摘" " 要:【目的】分析殼聚糖在果蔬保鮮中的應(yīng)用研究熱點(diǎn)?!痉椒ā炕谖墨I(xiàn)計(jì)量學(xué)方法,利用1991—2023年CNKI和WOS數(shù)據(jù)庫(kù),對(duì)殼聚糖在果蔬保鮮領(lǐng)域的930篇中文和803篇英文文獻(xiàn)進(jìn)行可視化分析,使用Citespace作圖,分別從年代、作者、機(jī)構(gòu)、國(guó)家、研究熱點(diǎn)、演進(jìn)趨勢(shì)等幾個(gè)層面進(jìn)行歸納統(tǒng)計(jì)?!窘Y(jié)果】1991—2023年發(fā)文量整體呈上升趨勢(shì),到2022年底,中文和外文文獻(xiàn)發(fā)文量分別為47篇和100篇,CNKI數(shù)據(jù)庫(kù)發(fā)文量排名前三的期刊是《食品工業(yè)科技》《食品科學(xué)》《食品研究與開發(fā)》,WOS數(shù)據(jù)庫(kù)發(fā)文量排名前三的期刊是Food Chemistry(42篇)、Scientia Horticulturae(41篇)和Postharvest Biology And Technology(39篇)。發(fā)文量排名前3的國(guó)家是中國(guó)、印度、美國(guó)。研究機(jī)構(gòu)主要為高校和研究所。從研究熱點(diǎn)來(lái)看,主要集中在殼聚糖復(fù)合膜、殼聚糖保鮮機(jī)制、與新興科技手段結(jié)合、殼聚糖結(jié)合其他處理等領(lǐng)域?!窘Y(jié)論】依據(jù)文獻(xiàn)的分析總結(jié)了目前殼聚糖在果蔬保鮮領(lǐng)域的發(fā)展,為后續(xù)研究提供幫助。
關(guān)鍵詞:果蔬;殼聚糖;CiteSpace;知識(shí)圖譜;保鮮;熱點(diǎn)
中圖分類號(hào):S66 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)09-1846-16
Research hotspots and visualization analysis of fruit and vegetable chitosan preservation based on CiteSpace
LI Li, LIU Yaping*, WANG Wei, CAO Yanan, DI Jianbing, WANG Yu, ZHANG Lixin
(Shanxi Agricultural University/Shanxi Center of Technology Innovation for Storage and Processing of Fruit and Vegetable, Taigu 030800, Shanxi, China)
Abstract: 【Objective】 Fruits and vegetables contain various nutrients and are essential for people’s diets. However, post-harvest fruits and vegetables are prone to decay and spoilage, so extending the shelf life of fruits and vegetables has always been a research direction. Chitosan is widely used in fruit and vegetable preservation due to its good biocompatibility, biodegradability, safety, film-forming properties and antibacterial properties, which can extend the storage period of fruits and vegetables. In recent years, research has reported the successful application of chitosan biofilm in fruit and vegetable preservation. CiteSpace has been used to create a scientific knowledge map of chitosan’s application in fruit and vegetable preservation research, and quantitative comparation has been conducted on domestic literature on chitosan’s application in fruit and vegetable preservation research. The aim is to grasp the current research status of chitosan’s application and provide reference value for future research on chitosan’s application in fruit and vegetable preservation. 【Methods】 This work employed the bibliometric approach to visualize and analyze 930 Chinese and 803 English works of literature from 1991 to 2023. Citespace was used to create graphs, and statistics from various dimensions, including authors, institutions, countries, research hotspots and evolutionary trends, were summarized. 【Results】 The general pattern of publications from 1991 to 2023 indicated an upward trend in terms of quantity, by the end of 2022, there were 47 publications in Chinese and 100 publications in foreign languages. The number of publications increased to more than 30 per year in Chinese and more than 80 per year in foreign languages. Science and Technology of Food Industry, Food Science, and Food Research and Development were the top three journals in the CNKI database for publications, while Food Chemistry (42 articles), Scientia Horticulturae (41 articles), and Postharvest Biology and Technology (39 articles) were the top three journals in the WOS database for publications. The writers’ distribution indicated that the main authors interacted and collaborated closely in the groups they had already formed, exchanging messages regularly. However, generally speaking, there was less cross-institutional cooperation—mostly between individuals. Universities and institutes made up the majority of research institutions. Brazil, India and China were the top 3 nations in terms of publications. The freshness preservation impact, shelf life, edible coating film and other factors were both domestic and foreign hotspot areas, according to an analysis of the clustering of research hotspots. The foreign literature on chitosan-related research was more extensive, covering topics like microencapsulation and chitosan quaternary ammonium salt. The primary focus of Chinese research hotspots was the impact of chitosan on the freshness preservation and storage quality of fruits and vegetables. Here is a summary of the research hotspots in this area, which fall into the following categories: composite chitosan film, chitosan preservation mechanism, the combination with emerging technological means, chitosan composite treatment and other fields. Due to its shortcomings—poor moisture barrier, limited air permeability, weak mechanical qualities, etc.—a single chitosan membrane finds it challenging to meet all of the requirements for preserving fresh fruits and vegetables after harvest. The research demonstrates the advantages of several composite antimicrobial membrane types over single chitosan membranes, as well as the notable enhancement of their antibacterial characteristics. In fruit and vegetable preservation, combining chitosan with other treatments is also one of the hotspots for preservation research. Examples of these treatments include the use of chitosan in combination with ethanol and a magnetic field treatment, chitosan and ultrasonic treatment, chitosan and salicylic acid, and chitosan in combination with other treatments, which increase the efficacy, compared to a single treatment. In vitro experiments and complex food matrices have revealed the broad-spectrum antibacterial characteristics of chitosan. Its antimicrobial activity is dependent on its molecular weight, degree of deacetylation, concentration, microorganism and environmental variables (pH, temperature). Chitosan’s antioxidant qualities as a preservative have been proven in vitro, and to some extent, these qualities are favorably connected with the level of deacetylation. Food quality decline is mostly caused by enzymatic reactions, and chitosan can have an impact on enzyme activity. It lessens the amount of fruit and vegetable enzymatic browning that occurs during storage. Lastly, chitosan’s barrier quality is critical to the preservation of fruits and vegetables. The chitosan layer not only blocks exogenous microorganisms but also has selective permeability to oxygen and water vapor to a certain extent, which directly affects the shelf life of food. As a result of the increasing use of composite active ingredients and technological integration, the field has grown quickly from 2020 to the present. New developments include the development of layers of self-assembled edible coated films and the polycrystalline phase transition cold burst phenomenon. Research has also focused more on the preservation mechanism and effective targeted inhibition. Researchers concentrate on the impact of chitosan on the freshness and quality of fruits and vegetables. Other new research hotspots include disease resistance mechanisms, fresh fruits and veggies insurance effect, biopolymer nanoparticles, polysaccharide-based composite film and others. 【Conclusion】 Because of its special qualities, chitosan has gained a lot of attention in the fruit and vegetable preservation business. Chitosan has a lot of potential for preserving fruits and vegetables, as seen by the good response to its widespread application. The study on chitosan has advanced recently thanks to advancements in science and technology, and current research topics include polysaccharide-based composite membranes, disease resistance mechanisms, preservation mechanisms, layer self-assembled edible coatings and biopolymer nanoparticles. This paper concluded by summarizing the findings of recent studies on chitosan in the field of fruit and vegetable preservation, laying the groundwork and offering support for further research.
