摘" " 要:【目的】評(píng)估桃蚜Myzus persicae和桃粉蚜Hyalopterus amygdali種群對(duì)兩種常用殺蟲(chóng)劑吡蟲(chóng)啉和雙丙環(huán)蟲(chóng)酯的敏感性。【方法】2022年和2023年在我國(guó)不同桃產(chǎn)區(qū)桃園采集桃蚜和桃粉蚜種群,利用玻璃管藥膜法測(cè)定了兩種蚜蟲(chóng)的毒力水平。【結(jié)果】2022年監(jiān)測(cè)結(jié)果表明,浙江省嘉興市的桃蚜種群對(duì)吡蟲(chóng)啉最敏感,LC50為0.222 mg·L-1,相比之下,河北省秦皇島市、陜西省西安市和甘肅省蘭州市的桃蚜種群表現(xiàn)出較低敏感性。2023年,浙江省杭州市的桃蚜種群對(duì)吡蟲(chóng)啉最敏感,LC50為1.574 mg·L-1。對(duì)比兩年的監(jiān)測(cè)數(shù)據(jù)發(fā)現(xiàn),山東省青島市桃蚜對(duì)吡蟲(chóng)啉的敏感度變化不大,陜西省咸陽(yáng)市桃蚜種群顯示出對(duì)吡蟲(chóng)啉的敏感度降低的趨勢(shì)。對(duì)于雙丙環(huán)蟲(chóng)酯,2022年河北省秦皇島市的桃蚜種群對(duì)雙丙環(huán)蟲(chóng)酯最敏感,LC50為0.011 mg·L-1。2023年,浙江省杭州市的桃蚜種群對(duì)雙丙環(huán)蟲(chóng)酯最敏感,LC50為0.159 mg·L-1。對(duì)比分析發(fā)現(xiàn),甘肅省蘭州市的桃蚜種群對(duì)雙丙環(huán)蟲(chóng)酯的敏感度呈增加趨勢(shì)。桃粉蚜的監(jiān)測(cè)結(jié)果表明:云南省昆明市的桃粉蚜種群對(duì)吡蟲(chóng)啉和雙丙環(huán)蟲(chóng)酯均表現(xiàn)出最高的敏感度,然而,河北省秦皇島市和安徽省宿州市的桃粉蚜種群對(duì)吡蟲(chóng)啉的敏感度顯著降低?!窘Y(jié)論】不同地區(qū)和年份的桃蚜和桃粉蚜種群對(duì)吡蟲(chóng)啉表現(xiàn)出顯著的敏感度差異。兩種蚜蟲(chóng)對(duì)雙丙環(huán)蟲(chóng)酯的敏感度差異不顯著,均處于敏感水平。
關(guān)鍵詞:桃園;桃蚜;桃粉蚜;吡蟲(chóng)啉;雙丙環(huán)蟲(chóng)酯;敏感度
中圖分類(lèi)號(hào):S662.1+S436.621 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)09-1836-10
Examination of the sensitivity of peach orchard aphids to imidacloprid and afidopyropen
LIU Xinxin1, WU Mengmeng1, XUE Li2, WANG Su1, GUO Xiaojun1, XIAO Da1*, XU Qingxuan1*
(1Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province),Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, 100097, Beijing, China; 2Zhucheng City Agricultural Technology Extension Center, Shandong Province, Zhucheng 262200, Shandong, China)
Abstract: 【Objective】 Green peach aphid and peach mealy aphid are pests causing significant harm to peach trees and other crops worldwide. They primarily feed by sucking plant sap, resulting in leaf damage that affects the growth, development, and photosynthesis of peach trees. Simultaneously, they pose a threat to the health and yield of peach trees and other crops by transmitting viruses. Control of the peach aphids has traditionally relied on chemical methods. However, due to characteristics such as large population sizes, short life cycles, high reproduction rates, and strong migratory capabilities, these aphids have developed varying degrees of resistance to many commonly used insecticides. Therefore, monitoring the sensitivity of the peach aphids to common insecticides is particularly important. This not only helps in assessing the actual effectiveness of the pesticides but also enables timely adjustments in control strategies based on the degree of resistance development. By doing so, the emergence of resistance can be delayed or avoided, leading to more precise pest management measures and thus achieving sustainability in agriculture. The populations of Myzus persica and Hyalopterus amygdali were collected from peach orchards in different peach-producing areas in China during 2022 and 2023 to monitor the sensitivity to imidacloprid and afidopyropen. 【Methods】 The toxicity levels of these aphids to the insecticides were determined using the glass tube film methods. The active pharmaceutical ingredient of imidacloprid and afidopyropen were diluted with acetone to prepare a master stock solution for subsequent experimentation. An aliquot of 250 μL insecticide-acetone solution was applied to each tube (length: 7.5 cm; diameter: 1.2 cm, internal surface area: 27.51 cm2), and they were immediately rotated using a micro-rotator (American Wheaton Company) until solutions were dried. These peach aphids were treated for each concentration with three replicates, while controls were treated with acetone only. The tubes were then placed under laboratory conditions. After 24 h, mortality was recorded, and individuals were deemed dead if they showed no response when prompted with a brush. 