia:relationship with cognitive impairment of MATRICS consensus cognitive battery[J].Schizophrenia Research,2020,215:105-112.
[12]" CHANG Q,LIU M J,TIAN Q,et al.EEG-based brain functional connectivity in first-episode schizophrenia patients,ultra-high-risk individuals,and healthy controls during P50 suppression[J].Frontiers in Human Neuroscience,2019,13:379.
[13]" 俞波,趙俊雄,施波,等.利培酮對首發(fā)和慢性精神分裂癥患者驚跳反射弱刺激抑制和P50的影響[J].中華醫(yī)學雜志,2020,100(36):2841-2845.
[14]" ATAGUN M I,DRUKKER M,HALL M H,et al.Meta-analysis of auditory P50 sensory gating in schizophrenia and bipolar disorder[J].Psychiatry Research Neuroimaging,2020,300:111078.
[15]" SáNCHEZ-MORLA E M,SANTOS J L,APARICIO A,et al.Neuropsychological correlates of P50 sensory gating in patients with schizophrenia[J].Schizophrenia Research,2013,143(1):102-106.
[16]" ?AHIN D,HEVER F,BOSSERT M,et al.Early and middle latency auditory event-related potentials do not explain differences in neuropsychological performance between schizophrenia spectrum patients and matched healthy controls[J].Psychiatry Research,2021,304:114162.
[17]" XIA L Y,WANG D M,WANG J S,et al.Association of cognitive and P50 suppression deficits in chronic patients with schizophrenia[J].Clinical Neurophysiology,2020,131(3):725-733.
[18]" HAMILTON H K,WILLIAMS T J,VENTURA J,et al.Clinical and cognitive significance of auditory sensory processing deficits in schizophrenia[J].The American Journal of Psychiatry,2018,175(3):275-283.
[19]" LI S,YU B,WANG D M,et al.P50 sensory gating,cognitive deficits and depressive symptoms in first-episode antipsychotics-na?ve schizophrenia[J].Journal of Affective Disorders,2023,324:153-161.
[20]" LANG X E,WANG D M,ZHOU H X,et al.P50 inhibition defects,psychopathology and gray matter volume in patients with first-episode drug-naive schizophrenia[J].Asian Journal of Psychiatry,2023,80:103421.
[21]" XIA L Y,LIU R,ZHOU H X,et al.Sex differences in P50 inhibition defects with psychopathology and cognition in patients with first-episode schizophrenia[J].Progress in Neuro-Psychopharmacology amp; Biological Psychiatry,2021,111:110380.
[22]" WANG D M,XIA L Y,ZHANG Z Q,et al.Sex difference in association between cognitive and P50 deficits in patients with chronic schizophrenia[J].Archives of Women's Mental Health,2023,26(6):793-801.
[23]" FREEDMAN R,COON H,MYLES-WORSLEY M,et al.Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(2):587-592.
[24]" DINELEY K T,PANDYA A A,YAKEL J L.Nicotinic ACh receptors as therapeutic targets in CNS disorders[J].Trends in Pharmacological Sciences,2015,36(2):96-108.
[25]" XIA L Y,LIU L,HONG X H,et al.One-day tropisetron treatment improves cognitive deficits and P50 inhibition deficits in schizophrenia[J].Neuropsychopharmacology,2020,45(8):1362-1368.
[26]" HAMILTON H K,MATHALON D H,F(xiàn)ORD J M.P300 in schizophrenia:then and now[J].Biological Psychology,2024,187:108757.
[27]" ZHANG Y R,YANG T Y,HE Y Q,et al.Value of P300 amplitude in the diagnosis of untreated first-episode schizophrenia and psychosis risk syndrome in children and adolescents[J].BMC Psychiatry,2023,23(1):743.
[28]" WU Z G,ZHOU Z X,LU W T,et al.Study on clinical characteristics of event-related potential P300 in elderly schizophrenics and associated risk factors[J].Brain and Behavior,2023,13(5):e2966.
[29]" HIGUCHI Y,SUMIYOSHI T,TATENO T,et al.Prolonged P300 latency in antipsychotic-free subjects with at-risk mental states who later developed schizophrenia[J].Journal of Personalized Medicine,2021,11(5):327.