Key words: Fruit and vegetable; Chitosan; CiteSpace; Knowledge map; Storage; Hotspots
果蔬含有各種營(yíng)養(yǎng)素,是人們飲食的必需品。然而采后的果蔬受到呼吸作用、蒸騰作用、單線態(tài)氧的破壞和細(xì)菌、霉菌的影響容易產(chǎn)生腐爛變質(zhì)[1],因此延長(zhǎng)果蔬的保鮮期是一直以來(lái)的研究方向。殼聚糖由于具有良好的生物相容性、可生物降解性、安全性、成膜性、抗菌性,可延長(zhǎng)果蔬貯藏期,在果蔬保鮮中運(yùn)用廣泛[2]。從20世紀(jì)90年代開始,國(guó)內(nèi)外研究者開展了關(guān)于殼聚糖在果蔬保鮮中的研究工作[3-4],隨著研究的深入,對(duì)殼聚糖的研究不斷豐富[5]。伴隨著納米技術(shù)、微膠囊技術(shù)、自組裝技術(shù)等方法和技術(shù)的不斷發(fā)展,殼聚糖保鮮技術(shù)也迎來(lái)了新的發(fā)展。這些先進(jìn)的科技手段為殼聚糖在果蔬保鮮領(lǐng)域的應(yīng)用提供了更廣闊的可能性。納米材料在改善殼聚糖薄膜的性能方面有巨大潛力。含有微膠囊抗菌復(fù)合物的多層食用涂層利用微膠囊技術(shù)在提高鮮切菠蘿質(zhì)量方面有效果[6]。同時(shí),自組裝技術(shù)是基于帶相反電荷的聚合電解質(zhì)的交替沉積的周期性過(guò)程,殼聚糖作為一種聚陽(yáng)離子多糖被廣泛用作膜的成分??傮w而言,殼聚糖保鮮技術(shù)在不斷融合先進(jìn)的科技手段的同時(shí),為食品保鮮領(lǐng)域帶來(lái)了更高效、可持續(xù)的解決方案。近年來(lái),研究報(bào)道了殼聚糖生物基膜在果蔬保鮮中的成功應(yīng)用,例如草莓[7],杏[8]和胡蘿卜[9],然而,有關(guān)殼聚糖在果蔬保鮮中應(yīng)用的綜述文章仍然較少。
科學(xué)知識(shí)圖譜能夠顯示科學(xué)知識(shí)的發(fā)展進(jìn)程和關(guān)聯(lián)差異,CiteSpace知識(shí)圖譜有一目了然的鮮明特征,對(duì)某一領(lǐng)域的信息可以全面展示。因此,基于WOS(Web of science)和CNKI (China national knowledge infrastructure)數(shù)據(jù)庫(kù),運(yùn)用CiteSpace制作殼聚糖在果蔬保鮮運(yùn)用研究的科學(xué)知識(shí)圖譜,對(duì)國(guó)內(nèi)外殼聚糖在果蔬保鮮中應(yīng)用研究領(lǐng)域的文獻(xiàn)進(jìn)行量化對(duì)比分析,以期掌握目前殼聚糖在果蔬保鮮中應(yīng)用研究現(xiàn)狀,并為未來(lái)殼聚糖在果蔬保鮮運(yùn)用科研提供參考。
1 數(shù)據(jù)來(lái)源及研究方法
1.1 數(shù)據(jù)來(lái)源
選擇 Web of science(WOS)數(shù)據(jù)庫(kù)和中國(guó)知網(wǎng)(CNKI)數(shù)據(jù)庫(kù),數(shù)據(jù)采集于2023年7月1日。具體的檢索條件及獲得的文獻(xiàn)數(shù)見(jiàn)表1,為了確保研究的準(zhǔn)確性并避免信息的重復(fù),對(duì)篩選出來(lái)的文章進(jìn)行人工篩選,除去不符合主題的文章,以提高選用文獻(xiàn)的質(zhì)量和研究的精度。其中,文獻(xiàn)年份為1991—2023年。去重后最終獲得中文文獻(xiàn)930篇、外文文獻(xiàn)803篇,每條檢索記錄都包含了所需數(shù)據(jù)信息。
1.2 研究方法及工具
對(duì)檢索到的文獻(xiàn)統(tǒng)計(jì)分析,文章作圖的研究工具是CiteSpace(版本號(hào):6.2.R4),選擇作者、國(guó)家、機(jī)構(gòu)、發(fā)文期刊、關(guān)鍵詞、突現(xiàn)詞進(jìn)行文獻(xiàn)計(jì)量分析,將分析結(jié)果作圖導(dǎo)出。發(fā)文量趨勢(shì)圖用Excel 2016繪制。
2 國(guó)內(nèi)外殼聚糖在果蔬保鮮中應(yīng)用研究的文獻(xiàn)統(tǒng)計(jì)分析
2.1 年度發(fā)文量
圖1展示了CNKI和WOS數(shù)據(jù)庫(kù)中殼聚糖在果蔬保鮮中應(yīng)用研究文獻(xiàn)的年度發(fā)文量變化。從圖中可以看出該領(lǐng)域的發(fā)文數(shù)量整體呈上升趨勢(shì),主要可分為三個(gè)階段:a. 在1991—2005年間,該階段文獻(xiàn)數(shù)量處于較低水平,主要原因是殼聚糖在保鮮領(lǐng)域的早期研究處于起步階段,研究并發(fā)表的文章較少,每年發(fā)文量維持在15篇左右。b. 在2005—2015年間,CNKI和WOS數(shù)據(jù)庫(kù)中與殼聚糖在果蔬保鮮中應(yīng)用的相關(guān)研究呈緩慢上升趨勢(shì),其間該領(lǐng)域的研究重點(diǎn)集中在殼聚糖對(duì)果蔬貯藏保鮮效果的影響。c. 在2015—2023年間,該階段保持較高的發(fā)文量,文獻(xiàn)數(shù)量比之前顯著增多且保持穩(wěn)定,與殼聚糖保鮮相關(guān)的研究不斷深入,研究水平逐步提高。2022年中文文獻(xiàn)總發(fā)文量為47篇,外文文獻(xiàn)總發(fā)文量為100篇,中文文獻(xiàn)發(fā)文量增至每年30篇以上,外文文獻(xiàn)增長(zhǎng)至每年80篇以上。
2.2 發(fā)文期刊
對(duì)殼聚糖在果蔬保鮮中應(yīng)用的相關(guān)發(fā)文期刊進(jìn)行統(tǒng)計(jì)分析,國(guó)內(nèi)有296種不同的期刊發(fā)表了相關(guān)的研究成果。CNKI數(shù)據(jù)庫(kù)中發(fā)文量前十的期刊分別是《食品工業(yè)科技》《食品科學(xué)》《食品研究與開發(fā)》《食品與發(fā)酵工業(yè)》《食品科技》《食品工業(yè)》《北方園藝》《安徽農(nóng)業(yè)科學(xué)》《保鮮與加工》《中國(guó)食品添加劑》,其中《食品工業(yè)科技》和《食品科學(xué)》發(fā)文量最多,發(fā)文量有54篇,占比5.81%。國(guó)際有228種不同的期刊發(fā)表相關(guān)的研究成果,發(fā)文量前十的期刊分別是Food Chemistry、Scientia Horticulturae、Postharvest Biology and Technology、LWT-Food Science and Technology、Coatings、Journal of Food Measurement and Characterization、International Journal of Biological Macromolecules、Journal of The Science of Food and Agriculture、Foods、International Food Research Journal。其中Food Chemistry、Scientia Horticulturae和Postharvest Biology and Technology發(fā)文量分別為42、41和39篇,遠(yuǎn)高于其他期刊,表明殼聚糖相關(guān)的學(xué)術(shù)質(zhì)量和影響力受到國(guó)際權(quán)威雜志認(rèn)可。
2.3 作者分布
通過(guò)分析核心作者和作者之間的合作兩方面來(lái)討論殼聚糖在果蔬保鮮中應(yīng)用研究作者的分布情況。核心作者通常是指在該領(lǐng)域內(nèi)頻繁發(fā)表高質(zhì)量論文,產(chǎn)生重要學(xué)術(shù)影響并受到同行認(rèn)可的作者。這些核心作者在特定領(lǐng)域內(nèi)具有豐富的專業(yè)知識(shí)、經(jīng)驗(yàn)和研究貢獻(xiàn),其研究成果和觀點(diǎn)在學(xué)術(shù)界具有一定的權(quán)威性,對(duì)該領(lǐng)域的研究方向和發(fā)展趨勢(shì)產(chǎn)生重要影響。而不同作者之間的合作促進(jìn)知識(shí)交流、開拓研究深度,并豐富學(xué)術(shù)成果。運(yùn)用Citespace軟件繪制作者合作分布圖。