【Results】 The monitoring results of 2022 showed that the M. persica population from Jiaxing city of Zhejiang province was found to be most sensitive to imidacloprid, with an LC50 of 0.222 mg·L-1. In contrast, the M. persica population from Qinhuangdao city of Hebei province, Xi’an city of Shanxi Province, and Lanzhou city of Gansu province exhibited lower sensitivity. These results suggest a significant variation in the response to imidacloprid across different geographic locations, potentially influenced by environmental and genetic factors. In the subsequent year, the M. persica population from Hangzhou city of Zhejiang province displayed the highest sensitivity to imidacloprid, though with an increased LC50 of 1.574 mg·L-1. Comparative analysis of the two years monitoring data revealed that the sensitivity of the M. persica from Qingdao city of Shandong province to imidacloprid remained relatively stable. While a decreasing trend in sensitivity was observed in the M. persica from Xianyang city of Shanxi province, underscoring the dynamic nature of pesticide resistance. As for afidopyropen, the M. persica population from Qinhuangdao city of Hebei province, was most sensitive in 2022, with an LC50 of 0.011 mg·L-1. In 2023, the M. persica from Hangzhou city of Zhejiang province was most sensitive with an LC50 of 0.159 mg·L-1. Comparative analysis found that the sensitivity of the M. persica population to afidopyropen showed an increasing trend from Lanzhou city of Gansu Province. The monitoring results of the H. amygdali indicated that the population from Kunming city of Yunnan province exhibited the highest sensitivity to both imidacloprid and afidopyropen. This observation is crucial as it points to possible interspecies differences in how the resistance mechanism is developed and managed. In contrast, the sensitivity of the H. amygdali to imidaclorpid significantly decreased from Qinhuangdao city of Hebei province and Suzhou city of Anhui province, highlighting the need for ongoing monitoring and adaptive management strategies. 【Conclusion】 The results of this study indicated significant regional and annual variations in the susceptibility of the M. persica and H. amygdali to common used insecticides imidacloprid and afidopyropen, respectively. These variations might be associated with factors such as the history of insecticides use, environmental conditions, and the genetic diversity within the populations. Therefore, it is imperative to consider these factors when devising pest control strategies, implementing targeted measures to enhance control efficiency and slow down the development of resistance. This comprehensive approach would not only clarity the causes behind the varying pesticides sensitivities but also aid in the development of more effective pest management strategies. Moreover, continuous monitoring of the changes in pest sensitivity to insecticides is crucial for effective pest management and sustaining agricultural development. Rotating insecticides with different mechanisms of action, reducing the frequency of specific insecticide usage, and conducting in-depth research into the molecular mechanisms behind reduced sensitivity in specific regions would contribute to delaying the development of insecticide resistance in pests.