[30]" ORIBE N,HIRANO Y,DEL RE E,et al.Longitudinal evaluation of visual P300 amplitude in clinical high-risk subjects:an event-related potential study[J].Psychiatry and Clinical Neurosciences,2020,74(10):527-534.
[31]" FRANCISCO A A,HORSTHUIS D J,POPIEL M,et al.Atypical response inhibition and error processing in 22q11.2 deletion syndrome and schizophrenia:towards neuromarkers of disease progression and risk[J].NeuroImage Clinical,2020,27:102351.
[32]" DEVRIM-ü?OK M,KESKIN-ERGEN H Y,ü?OK A.Visual P3 abnormalities in patients with first-episode schizophrenia,unaffected siblings of schizophrenia patients and individuals at ultra-high risk for psychosis[J].Progress in Neuro-Psychopharmacology and Biological Psychiatry,2023,122:110678.
[33]" WANG J J,LIU Q,WYDELL T N,et al.Electrophysiological basis of reading related phonological impairment in Chinese speakers with schizophrenia:an ERP study[J].Psychiatry Research Neuroimaging,2017,261:65-71.
[34]" BEST M W,MILANOVIC M,SHAMBLAW A L,et al.An examination of the moderating effects of neurophysiology on treatment outcomes from cognitive training in schizophrenia-spectrum disorders[J].International Journal of Psychophysiology,2020,154:59-66.
[35]" SEER C,LANGE F,GEORGIEV D,et al.Event-related potentials and cognition in Parkinson's disease:an integrative review[J].Neuroscience and Biobehavioral Reviews,2016,71:691-714.
[36]" ANDERSEN E H,CAMPBELL A M,SCHIPUL S E,et al.Electrophysiological correlates of aberrant motivated attention and salience processing in unaffected relatives of schizophrenia patients[J].Clinical EEG and Neuroscience,2016,47(1):11-23.
[37]" HOCHBERGER W C,JOSHI Y B,ZHANG W,et al.Decomposing the constituent oscillatory dynamics underlying mismatch negativity generation in schizophrenia:distinct relationships to clinical and cognitive functioning[J].International Journal of Psychophysiology,2019,145:23-29.
[38]" KOSHIYAMA D,THOMAS M L,MIYAKOSHI M,et al.Hierarchical pathways from sensory processing to cognitive,clinical,and functional impairments in schizophrenia[J].Schizophrenia Bulletin,2021,47(2):373-385.
[39]" KRUIPER C,F(xiàn)AGERLUND B,NIELSEN M ?,et al.Associations between P3a and P3b amplitudes and cognition in antipsychotic-na?ve first-episode schizophrenia patients[J].Psychological Medicine,2019,49(5):868-875.
[40]" KLEIN S D,SHEKELS L L,MCGUIRE K A,et al.Neural anomalies during vigilance in schizophrenia:diagnostic specificity and genetic associations[J].NeuroImage Clinical,2020,28:102414.
[41]" 呂望強,毛奕,陳建民,等.精神分裂癥患者腦電失匹配負波的對照研究[J].上海精神醫(yī)學,2007,19(2):92-94.
[42]" MOLNáR H,MAROSI C,BECSKE M,et al.A comparison of visual and acoustic mismatch negativity as potential biomarkers in schizophrenia[J].Scientific Reports,2024,14(1):992.
[43]" LóPEZ-CABALLERO F,CURTIS M,COFFMAN B A,et al.Is source-resolved magnetoencephalographic mismatch negativity a viable biomarker for early psychosis?[J].European Journal of Neuroscience,2024,59(8):1889-1906.
[44]" MURPHY T K,HAIGH S M,COFFMAN B A,et al.Mismatch negativity and impaired social functioning in long-term and in first episode schizophrenia spectrum psychosis[J].Frontiers in Psychiatry,2020,11:544.
[45]" HSIEH M H,SHAN J C,HUANG W L,et al.Auditory event-related potential of subjects with suspected pre-psychotic state and first-episode psychosis[J].Schizophrenia Research,2012,140(1/2/3):243-249.
[46]" SHINOZAKI N,YABE H,SATO Y,et al.The difference in mismatch negativity between the acute and post-acute phase of schizophrenia[J].Biological Psychology,2002,59(2):105-119.