表2展示了發(fā)文量前十的作者,WOS數(shù)據(jù)庫(kù)中發(fā)文量最多的作者是Bautista-banos Silvia,共發(fā)文6篇;CNKI數(shù)據(jù)庫(kù)發(fā)文量最多的作者是王明力,共發(fā)文12篇。通過(guò)Citespace軟件制作知識(shí)圖譜可以清晰地展示外文作者之間的合作網(wǎng)絡(luò)共現(xiàn)圖,圖中節(jié)點(diǎn)之間的連線代表節(jié)點(diǎn)間的合作程度,節(jié)點(diǎn)的大小代表發(fā)文數(shù)量(圖2)??芍狝lshehry Garsa、Al mushhin、Amina A M、Aljumayi Huda等形成了一個(gè)研究群體,其中節(jié)點(diǎn)之間的連接非常緊密,這表明該群體內(nèi)的作者之間存在著很強(qiáng)的合作研究關(guān)系。此外,Rokayya Sami、Jia Fuguo、Elhakem Abeer、Khojah Ebtihal等也形成了一個(gè)研究群體,合作關(guān)系緊密??偟膩?lái)說(shuō),目前國(guó)際上殼聚糖在果蔬保鮮中應(yīng)用研究形成的群體數(shù)量有16組,在已經(jīng)形成的群體中交流合作緊密,但群體和群體之間交流較少。圖3展示了中文文獻(xiàn)作者的合作圖譜,目前基本形成了以孫彤、勵(lì)建榮、郝晗、吳朝凌、張璇、葛永紅、謝晶、王明和韓英等為核心的作者群,還形成了以朱丹實(shí)、馮敘橋、曹雪慧、劉立巖和楊方威為核心的作者群,核心作者之間的交流非常頻繁。但整體而言,跨機(jī)構(gòu)合作較少,多為單個(gè)個(gè)體。
2.4 機(jī)構(gòu)分布
國(guó)際機(jī)構(gòu)分布:借助軟件制作國(guó)際機(jī)構(gòu)的合作分布圖(圖4),得到埃及知識(shí)庫(kù)、塔伊夫大學(xué)、農(nóng)業(yè)農(nóng)村部位居前三,中國(guó)農(nóng)業(yè)科學(xué)院和中國(guó)熱帶農(nóng)業(yè)科學(xué)院發(fā)文量排名靠前。印度農(nóng)業(yè)研究理事會(huì)和中國(guó)農(nóng)業(yè)科學(xué)院有交流合作,與印度蔬菜研究所交流密切,盡管圖譜存在分散的節(jié)點(diǎn),但基本形成了一個(gè)網(wǎng)絡(luò),有十多個(gè)團(tuán)體進(jìn)行交流,團(tuán)體間也有合作。
國(guó)內(nèi)機(jī)構(gòu)分布:由圖5可知,中國(guó)農(nóng)業(yè)大學(xué)、上海海洋大學(xué)和西南大學(xué)是國(guó)內(nèi)排名前三的機(jī)構(gòu)。中國(guó)農(nóng)業(yè)大學(xué)關(guān)注點(diǎn)為殼聚糖減緩果實(shí)采后衰老的潛在機(jī)制[10],上海海洋大學(xué)關(guān)注點(diǎn)為殼聚糖復(fù)合膜的制備和應(yīng)用[11],西南大學(xué)關(guān)注點(diǎn)為復(fù)合涂膜保鮮效果及機(jī)制研究[12]。在合作關(guān)系方面,有25組節(jié)點(diǎn)存在合作關(guān)系,在圖中,可以觀察到大多數(shù)機(jī)構(gòu)之間的聯(lián)系呈現(xiàn)出分散而精細(xì)的特點(diǎn),多數(shù)情況下是2到3個(gè)節(jié)點(diǎn)之間建立了合作關(guān)系。這些機(jī)構(gòu)之間的合作相對(duì)集中在同一城市或同一部門,形成了一種緊密而局部的協(xié)作模式。如貴州大學(xué)和貴州省分析測(cè)試研究院、海南大學(xué)和海南省熱帶園藝產(chǎn)品采后生理與保鮮重點(diǎn)實(shí)驗(yàn)室等;從機(jī)構(gòu)的合作研究情況看,地域近的合作更緊密。
2.5 國(guó)家分布
國(guó)家合作圖譜如圖6,展示了全球國(guó)家/地區(qū)合作關(guān)系,各國(guó)家間合作交流研究緊密,其中中國(guó)、印度、美國(guó)、巴基斯坦等國(guó)家展現(xiàn)出較大的節(jié)點(diǎn),表明這些國(guó)家研究體量較大,文獻(xiàn)數(shù)量較多。
統(tǒng)計(jì)文獻(xiàn)發(fā)表國(guó)家來(lái)源得到表3,表3展示了排名前八的國(guó)家發(fā)文量。中國(guó)的發(fā)文數(shù)量多(218篇),占發(fā)文總量的27.1%,反映出中國(guó)學(xué)者對(duì)殼聚糖在果蔬保鮮領(lǐng)域的應(yīng)用研究關(guān)注度較高,重視相關(guān)的研究發(fā)展;其次是印度,發(fā)文量為58篇,占發(fā)文總量的7.2%;第3名是巴西,發(fā)文量為52篇,占發(fā)文總量的6.5%。
3 殼聚糖在果蔬保鮮中應(yīng)用研究的熱點(diǎn)與演進(jìn)趨勢(shì)分析
3.1 研究熱點(diǎn)聚類分析
為了挖掘研究的熱點(diǎn),采用了關(guān)鍵詞共現(xiàn)的方法。文章中的關(guān)鍵詞是對(duì)文章主題的精煉,它反映了文章的核心思想。因此,可以通過(guò)統(tǒng)計(jì)關(guān)鍵詞的出現(xiàn)頻次和聚類分析,來(lái)更好地了解這個(gè)研究領(lǐng)域的焦點(diǎn)問(wèn)題。由關(guān)鍵詞聚類圖譜(圖7)可知,形成了8類熱點(diǎn)詞聚類,modularity Q值為0.44,說(shuō)明聚類圖譜符合要求;silhouette S值為0.74,說(shuō)明聚類結(jié)果具有高信度(表4),顯示出聚類效果不錯(cuò)。其中,#1(edible coating)聚集于殼聚糖涂膜是殼聚糖目前最廣泛的應(yīng)用形式,#4(food packaging)和#6(chitosan coating)聚焦于殼聚糖涂膜作為果蔬包裝的應(yīng)用,#7(nanostructure)和#0(antioxidant activity)聚焦于殼聚糖涂膜在果蔬保鮮方面的機(jī)制研究,#2(botrytis cinerea)聚焦于灰霉菌與殼聚糖在果蔬方面的保鮮相關(guān)聯(lián)。
關(guān)鍵詞聚類圖譜(圖8)顯示了7類聚類,對(duì)圖中結(jié)果進(jìn)行分析,結(jié)果見(jiàn)表5。經(jīng)過(guò)聚類分析計(jì)算,模塊化Q=0.542 7>0.3、S=0.873 8>0.5,數(shù)據(jù)顯示聚類是有效的,通過(guò)聚類分析,得到7個(gè)聚類模塊,#2(貯藏品質(zhì))和#4(品質(zhì))聚焦于殼聚糖對(duì)果蔬品質(zhì)的影響,#0(涂膜)聚焦于殼聚糖作為涂膜在果蔬保鮮方面的應(yīng)用,#5(復(fù)合膜)聚焦于殼聚糖和其他物質(zhì)復(fù)合作為膜材料在果蔬保鮮中的應(yīng)用,#6(保鮮劑)聚焦于殼聚糖作為保鮮劑在果蔬保鮮中的應(yīng)用。各聚類間重疊程度較小,可見(jiàn)聚類區(qū)分明顯。
3.2 關(guān)鍵詞突現(xiàn)分析
圖9為CNKI數(shù)據(jù)庫(kù)殼聚糖在果蔬保鮮中的關(guān)鍵詞突現(xiàn)分析結(jié)果,早期的關(guān)鍵詞為“杧果”“貯藏”“鮮切”“蓮藕”“冬棗”,表明突現(xiàn)詞集中在具體的某種果蔬上,早期研究重點(diǎn)是研究殼聚糖在各種果蔬保鮮中的應(yīng)用,2010年以后,“活性氧”“貯藏效果”“涂膜保鮮”“海藻酸鈉”出現(xiàn),這一階段主要關(guān)注保鮮效果、保鮮機(jī)制等方面的研究,2015年后,隨著“復(fù)合涂膜”“食品保鮮”“酶活性”等關(guān)鍵詞的突現(xiàn),表明關(guān)于殼聚糖的研究進(jìn)一步深入,主要關(guān)注復(fù)合膜和保鮮機(jī)制對(duì)酶活性的影響。