Key words: Peach orchard; Myzus persica; Hyalopterus amygdali; Imidacloprid; Afidopyropen; Sensitivity
中國(guó)是全球桃樹(shù)栽培面積和產(chǎn)量最大的國(guó)家,其中以河北、山東等北方桃主產(chǎn)區(qū)為代表,面積約占全國(guó)的22%,產(chǎn)量超過(guò)30%,總產(chǎn)值達(dá)到400多億元[1]。然而,在生產(chǎn)過(guò)程中,害蟲(chóng)的危害嚴(yán)重影響了桃樹(shù)的產(chǎn)量和果實(shí)品質(zhì)。蚜蟲(chóng)以刺吸危害枝葉、嫩梢為主,影響果樹(shù)生長(zhǎng)發(fā)育,間接影響果實(shí)品質(zhì)。在桃樹(shù)上常見(jiàn)的蚜蟲(chóng)主要包括桃蚜[Myzus persicae(Sulzer)]、桃粉蚜[Hyalopterus amygdali (Blanchard)]和桃瘤蚜[Tuberocephalus momonis(Matsumura)][2]。桃蚜又名煙蚜,是一種分布廣泛且危害嚴(yán)重的害蟲(chóng),能夠寄生于50多個(gè)科400多種植物上。除了對(duì)桃的危害外,還會(huì)危害十字花科蔬菜、煙草和馬鈴薯等茄科作物。桃蚜除通過(guò)刺吸植物汁液吸收營(yíng)養(yǎng)外,還可以傳播植物病毒,對(duì)植物造成更大的間接傷害,從而對(duì)農(nóng)業(yè)生產(chǎn)造成巨大的經(jīng)濟(jì)損失[3]。桃蚜除直接取食植物造成危害外,其分泌的蜜露也會(huì)引起植物的煤污病,進(jìn)一步影響果樹(shù)的光合作用[4]。
對(duì)桃蚜的防治歷來(lái)以化學(xué)防治為主。但由于桃蚜具有種群數(shù)量大、生命周期短、繁殖率高和遷飛能力強(qiáng)等特點(diǎn),導(dǎo)致他們對(duì)許多常用殺蟲(chóng)劑產(chǎn)生了不同程度的抗藥性[3-7]。目前,我國(guó)對(duì)桃蚜的防控策略以“化學(xué)防治為主、生物防治為輔”。因此,監(jiān)測(cè)桃蚜對(duì)常用殺蟲(chóng)劑的敏感度變化顯得尤為重要。這不僅有助于評(píng)估藥劑的實(shí)際效果,還可以根據(jù)抗藥性的發(fā)展程度,及時(shí)調(diào)整防治策略,延緩或避免抗藥性的出現(xiàn),實(shí)施更精準(zhǔn)的害蟲(chóng)管理措施,從而實(shí)現(xiàn)農(nóng)業(yè)生產(chǎn)的可持續(xù)性。
吡蟲(chóng)啉(Imidacloprid)是一種高效、廣譜的新煙堿類(lèi)殺蟲(chóng)劑,對(duì)蚜蟲(chóng)類(lèi)、飛虱類(lèi)、薊馬和果蠅等害蟲(chóng)具有良好的防控效果[8]。其殺蟲(chóng)機(jī)制是選擇性地作用于昆蟲(chóng)神經(jīng)系統(tǒng)后突觸的煙堿型乙酰膽堿受體,通過(guò)干擾害蟲(chóng)中樞神經(jīng)系統(tǒng)使化學(xué)信號(hào)傳遞受阻,造成昆蟲(chóng)出現(xiàn)麻痹而死亡[9]。1992年以來(lái),吡蟲(chóng)啉在中國(guó)已廣泛用于防治桃蚜等刺吸式口器害蟲(chóng)[10]。盡管吡蟲(chóng)啉對(duì)桃蚜具有良好的防治效果,但長(zhǎng)期單一使用可能導(dǎo)致桃蚜對(duì)其敏感度降低甚至產(chǎn)生抗藥性。前期研究表明,我國(guó)多地區(qū)的桃蚜對(duì)吡蟲(chóng)啉產(chǎn)生了不同程度的抗藥性,且已明確靶標(biāo)突變位點(diǎn)。桃蚜抗吡蟲(chóng)啉種群煙堿型乙酰膽堿受體(nAChR)β1亞基81位的精氨酸(R)突變?yōu)樘K氨酸(T)導(dǎo)致受體對(duì)吡蟲(chóng)啉的敏感性降低[11]。此外,桃蚜細(xì)胞色素P450酶系基因CYP6CY3的過(guò)量表達(dá)也是其對(duì)吡蟲(chóng)啉產(chǎn)生抗藥性的一個(gè)原因[12]。