[47]" ROWLAND L M,SUMMERFELT A,WIJTENBURG S A,et al.Frontal glutamate and γ-aminobutyric acid levels and their associations with mismatch negativity and digit sequencing task performance in schizophrenia[J].JAMA Psychiatry,2016,73(2):166-174.
[48]nbsp; BALDEWEG T,HIRSCH S R.Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia:a comparison with bipolar disorder and Alzheimer's disease[J].International Journal of Psychophysiology,2015,95(2):145-155.
[49]" KAUR M,BATTISTI R A,WARD P B,et al.MMN/P3a deficits in first episode psychosis:comparing schizophrenia-spectrum and affective-spectrum subgroups[J].Schizophrenia Research,2011,130(1/2/3):203-209.
[50]" QU X D,LIUKASEMSARN S,TU J X,et al.Identifying clinically and functionally distinct groups among healthy controls and first episode psychosis patients by clustering on EEG patterns[J].Frontiers in Psychiatry,2020,11:541659.
[51]" RANDAU M,ORANJE B,MIYAKOSHI M,et al.Attenuated mismatch negativity in patients with first-episode antipsychotic-naive schizophrenia using a source-resolved method[J].NeuroImage Clinical,2019,22:101760.
[52]" GIORDANO G M,GIULIANI L,PERROTTELLI A,et al.Mismatch negativity and P3a impairment through different phases of schizophrenia and their association with real-life functioning[J].Journal of Clinical Medicine,2021,10(24):5838.
[53]" SLAP? N B,J?RGENSEN K N,ELVS?SHAGEN T,et al.Relationship between function and structure in the visual cortex in healthy individuals and in patients with severe mental disorders[J].Psychiatry Research Neuroimaging,2023,332:111633.
[54]" REMY I,BERNARDIN F,LIGIER F,et al.Association between retinal and cortical visual electrophysiological impairments in schizophrenia[J].Journal of Psychiatry amp; Neuroscience,2023,48(3):1.
[55]" EARLS H A,CURRAN T,MITTAL V.Deficits in early stages of face processing in schizophrenia:a systematic review of the P100 component[J].Schizophrenia Bulletin,2016,42(2):519-527.
[56]" BRODEUR M B,KIANG M,CHRISTENSEN B K.The beneficial influence of inattention on visual interference in schizophrenia[J].Neuropsychology,2016,30(6):664-672.
[57]" PERROTTELLI A,GIORDANO G M,BRANDO F,et al.Unveiling the associations between EEG indices and cognitive deficits in schizophrenia-spectrum disorders:a systematic review[J].Diagnostics,2022,12(9):2193.
[58]" GUERRA LóPEZ S,MARTíN REYES M,PEDROSO RODRíGUEZ M D E L,et al.Evoked potentials N200/P300 disorders and clinical phenotype in Cuban families with paranoid schizophrenia:a family-based association study[J].Medwave,2015,15(3):e6112.
[59]" DIAS E C,BUTLER P D,HOPTMAN M J,et al.Early sensory contributions to contextual encoding deficits in schizophrenia[J].Archives of General Psychiatry,2011,68(7):654-664.
[60]" VIGNAPIANO A,MUCCI A,MERLOTTI E,et al.Impact of reward and loss anticipation on cognitive control:an event-related potential study in subjects with schizophrenia and healthy controls[J].Clinical EEG and Neuroscience,2018,49(1):46-54.
[61]" COFFMAN B A,HAIGH S M,MURPHY T K,et al.Reduced auditory segmentation potentials in first-episode schizophrenia[J].Schizophrenia Research,2018,195:421-427.
[62]" SKLAR A L,COFFMAN B A,HAAS G,et al.Inefficient visual search strategies in the first-episode schizophrenia spectrum[J].Schizophrenia Research,2020,224:126-132.
[63]" KIRENSKAYA A V,TKACHENCO A A,NOVOTOTSKY-VLASOV V Y.The study of the antisaccade performance and contingent negative variation characteristics in first-episode and chronic schizophrenia patients[J].The Spanish Journal of Psychology,2017,20:E55.
[64]" 蔣凱,王丹,陳敏,等.慢性精神分裂癥患者關聯(lián)性負變波幅與認知功能的關系[J].中國神經(jīng)精神疾病雜志,2020,46(7):405-407.
(收稿日期:2024-04-02;修回日期:2024-12-05)
(本文編輯 蘇琳)