圖10為WOS數(shù)據(jù)庫(kù)中殼聚糖在果蔬保鮮研究領(lǐng)域的關(guān)鍵詞突現(xiàn)分析結(jié)果,早期的關(guān)鍵詞為“chitosan coating”“decay”“physiological responses”“gray mold”,在此期間,用殼聚糖膜來(lái)延緩果蔬的腐爛和抑制灰霉菌的生長(zhǎng)是研究的重點(diǎn),2012年開始,“chitin”“atmosphere”“in vitro”“storage life”“postharvest diseases”逐漸成為研究熱點(diǎn)。此后,“cold storage”“antibacterial activity”“postharvest storage”相繼出現(xiàn),表明在室溫和冷藏條件下的果蔬儲(chǔ)存機(jī)制受到重視,國(guó)際上殼聚糖在果蔬保鮮研究領(lǐng)域的研究更加深入,更深入探究抗菌機(jī)制。2020年開始,“quality attributes”的出現(xiàn)表明果蔬的質(zhì)量屬性成為國(guó)際研究的重點(diǎn),且持續(xù)到現(xiàn)在。通過(guò)對(duì)比CNKI和WOS的關(guān)鍵詞圖譜,發(fā)現(xiàn)國(guó)際上關(guān)于殼聚糖的研究領(lǐng)先于國(guó)內(nèi),對(duì)研究熱點(diǎn)的探索先于中國(guó)。
3.3 熱點(diǎn)詞演進(jìn)趨勢(shì)分析
CiteSpace可以進(jìn)行熱點(diǎn)聚類和熱點(diǎn)詞演進(jìn)趨勢(shì)分析,時(shí)區(qū)視圖(Timezone)是一種注重以時(shí)間為主要維度展示知識(shí)發(fā)展的視圖,通過(guò)呈現(xiàn)關(guān)鍵詞熱點(diǎn)的變遷趨勢(shì),揭示了知識(shí)演進(jìn)的動(dòng)態(tài)過(guò)程[13]。CiteSpace繪制的果蔬保鮮中應(yīng)用研究熱點(diǎn)演進(jìn)時(shí)區(qū)圖譜見(jiàn)圖11和圖12。從圖11可知,殼聚糖在果蔬保鮮中應(yīng)用的熱點(diǎn)詞演進(jìn)趨勢(shì)在國(guó)際上大概可以劃分為4個(gè)階段:
第一階段為2004—2005年,為研究初始階段,關(guān)鍵詞是保質(zhì)期(shelf life)。第二階段為2005—2010年,為研究起步階段,關(guān)鍵詞有殼聚糖(chitosan)、改善(improve)、抗菌活性(antimicrobial activity)等[14]。第三階段為2010—2020年,此階段平穩(wěn)發(fā)展,可食性涂膜得到重點(diǎn)關(guān)注。2015年首次出現(xiàn)關(guān)鍵詞可食用涂料(edible coatings)和可食用薄膜(edible films)[15],2017年開始探究抗氧化性能,2018年開始探究抗機(jī)械性能。第四階段為2020年至今,伴隨科技手段的更新迭代,殼聚糖研究進(jìn)入飛速發(fā)展階段??购肿儎╝ntibrowning agents)、羧甲基纖維素(carboxymethyl cellulose)、變色(discolaration)、海藻酸鹽涂層(alginate coating)、生物活性化合物(bioactive compounds)作為熱點(diǎn)詞于2020年首次出現(xiàn),Postharvest quality采后質(zhì)量出現(xiàn)頻次高達(dá)17次。
由圖12可知,國(guó)內(nèi)殼聚糖在果蔬保鮮中應(yīng)用研究也可分為4個(gè)階段:第一階段為1991—2010年,為起始階段,關(guān)鍵詞有納米技術(shù)、果蔬、抗病性失水處理、制備方法改性、果蔬保鮮、包裝、生理貯藏、脂質(zhì)可食膜、化學(xué)保鮮[16]。2010—2015年為研究發(fā)展階段,有不少關(guān)鍵熱點(diǎn)詞出現(xiàn),如低溫乳酸菌工藝、發(fā)酵、提取復(fù)配液、保鮮薄膜袋。2015—2020年為進(jìn)一步發(fā)展階段,每年都有新的熱點(diǎn)詞出現(xiàn),2017年有可食共混膜應(yīng)用前景、進(jìn)展、前處理、原兒茶酸、鮮切、微生物污染抗氧化能力、凍藏、保鮮包裝,2018年有保鮮劑種類、復(fù)合膜液感官鑒評(píng)、冷鏈貯藏分離鑒定、多糖類抗菌性、天然抑菌劑、抑菌保鮮[17],2019年有改性殼聚糖展望、護(hù)色劑、聚乙烯醇生理代謝、功能性食品單寧酸、主成分分析、智能包裝檢測(cè)技術(shù)。2020年至2024年,學(xué)科迅猛發(fā)展,研究越來(lái)越多地集中在對(duì)保鮮機(jī)制的探索和高效的靶向抑制方面,復(fù)合活性成分的增加和技術(shù)的集成推動(dòng)了這一研究,涌現(xiàn)出層層自組裝可食性涂膜[18]、多晶相變冷爆現(xiàn)象、采前調(diào)節(jié)處理劑[19]、抗病機(jī)制、新鮮果蔬保險(xiǎn)效應(yīng)、生物聚合物納米粒子、多糖基復(fù)合膜[20]等研究新熱點(diǎn),科研工作者重點(diǎn)關(guān)注殼聚糖對(duì)果蔬保鮮效果和品質(zhì)的影響。
3.4 殼聚糖在果蔬保鮮應(yīng)用研究中的熱點(diǎn)分析
對(duì)研究熱點(diǎn)聚類進(jìn)行分析,發(fā)現(xiàn)國(guó)內(nèi)外研究熱點(diǎn)領(lǐng)域的相同點(diǎn)都集中體現(xiàn)在保鮮效果、保質(zhì)期、可食涂膜等方面。中文的研究熱點(diǎn)主要集中在關(guān)注殼聚糖對(duì)果蔬貯藏品質(zhì)和保鮮效果的影響方面,然而,外文文獻(xiàn)對(duì)殼聚糖的相關(guān)研究更進(jìn)一步,涵蓋了微膠囊化、納米粒子以及殼聚糖季銨鹽等領(lǐng)域。為了對(duì)這一領(lǐng)域的研究熱點(diǎn)進(jìn)行更為深入的探討,研究熱點(diǎn)可以總結(jié)為以下幾類。
3.4.1 殼聚糖復(fù)合膜 殼聚糖是一種天然、無(wú)毒且具有可生物降解及優(yōu)異成膜性的堿性多糖,使用不同分子質(zhì)量的殼聚糖涂層可以有效地延緩西番蓮果實(shí)的老化進(jìn)程,減少西番蓮果實(shí)因失水而產(chǎn)生的皺縮,從而確保西番蓮果實(shí)的高品質(zhì)[21]。殼聚糖作為新的可食用包裝材料在食品工業(yè)中具有廣闊的應(yīng)用前景,但單一殼聚糖膜存在阻濕性差、透氣性差、機(jī)械性能弱等不足,難以滿足采后新鮮果蔬保鮮的綜合需求[22]。利用殼聚糖和明膠這兩種化學(xué)物質(zhì)作為基礎(chǔ),以天然京尼平作為交聯(lián)劑,成功制造了一種復(fù)合型的抗菌膜,較單一復(fù)合膜更有優(yōu)勢(shì)[23]。與對(duì)照組和殼聚糖(CS)涂膜相比,殼聚糖-氫化咖啡酸(CS-HCA)共聚物涂膜處理能更有效地減少櫻桃番茄的質(zhì)量損失及延緩腐爛速度,對(duì)櫻桃番茄有更好的保鮮效果[24]。皮克林乳液-殼聚糖復(fù)合涂膜可以提高涂膜的阻隔性能、力學(xué)性能和抗菌能力,有利于黃山楂的保鮮貯藏,較殼聚糖膜效果增強(qiáng)[25]。
3.4.2 殼聚糖復(fù)合處理 殼聚糖在果蔬保鮮過(guò)程中結(jié)合其他處理的保鮮研究也是熱點(diǎn)之一,如結(jié)合磁場(chǎng)處理,與僅使用殼聚糖相比,殼聚糖結(jié)合弱磁場(chǎng)處理組對(duì)延緩采后李果實(shí)營(yíng)養(yǎng)物質(zhì)消耗有效果,還能減緩李果實(shí)衰老進(jìn)程[26]。在常溫儲(chǔ)存條件下,與僅使用乙醇或殼聚糖處理相比,殼聚糖和乙醇的組合處理能有效提升甜瓜果實(shí)的儲(chǔ)存質(zhì)量并延緩其老化過(guò)程[27]。經(jīng)超聲波處理后,碳量子點(diǎn)和殼聚糖復(fù)合涂膜劑展現(xiàn)出最佳的保鮮效果,這有助于減少鮮切蓮藕中的失重率和抗壞血酸等成分的損失[28]。乳酸菌發(fā)酵液-殼聚糖復(fù)合涂膜處理對(duì)保持香梨的品質(zhì)有良好的作用[29]。適宜的熱處理結(jié)合殼聚糖涂膜對(duì)采后杧果有明顯的保鮮效果,在生產(chǎn)上有較好的應(yīng)用前景[30]。與僅使用水楊酸或殼聚糖處理相比,水楊酸和殼聚糖共同處理保留了白蘿卜芽較高的總酚濃度,提高了抗壞血酸濃度和抗氧化酶如CAT(過(guò)氧化氫酶)的活性[31]。檸檬醛納米乳和殼聚糖形成的涂層不僅增強(qiáng)了涂層對(duì)蜜橘果皮的展開性能以優(yōu)化涂層的結(jié)構(gòu),而且通過(guò)檸檬醛的釋出能夠減少微生物對(duì)果實(shí)的污染,這一過(guò)程顯著提升了蜜橘果實(shí)的保存質(zhì)量[32]。