雙丙環(huán)蟲(chóng)酯(Afidopyropen)是一種源自絲狀真菌糞生青霉(Penicillium coprobium)的新型丙烯類(lèi)殺蟲(chóng)劑[13],其防治對(duì)象為刺吸式口器和吮吸式口器的害蟲(chóng),如蚜蟲(chóng)、粉虱、木虱、介殼蟲(chóng)、粉蚧和葉蟬等[14-15]。雙丙環(huán)蟲(chóng)酯作用于香草酸型瞬時(shí)感受器電位通道,通過(guò)阻礙運(yùn)動(dòng)協(xié)調(diào)和汁液型害蟲(chóng)的攝食能力而導(dǎo)致其死亡[16-17]。研究表明,雙丙環(huán)蟲(chóng)酯對(duì)非靶標(biāo)昆蟲(chóng)的毒性較低或無(wú)毒[14]。由于其獨(dú)特的作用模式,與擬除蟲(chóng)菊酯和吡蟲(chóng)啉無(wú)交互抗性,可高效防治對(duì)有機(jī)磷和新煙堿類(lèi)殺蟲(chóng)劑產(chǎn)生抗藥性的害蟲(chóng)[18]。因此,雙丙環(huán)蟲(chóng)酯為殺蟲(chóng)劑抗性管理提供了另一種改變殺蟲(chóng)劑種類(lèi)的選擇。2019年,該藥劑在中國(guó)登記使用,用于防治桃蚜等刺吸式口器害蟲(chóng)。
為了提高桃園蚜蟲(chóng)的精準(zhǔn)防控水平,合理使用化學(xué)藥劑,提升桃果實(shí)品質(zhì),同時(shí)減少對(duì)環(huán)境的負(fù)面影響,筆者連續(xù)兩年監(jiān)測(cè)了國(guó)內(nèi)主要桃生產(chǎn)區(qū)桃園中主要蚜蟲(chóng)桃蚜和桃粉蚜對(duì)傳統(tǒng)殺蟲(chóng)劑吡蟲(chóng)啉和新進(jìn)殺蟲(chóng)劑雙丙環(huán)蟲(chóng)酯的藥劑敏感度,以期為桃園蚜蟲(chóng)化學(xué)防治的藥劑選擇和輪換使用提供重要的數(shù)據(jù)支撐。
1 材料和方法
1.1 試驗(yàn)昆蟲(chóng)
2022年和2023年,在我國(guó)14個(gè)省24個(gè)市區(qū)的桃產(chǎn)業(yè)試驗(yàn)站采集桃蚜和桃粉蚜樣本,具體樣本采集點(diǎn)如表1所示。樣本采集后放置于北京市農(nóng)林科學(xué)院植物保護(hù)研究所室內(nèi)養(yǎng)蟲(chóng)室飼養(yǎng)3 d后,選取體型大小一致的成蚜進(jìn)行毒力測(cè)定。
1.2 供試藥劑
吡蟲(chóng)啉原藥(96%)采購(gòu)于河北野田農(nóng)用化學(xué)有限公司,雙丙環(huán)蟲(chóng)酯原藥(97.3%)采購(gòu)于巴斯夫公司(中國(guó))。
1.3 試驗(yàn)方法
藥劑配制:用丙酮溶劑將吡蟲(chóng)啉和雙丙環(huán)蟲(chóng)酯配置成1000 mg·L-1的母液儲(chǔ)存?zhèn)溆?。稱(chēng)取104.17 mg吡蟲(chóng)啉原藥加入100 mL丙酮配置成1000 mg·L-1的母液。稱(chēng)取102.78 mg雙丙環(huán)蟲(chóng)酯原藥加入100 mL丙酮配置成1000 mg·L-1的母液。