3.4.3 與新興科技手段結(jié)合 新興科技手段的出現(xiàn)層出不窮,使得殼聚糖在果蔬保鮮方面的應(yīng)用迎來(lái)了新的發(fā)展。文獻(xiàn)表明,納米技術(shù)指的是材料在納米尺度上制造和應(yīng)用的科學(xué)技術(shù),材料在納米尺度上使用時(shí)可以提供改進(jìn)的功能。例如殼聚糖納米粒(ChNP)被認(rèn)為是一種新型的食品保鮮涂層材料,殼聚糖納米顆粒的尺寸從1 nm變化到100 nm,可提高膜的機(jī)械性能、阻隔性和熱穩(wěn)定性[33]。丁香酚-殼聚糖納米顆粒抑制SO2誘導(dǎo)的巨峰葡萄脫落[34]。此外,無(wú)機(jī)納米顆粒因具有抗菌性、高穩(wěn)定性、無(wú)毒等特征和殼聚糖復(fù)合使用增強(qiáng)了殼聚糖在果蔬保鮮方面的效果。微膠囊技術(shù)是指用聚合物基質(zhì)封裝生物活性材料來(lái)保護(hù)核心材料使用的技術(shù)。采用微膠囊技術(shù)可以使得活性物質(zhì)包埋起來(lái)免受外界干擾,將天然抗菌物質(zhì)包埋后加入殼聚糖膜可以顯著提高膜的抑菌性能。層層自組裝技術(shù)是利用逐層交替吸附的原理,兩種及以上材料通過(guò)相互作用力自發(fā)形成復(fù)合膜的技術(shù)。殼聚糖是一種聚陽(yáng)離子多糖,經(jīng)常和其他物質(zhì)聯(lián)合使用,被廣泛用作膜的成分。
3.4.4 保鮮機(jī)制 殼聚糖的廣譜抗菌特性已經(jīng)通過(guò)體外試驗(yàn)和復(fù)雜的食物基質(zhì)得到證實(shí),其抗菌活性取決于分子質(zhì)量、脫乙酰度、質(zhì)量濃度、微生物和環(huán)境因素(pH、溫度)等[35]。殼聚糖基薄膜在食品表面起到玻璃紙狀結(jié)構(gòu)的作用,從而有效地建立起保護(hù)層,防止食品受到外部微生物的攻擊[36]。在菌絲生長(zhǎng)抑制試驗(yàn)中,發(fā)現(xiàn)殼聚糖對(duì)菌絲生長(zhǎng)有抑制作用;在孢子萌發(fā)試驗(yàn)中,發(fā)現(xiàn)殼聚糖具有較強(qiáng)的抑制孢子萌發(fā)的能力[37]。酵母和霉菌的生長(zhǎng)也在具有殼聚糖涂層的藍(lán)莓中受到抑制[38],殼聚糖的抗真菌活性主要?dú)w因于抑制產(chǎn)孢和孢子萌發(fā)[39]。關(guān)于其對(duì)細(xì)菌的抑菌模式,目前尚無(wú)共識(shí),為了解釋殼聚糖的抑菌活性提出了幾種假說(shuō),歸納起來(lái)是由于其與細(xì)菌和食物系統(tǒng)的相互作用[40]。
殼聚糖作為防腐劑,其抗氧化性能已在體外得到驗(yàn)證,其抗氧化性能與去乙酰化程度在一定程度上呈正相關(guān)。短波紫外線(UV-C)和殼聚糖(CH)聯(lián)合處理減少了哈密瓜中抗壞血酸的損失,貯藏結(jié)束時(shí),處理抑制了果實(shí)中O2-產(chǎn)生速率和H2O2含量的增加。UV-C和CH聯(lián)合處理通過(guò)維持哈密瓜果實(shí)較強(qiáng)的抗氧化能力,有效抑制了活性氧含量的增加,降低了活性氧對(duì)細(xì)胞膜造成的損傷[41]。食物表面的殼聚糖層起到氧氣屏障的作用,從而阻礙氧氣的轉(zhuǎn)移,抑制氧化反應(yīng)[42]。有研究指出,由于殼聚糖中活性羥基和氨基的相互作用,殼聚糖通過(guò)清除羥基自由基表現(xiàn)出抗氧化能力。據(jù)報(bào)道,殼聚糖的抗氧化能力與分子質(zhì)量有關(guān),殼聚糖分子質(zhì)量越低,抗氧化活性越強(qiáng)[43]。
酶反應(yīng)在食品質(zhì)量惡化中起著不可忽視的作用,殼聚糖可以影響酶活性。采用殼聚糖涂膜處理蘋果切塊,降低了冷藏過(guò)程中蘋果切塊的酶促褐變程度[44]。殼聚糖涂層的抗褐變作用已經(jīng)在多種水果中得到了檢驗(yàn),比如鮮切的蘋果和枇杷,處理過(guò)的樣品中多酚氧化酶活性的增長(zhǎng)速度顯著低于對(duì)照組[45-46]。殼聚糖處理通過(guò)調(diào)節(jié)淀粉和蔗糖代謝減少冷藏哈密瓜的軟化和冷害[47]。月桂酰精氨酸乙酯-殼聚糖(LAE-CS)涂膜的應(yīng)用能有效地削減車?yán)遄釉趦?chǔ)存過(guò)程中的呼吸強(qiáng)度,減緩超氧化物歧化酶、過(guò)氧化物酶和苯丙氨酸解氨酶的活性下降,同時(shí)也能降低丙二醛的生成。此外,還可以抑制多酚氧化酶和果膠酶的活性,這樣便能延緩車?yán)遄拥母瘮∵M(jìn)程[48]。殼聚糖涂膜處理通過(guò)減輕活性氧傷害來(lái)延緩馬家柚采后汁胞粒化過(guò)程,提高超氧化物歧化酶(SOD)活性,改變相關(guān)基因表達(dá)來(lái)延緩馬家柚采后汁胞粒化的發(fā)生[49]。殼聚糖涂膜的使用對(duì)保持草莓較高濃度的總酚類物質(zhì)和總花青素具有積極作用,同時(shí)也保持了較低的細(xì)胞壁降解酶,如聚半乳糖醛酸酶(PG)、纖維素酶、果膠甲酯酶(PME)和β-半乳糖苷酶(β-Gal)的活性[50]。殼聚糖基涂層在保持新鮮無(wú)花果的品質(zhì)上,提高了無(wú)花果的總多酚、花青素和類黃酮含量以及抗氧化活性。較高的抗氧化酶活性可以減少氧化應(yīng)激并防止褐變反應(yīng)[51]。殼聚糖涂膜的使用延緩了草莓的變質(zhì),保持了較高的超氧化物歧化酶活性和過(guò)氧化氫酶活性,與蔗糖代謝、可滴定酸含量積累、抗病性以及與合成代謝茉莉酸和脫落酸途徑相關(guān)的基因受到不同程度的調(diào)節(jié),表明殼聚糖參與草莓的免疫信號(hào)網(wǎng)絡(luò),并通過(guò)激素調(diào)節(jié)抗病性途徑[52]。殼聚糖百里香油涂膜調(diào)節(jié)了PG和PME活性的降低,抑制細(xì)胞壁多糖降解,延緩了藍(lán)莓的采后軟化和衰老進(jìn)程[53]。
最后,殼聚糖的阻隔性能對(duì)果蔬保鮮十分重要。殼聚糖層不僅可以阻擋外源微生物,而且在一定程度上對(duì)氧氣和水蒸氣具有選擇性的滲透性,這直接影響了食品的保質(zhì)期[54]。目前,殼聚糖基的阻隔性能是在嚴(yán)格的食品包裝中應(yīng)用時(shí)必須表征的。目前,對(duì)水、氧氣、二氧化碳、氮?dú)狻⒆贤饩€等的詳細(xì)阻隔性能已經(jīng)進(jìn)行了廣泛的研究[55]。殼聚糖基膜對(duì)水蒸氣有阻隔性,許多有機(jī)材料(例如多酚)可以通過(guò)鍵合與殼聚糖建立相互作用,這樣可以有效地限制殼聚糖中的親水基團(tuán)與水分子的交互作用[56]。殼聚糖基薄膜可以起到氧氣屏障的作用,阻礙氧氣的傳遞,從而抑制呼吸活動(dòng)和食品中細(xì)菌的生長(zhǎng)[57]。
4 結(jié) 論
筆者在本研究中基于文獻(xiàn)計(jì)量學(xué)方法,檢索了WOS和CNKI數(shù)據(jù)庫(kù)1991—2023年與殼聚糖在果蔬保鮮領(lǐng)域有關(guān)的文獻(xiàn)進(jìn)行可視化分析,使用Citespace作圖,分別從年代、作者、機(jī)構(gòu)、國(guó)家、研究熱點(diǎn)、演進(jìn)趨勢(shì)等幾個(gè)層面進(jìn)行歸納統(tǒng)計(jì)。對(duì)國(guó)內(nèi)外進(jìn)行對(duì)比分析作圖,較為直觀科學(xué)地呈現(xiàn)了該領(lǐng)域的研究熱點(diǎn)及趨勢(shì)。國(guó)內(nèi)外殼聚糖在果蔬保鮮中的應(yīng)用研究發(fā)文量趨勢(shì)較相似,總體呈上升趨勢(shì)且該領(lǐng)域在自2006年以后,研究不斷深入,相關(guān)文獻(xiàn)的數(shù)量也呈現(xiàn)出急劇上升的態(tài)勢(shì)。在發(fā)文機(jī)構(gòu)中,中國(guó)農(nóng)業(yè)大學(xué)、上海海洋大學(xué)是主要研究機(jī)構(gòu);國(guó)際上埃及知識(shí)庫(kù)、塔伊夫大學(xué)、農(nóng)業(yè)農(nóng)村部位居前三。此外,機(jī)構(gòu)間的合作研究大多集中在同一地區(qū)或部門。發(fā)文國(guó)家中,中國(guó)和印度排名前列,其次是巴西。從研究熱點(diǎn)來(lái)看,主要集中在殼聚糖復(fù)合膜、殼聚糖保鮮機(jī)制、殼聚糖復(fù)合處理等領(lǐng)域。從熱點(diǎn)詞演進(jìn)趨勢(shì)來(lái)看,目前隨著科技手段的更新迭代,殼聚糖相關(guān)的研究進(jìn)一步深入,層層自組裝、可食性涂膜、抗病機(jī)制、保鮮機(jī)制、生物聚合物納米粒子、多糖基復(fù)合膜是研究的熱點(diǎn)領(lǐng)域。
殼聚糖因獨(dú)特的性能優(yōu)勢(shì)而引起了果蔬保鮮行業(yè)的極大關(guān)注。廣泛應(yīng)用殼聚糖進(jìn)行保鮮的積極反饋表明,其在果蔬保鮮方面具有巨大的潛力。這種前景吸引了學(xué)術(shù)界的廣泛關(guān)注,并在實(shí)踐中得到了充分驗(yàn)證,為果蔬保鮮領(lǐng)域的進(jìn)一步發(fā)展提供了有力支持。在過(guò)去對(duì)殼聚糖的研究中,以殼聚糖為基礎(chǔ)的保鮮技術(shù)不斷進(jìn)步,在未來(lái)的研究中,殼聚糖和各種新興技術(shù)的復(fù)合使用將給殼聚糖的發(fā)展帶來(lái)新的機(jī)遇,例如:薄膜自組裝技術(shù)因有利于提供納米尺度和功能多層膜的厚度控制可以形成殼聚糖和其他聚陰離子材料的多層膜??傊?,筆者在本研究中總結(jié)了目前階段殼聚糖在果蔬保鮮領(lǐng)域的研究成果,為后續(xù)研究奠定基礎(chǔ)和提供幫助。
參考文獻(xiàn)References:
[1] 卜紅宇. PBAT基氣調(diào)呼吸膜對(duì)沙蔥的保鮮效果及保鮮機(jī)理研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2021.
BU Hongyu. Study on preservation effects and mechanism of PBAT based spontaneous modified atmosphere packaging on Allium mongolicum Regel[D]. Hohhot:Inner Mongolia Agricultural University,2021.
[2] 王安杏,曹川,張慶,張瑜,張曉晴. 殼聚糖復(fù)合膜在果蔬保鮮中的應(yīng)用[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào),2023,14(5):164-172.
WANG Anxing,CAO Chuan,ZHANG Qing,ZHANG Yu,ZHANG Xiaoqing. Application of chitosan composite film in fruits and vegetables preservation[J]. Journal of Food Safety amp; Quality,2023,14(5):164-172.
[3] 張亦飛. 殼聚糖果蔬保鮮劑的研究[J]. 食品工業(yè)科技,1996,17(4):13-15.
ZHANG Yifei. The study of chitosan-based fruit and vegetable Preservatives[J]. Science and Technology of Food Industry,1996,17(4):13-15.
[4] 林寶鳳. 殼聚糖成膜劑特性的研究[J]. 食品與發(fā)酵工業(yè),1998,24(1):44-47.
LIN Baofeng. The Study of characteristics of chitosan film-forming agents[J]. Food and Fermentation Industries,1998,24(1):44-47.
[5] 王穎,曾霞,王春. 殼聚糖在果蔬保鮮中的應(yīng)用研究進(jìn)展[J]. 食品工業(yè),2012,33(5):107-109.
WANG Ying,ZENG Xia,WANG Chun. Progress in chitosan and its application on fruit and vegetable fresh keeping[J]. The Food Industry,2012,33(5):107-109.
[6] MANTILLA N,CASTELL-PEREZ M E,GOMES C,MOREIRA R G. Multilayered antimicrobial edible coating and its effect on quality and shelf-life of fresh-cut pineapple (Ananas comosus)[J]. LWT - Food Science and Technology,2013,51(1):37-43.
[7] WANG K,LI T T,CHEN S Q,LI Y L,RASHID A. The biochemical and molecular mechanisms of softening inhibition by chitosan coating in strawberry fruit (Fragaria × ananassa) during cold storage[J]. Scientia Horticulturae,2020,271:109483.
[8] 閆瑩瑩. 殼聚糖-沒(méi)食子酸衍生物的制備、功能性質(zhì)及對(duì)賽買提杏保鮮效果的研究[D]. 石河子:石河子大學(xué),2023.
YAN Yingying. Preparation,functional properties and preservation effect of chitosan-Gallic acid derivatives of Saimaiti Apricot[D]. Shihezi:Shihezi University,2023.
[9] 董文麗,鞏雪,侯理達(dá),安麗娟,聶義然,楊春莉. 殼聚糖/檸檬酸復(fù)合涂膜對(duì)胡蘿卜的保鮮效果[J]. 包裝工程,2021,42(9):72-78.
DONG Wenli,GONG Xue,HOU Lida,AN Lijuan,NIE Yiran,YANG Chunli. Effects of chitosan and citric acid composite film on preservation of carrot[J]. Packaging Engineering,2021,42(9):72-78.
[10] 劉帥民,王淋靚,馮春梅,黎新榮,劉港帥,黃燕婷,陳蕊蕊,檀業(yè)維. 殼聚糖調(diào)節(jié)膜透性和能量代謝減緩沃柑果實(shí)采后品質(zhì)劣變[J]. 中國(guó)食品學(xué)報(bào),2023,23(1):250-258.
LIU Shuaimin,WANG Linliang,F(xiàn)ENG Chunmei,LI Xinrong,LIU Gangshuai,HUANG Yanting,CHEN Ruirui,TAN Yewei. Chitosan alleviates postharvest quality deterioration in fertile orange fruit by regulating membrane permeability and energy metabolism[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(1):250-258.
[11] 李雪. 殼聚糖與納米TiO2對(duì)淀粉復(fù)合膜力學(xué)強(qiáng)度和阻隔性能的影響及復(fù)合膜在果蔬中的涂膜保鮮應(yīng)用[D]. 上海:上海海洋大學(xué),2021.
LI Xue. The effect of chitosan and nano-TiO2 on the mechanical strength and barrier properties of the starch composite film and the application of the composite film in the reservation of fruits and vegetables[D]. Shanghai:Shanghai Ocean University,2021.