采用玻璃管藥膜法進(jìn)行桃蚜和桃粉蚜對(duì)藥劑敏感度的檢測(cè)。將供試藥劑吡蟲(chóng)啉和雙丙環(huán)蟲(chóng)酯用丙酮按照等比序列配置成7個(gè)濃度,每個(gè)濃度設(shè)置3個(gè)技術(shù)重復(fù)。用移液器吸取250 μL藥液轉(zhuǎn)入玻璃管中(長(zhǎng):7.3 cm;底面直徑:1.2 cm;內(nèi)表面積:27.51 cm2),利用微型旋轉(zhuǎn)器旋轉(zhuǎn)玻璃管直至藥膜形成。以丙酮處理為對(duì)照。每個(gè)藥膜管中轉(zhuǎn)入20頭桃蚜或桃粉蚜。然后將玻璃管放置于養(yǎng)蟲(chóng)室中,溫度(25±1) ℃,濕度70%,光/暗周期16 h/8 h。24 h后檢查死亡率,以毛筆輕觸蟲(chóng)體,不能活動(dòng)者視為死亡。
1.4 數(shù)據(jù)分析
使用PoloPlus 2.0 軟件進(jìn)行數(shù)據(jù)分析,得出吡蟲(chóng)啉和雙丙環(huán)蟲(chóng)酯對(duì)桃蚜和桃粉蚜種群的LC50值,并計(jì)算95%置信區(qū)間。使用卡方值(χ2)進(jìn)行統(tǒng)計(jì)分析,以評(píng)估觀察值與期望值之間的偏差程度,從而確定藥劑對(duì)害蟲(chóng)種群的毒力效果。
2 結(jié)果與分析
2.1 桃蚜對(duì)吡蟲(chóng)啉的敏感度
桃園桃蚜種群對(duì)殺蟲(chóng)劑吡蟲(chóng)啉的敏感度如表2所示,2022年度在所有監(jiān)測(cè)的地區(qū)中,浙江省嘉興市的桃蚜種群表現(xiàn)最敏感,其LC50為0.222 mg·L-1,可作為敏感基線,用于分析其他檢測(cè)地區(qū)桃蚜對(duì)吡蟲(chóng)啉的敏感度水平。其次為陜西省咸陽(yáng)市的種群,其LC50為0.388 mg·L-1。相對(duì)而言,山東省泰安市和青島市、河北省石家莊市、北京市昌平區(qū)以及甘肅省秦安市的桃蚜種群對(duì)吡蟲(chóng)啉處于相對(duì)敏感水平,而河北省秦皇島市、陜西省西安市和甘肅省蘭州市的桃蚜種群對(duì)吡蟲(chóng)啉的敏感度顯著降低。
2023年度在所有監(jiān)測(cè)地區(qū)中,浙江省杭州市的桃蚜種群表現(xiàn)為對(duì)吡蟲(chóng)啉最敏感,其LC50為1.574 mg·L-1,同樣可作為敏感基線用于分析其他監(jiān)測(cè)地區(qū)的敏感度水平。其次為山東省青島市的種群,其LC50為2.687 mg·L-1。以浙江省杭州市種群的LC50值為基礎(chǔ),分析判斷除遼寧省大連市的桃蚜種群外,其他地區(qū)的桃蚜種群對(duì)吡蟲(chóng)啉處于相對(duì)敏感水平。
通過(guò)對(duì)同一地區(qū)兩年的數(shù)據(jù)分析,筆者發(fā)現(xiàn)山東省青島市桃蚜種群對(duì)吡蟲(chóng)啉的敏感度變化較小。相反,河北省秦皇島市和甘肅省蘭州市的桃蚜種群對(duì)吡蟲(chóng)啉的敏感度呈現(xiàn)增高的趨勢(shì),而陜西省咸陽(yáng)市桃蚜種群則顯示出對(duì)吡蟲(chóng)啉的敏感度降低的趨勢(shì)。
2.2 桃蚜對(duì)雙丙環(huán)蟲(chóng)酯的敏感度