[12] 曹思源. 蒙脫土/納米纖維素/殼聚糖復(fù)合涂膜對(duì)柑橘保鮮效果及其機(jī)理研究[D]. 重慶:西南大學(xué),2022.
CAO Siyuan. Study on the effect of montmorillonite/nanocellulose/chitosan composite coating on citrus preservation and its mechanism[D]. Chongqing:Southwest University,2022.
[13] 陳悅,陳超美,劉則淵,胡志剛,王賢文. CiteSpace知識(shí)圖譜的方法論功能[J]. 科學(xué)學(xué)研究,2015,33(2):242-253.
CHEN Yue,CHEN Chaomei,LIU Zeyuan,HU Zhigang,WANG Xianwen. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science,2015,33(2):242-253.
[14] PARK S K,BAE D H. Antimicrobial properties of wheat gluten-chitosan composite film in intermediate-moisture food systems[J]. Food Science and Biotechnology,2006,15(1):133-137.
[15] FRáGUAS R M,SIM?O A A,F(xiàn)ARIA P V,DE RESENDE QUEIROZ E,DE OLIVEIRA JUNIOR ê N,DE ABREU C M P. Preparation and characterization chitosan edible films[J]. Polímeros,2015,25:48-53.
[16] 陳寧生,葉舒婭. 殼聚糖對(duì)保鮮果蔬收獲的研究[J]. 安徽農(nóng)業(yè)科學(xué),1996,24(2):190-192.
CHEN Ningsheng,YE Shuya. Research on chitosan for preserving fruit and vegetable harvest[J]. Journal of Anhui Agricultural Sciences,1996,24(2):190-192.
[17] 胡可. 殼聚糖-直鏈玉米淀粉-肉桂醛復(fù)合薄膜制備及對(duì)草莓保鮮效果的研究[D]. 雅安:四川農(nóng)業(yè)大學(xué),2018.
HU Ke. Study on the effect of chitosan straight chain cornstarch cinnamaldehyde composite film on strawberry preservation[D]. Ya’an:Sichuan Agricultural University,2018.
[18] 嚴(yán)嘉瑋. 層層自組裝可食性膜對(duì)草莓代謝產(chǎn)物的調(diào)控研究[D]. 杭州:浙江大學(xué),2019.
YAN Jiawei. The regulation of Layer-by-layer self-assembled edible coating on strawberry metabolites[D]. Hangzhou:Zhejiang University,2019.
[19] 孫閩子,張珅,吳光斌,陳發(fā)河,倪輝,陳興麟,許旻,林河通. 采前調(diào)節(jié)劑處理對(duì)采后果實(shí)保鮮效應(yīng)的研究進(jìn)展[J]. 果樹學(xué)報(bào),2022,39(6):1111-1120.
SUN Minzi,ZHANG Shen,WU Guangbin,CHEN Fahe,NI Hui,CHEN Xinglin,XU Min,LIN Hetong. Advances in the effects of preharvest treatments on fresh-keeping of postharvest fruits[J]. Journal of Fruit Science,2022,39(6):1111-1120.
[20] 余學(xué)鵬. 殼聚糖納米顆粒增強(qiáng)多糖基活性復(fù)合膜的制備及性能研究[D]. 無(wú)錫:江南大學(xué),2023.
YU Xuepeng. Preparation and properties of polysaccharide-based active composite films reinforced with chitosan nanoparticles[D]. Wuxi:Jiangnan University,2023.
[21] 黎星延,黃麗金,劉漢美,陶守奎,姜悅,於智前,陳葉珍,潘永貴. 不同分子質(zhì)量殼聚糖涂膜對(duì)采后西番蓮果實(shí)貯藏品質(zhì)的影響[J]. 食品工業(yè)科技,2023,44(22):319-326.
LI Xingyan,HUANG Lijin,LIU Hanmei,TAO Shoukui,JIANG Yue,YU Zhiqian,CHEN Yezhen,PAN Yonggui. Effect of chitosan coating with different molecular weights on the storage quality of postharvest passion fruit (Passiflora edulis Sims)[J]. Science and Technology of Food Industry,2023,44(22):319-326.
[22] 王玉. 多功能殼聚糖復(fù)合膜的制備及其在板栗防腐保鮮中的應(yīng)用研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2022.
WANG Yu. Preparation of multifunctional chitosan composite film and its application on storage and preservation of chestnut[D]. Wuhan:Huazhong Agricultural University,2022.
[23] 鄭虹,李莉娟,陳曉鳳,鄧加聰. 京尼平交聯(lián)明膠蛋白與殼聚糖抗菌膜的制備及性能研究[J]. 化學(xué)工程與裝備,2019(5):5-8.
ZHENG Hong,LI Lijuan,CHEN Xiaofeng,DENG Jiacong. Preparation and performance study of jingnipin crosslinked gelatin protein and chitosan antibacterial films[J]. Chemical Engineering amp; Equipment,2019(5):5-8.
[24] 張宇,陳澤世,王浩,黎順洋,陳上岑. 殼聚糖-氫化咖啡酸接枝共聚物的制備及其應(yīng)用[J]. 食品科技,2021,46(8):233-237.
ZHANG Yu,CHEN Zeshi,WANG Hao,LI Shunyang,CHEN Shangcen. Preparation and application of chitosan-hydrocaffeic acid grafting copolymer[J]. Food Science and Technology,2021,46(8):233-237.
[25] 李娜,張海鋒,曹金鋒,滕慧穎,王慶輝,聶宗省. 纖維素納米晶-肉桂精油-殼聚糖復(fù)合涂膜制備及其對(duì)黃山楂金如意的保鮮效果[J]. 果樹學(xué)報(bào),2023,40(3):556-565.
LI Na,ZHANG Haifeng,CAO Jinfeng,TENG Huiying,WANG Qinghui,NIE Zongsheng. Preparation of cellulose nanocrystal cinnamon essential oil chitosan composite coating and its effect on fruit preservation of Crataegus pinnatifida Bge. var. major N. E. Br[J]. Journal of Fruit Science,2023,40(3):556-565.
[26] 張婷婷,郝義,紀(jì)淑娟,郝邢維,邢英麗,李珊珊,周倩. 采前殼聚糖處理結(jié)合磁場(chǎng)冷藏對(duì)采后李果實(shí)果肉褐變的調(diào)控作用[J]. 食品與發(fā)酵工業(yè),2023,49(24):52-61.
ZHANG Tingting,HAO Yi,JI Shujuan,HAO Xingwei,XING Yingli,LI Shanshan,ZHOU Qian. Effects of preharvest chitosan treatment combined with magnetic refrigeration on browning of post-harvest plum fruit flesh[J]. Food and Fermentation Industries,2023,49(24):52-61.
[27] 孫浩軒,王佳江,李巖,張沖. 殼聚糖和乙醇復(fù)合處理對(duì)薄皮甜瓜采后貯藏品質(zhì)的影響[J]. 北方園藝,2023(14):105-111.
SUN Haoxuan,WANG Jiajiang,LI Yan,ZHANG Chong. Effects of chitosan and ethanol compound treatments on postharvest storage quality of thin-skinned muskmelon[J]. Northern Horticulture,2023(14):105-111.
[28] 李素云,袁維雪,王雪純,于林靜. 超聲處理碳量子點(diǎn)/殼聚糖復(fù)合膜在鮮切蓮藕片保鮮中的應(yīng)用[J]. 食品科技,2023,48(3):44-49.
LI Suyun,YUAN Weixue,WANG Xuechun,YU Linjing. Application of carbon quantum dots/chitosan composite film treated by ultrasound on fresh-cut Lotus root slices[J]. Food Science and Technology,2023,48(3):44-49.
[29] 開比努爾·艾合買提,張銳利,劉華英. 乳酸菌發(fā)酵液-殼聚糖復(fù)合處理對(duì)香梨品質(zhì)的影響[J]. 農(nóng)產(chǎn)品加工,2023(5):34-37.
Kaibinuer·Aihemaiti,ZHANG Ruili,LIU Huaying. Effect of lactic acid bacteria fermentation broth-chitosan composite coating on the quality of pears[J]. Farm Products Processing,2023(5):34-37.
[30] 谷會(huì),方靜,葉建敏,姚全勝. 熱處理結(jié)合殼聚糖涂膜對(duì)‘臺(tái)農(nóng)1號(hào)’芒果常溫貯藏品質(zhì)的影響[J]. 食品科技,2022,47(6):37-43.
GU Hui,F(xiàn)ANG Jing,YE Jianmin,YAO Quansheng. Effect of heat treatment composite chitosan coating on ‘Tainong No. 1’ mango storage quality at room temperature[J]. Food Science and Technology,2022,47(6):37-43.
[31] SUPAPVANICH S,ANAN W,CHIMSONTHORN V. Efficiency of combinative salicylic acid and chitosan preharvest-treatment on antioxidant and phytochemicals of ready to eat daikon sprouts during storage[J]. Food Chemistry,2019,284:8-15.
[32] 鄒麗娜,李曉楠,周小婉,周倩怡,黃霜霜,曹思源,吳習(xí)宇,任丹,徐丹. 檸檬醛納米乳對(duì)殼聚糖涂膜性能和保鮮效果的影響[J]. 食品與發(fā)酵工業(yè),2023,49(9):179-185.
ZOU Lina,LI Xiaonan,ZHOU Xiaowan,ZHOU Qianyi,HUANG Shuangshuang,CAO Siyuan,WU Xiyu,REN Dan,XU Dan. Effect of citral nanoemulsion on properties of chitosan coating and preservation performance[J]. Food and Fermentation Industries,2023,49(9):179-185.
[33] 陳達(dá)佳,趙利,袁美蘭,蘇偉,劉華,陳麗麗. 膠原蛋白與殼聚糖復(fù)合膜的機(jī)械性能[J]. 食品科學(xué),2014,35(9):112-117.
CHEN Dajia,ZHAO Li,YUAN Meilan,SU Wei,LIU Hua,CHEN Lili. Mechanical properties of collagen-chitosan composite film[J]. Food Science,2014,35(9):112-117.
[34] 孟祥軒,楊盛迪,李旭飛,郭大龍,裴茂松,劉海楠,韋同路,余義和. 丁香酚-殼聚糖納米顆粒抑制SO2引起巨峰葡萄采后脫落的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)預(yù)測(cè)[J]. 果樹學(xué)報(bào),2022,39(6):1099-1110.
MENG Xiangxuan,YANG Shengdi,LI Xufei,GUO Dalong,PEI Maosong,LIU Hainan,WEI Tonglu,YU Yihe. Transcriptional regulatory network prediction of eugenol-loaded chitosan nanoparticles inhibiting SO2-induced postharvest abscission in Kyoho grape[J]. Journal of Fruit Science,2022,39(6):1099-1110.
[35] CONFEDERAT L G,TUCHILUS C G,DRAGAN M,SHA’AT M,DRAGOSTIN O M. Preparation and antimicrobial activity of chitosan and its derivatives:A concise review[J]. Molecules,2021,26(12):3694.
[36] KUMARI P,BARMAN K,PATEL V B,SIDDIQUI M W,KOLE B. Reducing postharvest pericarp browning and preserving health promoting compounds of litchi fruit by combination treatment of salicylic acid and chitosan[J]. Scientia Horticulturae,2015,197:555-563.
[37] 邱苗. 殼聚糖對(duì)綠蘆筍保鮮和抑菌機(jī)理的研究[D]. 杭州:浙江工商大學(xué),2013.
QIU Miao. Effect of chitosan on postharvest green Asparagus quality and antimicrobial mechanism against pathogen in vitro[D]. Hangzhou:Zhejiang Gongshang University,2013.
[38] MANNOZZI C,TYLEWICZ U,CHINNICI F,SIROLI L,ROCCULI P,DALLA ROSA M,ROMANI S. Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage[J]. Food Chemistry,2018,251:18-24.
[39] HERNáNDEZ-LAUZARDO A N,BAUTISTA-BA?OS S,VELáZQUEZ-DEL VALLE M G,MéNDEZ-MONTEALVO M G,SáNCHEZ-RIVERA M M,BELLO-PéREZ L A. Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill[J]. Carbohydrate Polymers,2008,73(4):541-547.
[40] SAHARIAH P,MáSSON M. Antimicrobial chitosan and chitosan derivatives:A review of the structure-activity relationship[J]. Biomacromolecules,2017,18(11):3846-3868.
[41] 宋昕昕. UV-C輻照-殼聚糖涂膜對(duì)哈密瓜貯藏效果的影響[D]. 石河子:石河子大學(xué),2023.
SONG Xinxin. Effects of UV-C combined with chitosan coating on storage of cantaloupe[D]. Shihezi:Shihezi University,2023.
[42] ALISHAHI A,A?DER M. Applications of chitosan in the seafood industry and aquaculture:A review[J]. Food and Bioprocess Technology,2012,5(3):817-830.
[43] CHANG S H,WU C H,TSAI G J. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties[J]. Carbohydrate Polymers,2018,181:1026-1032.
[44] SHYU Y S,CHEN G W,CHIANG S C,SUNG W C. Effect of chitosan and fish gelatin coatings on preventing the deterioration and preserving the quality of fresh-cut apples[J]. Molecules,2019,24(10):2008.
[45] LIN Y Z,LI N,LIN H T,LIN M S,CHEN Y H,WANG H,RITENOUR M A,LIN Y F. Effects of chitosan treatment on the storability and quality properties of Longan fruit during storage[J]. Food Chemistry,2020,306:125627.
[46] ?ZDEMIR K S,G?KMEN V. Effect of chitosan-ascorbic acid coatings on the refrigerated storage stability of fresh-cut apples[J]. Coatings,2019,9(8):503.
[47] ZHANG Q,TANG F X,CAI W C,PENG B,NING M,SHAN C H,YANG X Q. Chitosan treatment reduces softening and chilling injury in cold-stored Hami melon by regulating starch and sucrose metabolism[J]. Frontiers in Plant Science,2022,13:1096017.
[48] 繆嘉琪,蔡寅川,章彥楷,黃琪,陳春雨,郝剛. 月桂酰精氨酸乙酯-殼聚糖涂膜對(duì)車?yán)遄颖ur效果及保鮮機(jī)理的研究[J]. 食品與發(fā)酵科技,2022,58(5):19-24.
MIAO Jiaqi,CAI Yinchuan,ZHANG Yankai,HUANG Qi,CHEN Chunyu,HAO Gang. Study on the effect of lauryl arginine ethyl ester-chitosan coating on preserving freshness of cherries and its mechanism[J]. Food and Fermentation Science amp; Technology,2022,58(5):19-24.
[49] 聶正朋. 殼聚糖延緩馬家柚采后汁胞?;l(fā)生的作用機(jī)理[D]. 南昌:江西農(nóng)業(yè)大學(xué),2020.
NIE Zhengpeng. Effect of chitosan on postharvest juice sac granulation in Majiayou pummelo and the possible mechanisms[D]. Nanchang:Jiangxi Agricultural University,2020.
[50] GOL N B,PATEL P R,RAMANA RAO T V. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan[J]. Postharvest Biology and Technology,2013,85:185-195.
[51] ADILETTA G,ZAMPELLA L,COLETTA C,PETRICCIONE M. Chitosan coating to preserve the qualitative traits and improve antioxidant system in fresh figs (Ficus carica L.)[J]. Agriculture,2019,9(4):84.
[52] WANG Y H,YAN Z M,TANG W H,ZHANG Q,LU B,LI Q,ZHANG G. Impact of chitosan,sucrose,glucose,and fructose on the postharvest decay,quality,enzyme activity,and defense-related gene expression of strawberries[J]. Horticulturae,2021,7(12):518.
[53] SUN H Y,HAO D Q,TIAN Y,HUANG Y G,WANG Y L,QIN G W,PEI J J,ABD EL-ATY A M. Effect of chitosan/thyme oil coating and UV-C on the softening and ripening of postharvest blueberry fruits[J]. Foods,2022,11(18):2795.
[54] CAZóN P,VáZQUEZ M. Mechanical and barrier properties of chitosan combined with other components as food packaging film[J]. Environmental Chemistry Letters,2020,18(2):257-267.
[55] WANG H X,QIAN J,DING F Y. Emerging chitosan-based films for food packaging applications[J]. Journal of Agricultural and Food Chemistry,2018,66(2):395-413.
[56] SUN L J,SUN J J,CHEN L,NIU P F,YANG X B,GUO Y R. Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material[J]. Carbohydrate Polymers,2017,163:81-91.
[57] SWAIN S K,DASH S,KISKU S K,SINGH R K. Thermal and oxygen barrier properties of chitosan bionanocomposites by reinforcement of calcium carbonate nanopowder[J]. Journal of Materials Science amp; Technology,2014,30(8):791-795.
基金項(xiàng)目:山西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(202102140601017)
作者簡(jiǎn)介:李俐,女,在讀碩士研究生,研究方向?yàn)楣呒庸づc貯藏。E-mail:2673855252@qq.com
*通信作者 Author for correspondence. E-mail:lyp0357@126.com