桃園桃蚜種群對(duì)殺蟲(chóng)劑雙丙環(huán)蟲(chóng)酯的敏感度如表3所示,2022年度在所有監(jiān)測(cè)的地區(qū)中,河北省秦皇島市的桃蚜種群對(duì)雙丙環(huán)蟲(chóng)酯最敏感,其LC50為0.011 mg·L-1,可作為敏感基線用于分析其他監(jiān)測(cè)地區(qū)桃蚜種群對(duì)雙丙環(huán)蟲(chóng)酯的敏感度水平。其次為陜西省咸陽(yáng)市和浙江省嘉興市的桃蚜種群,其LC50分別為0.040和0.050 mg·L-1。相對(duì)而言,甘肅省的桃蚜種群對(duì)雙丙環(huán)蟲(chóng)酯的敏感度不高,其LC50分別為4.357和1.062 mg·L-1,北京市昌平區(qū)的桃蚜種群對(duì)雙丙環(huán)蟲(chóng)酯的敏感度最低,其LC50達(dá)到7.819 mg·L-1。
2023年度在所有監(jiān)測(cè)地區(qū)中,浙江省杭州市的桃蚜種群表現(xiàn)為對(duì)雙丙環(huán)蟲(chóng)酯最為敏感,其LC50為0.159 mg·L-1,同樣可作為敏感基線用于分析其他監(jiān)測(cè)地區(qū)的敏感度水平。其他監(jiān)測(cè)地區(qū)的桃蚜種群對(duì)雙丙環(huán)蟲(chóng)酯也均處于相對(duì)敏感水平,LC50在0.195~0.987 mg·L-1之間。
通過(guò)對(duì)同一地區(qū)兩年數(shù)據(jù)的分析,筆者發(fā)現(xiàn)山東省青島市桃蚜種群對(duì)雙丙環(huán)蟲(chóng)酯的敏感度基本無(wú)變化,河北省秦皇島市和陜西省咸陽(yáng)市的桃蚜種群對(duì)雙丙環(huán)蟲(chóng)酯敏感度有所降低。相反,甘肅省蘭州市的桃蚜種群對(duì)雙丙環(huán)蟲(chóng)酯的敏感度呈增高的趨勢(shì)。
2.3 桃粉蚜對(duì)吡蟲(chóng)啉的敏感度
桃粉蚜田間種群對(duì)殺蟲(chóng)劑吡蟲(chóng)啉的敏感度如表4所示,2022年度在所有監(jiān)測(cè)的地區(qū)中,云南省昆明市的桃粉蚜種群對(duì)吡蟲(chóng)啉最敏感,其LC50為0.090 mg·L-1,以其為敏感基線分析其他監(jiān)測(cè)地區(qū)對(duì)吡蟲(chóng)啉的敏感度水平。山東省青島市和河南省鄭州市的桃粉蚜種群對(duì)吡蟲(chóng)啉仍處于相對(duì)敏感水平。河北省秦皇島市和安徽省宿州市的桃粉蚜種群對(duì)吡蟲(chóng)啉的敏感度顯著降低,推測(cè)其可能產(chǎn)生抗藥性。2023年所監(jiān)測(cè)的兩個(gè)地區(qū)的桃粉蚜對(duì)吡蟲(chóng)啉也處于相對(duì)敏感水平。河南省鄭州市和廣西壯族自治區(qū)柳州市的桃粉蚜種群的LC50值分別為8.129和10.304 mg·L-1。通過(guò)對(duì)同一地區(qū)兩年數(shù)據(jù)的分析,筆者發(fā)現(xiàn)河南省鄭州市的桃粉蚜種群對(duì)吡蟲(chóng)啉的敏感度降低。
2.4 桃粉蚜對(duì)雙丙環(huán)蟲(chóng)酯的敏感度
桃粉蚜田間種群對(duì)殺蟲(chóng)劑雙丙環(huán)蟲(chóng)酯的敏感度如表5所示,2022年度在所有監(jiān)測(cè)的地區(qū)中,云南省昆明市的桃粉蚜種群對(duì)雙丙環(huán)蟲(chóng)酯最敏感,LC50為0.007 mg·L-1,以其為敏感基線分析其他監(jiān)測(cè)地區(qū)對(duì)雙丙環(huán)蟲(chóng)酯的敏感度水平。其次為山東省青島市的種群,LC50為0.098 mg·L-1。其他監(jiān)測(cè)地區(qū)的桃粉蚜種群對(duì)雙丙環(huán)蟲(chóng)酯也均處于相對(duì)敏感水平,LC50在0.104~0.724 mg·L-1之間。2023年度在兩個(gè)監(jiān)測(cè)地區(qū)中,河南省鄭州市和廣西壯族自治區(qū)柳州市的桃粉蚜種群對(duì)雙丙環(huán)蟲(chóng)酯均處于敏感水平,其LC50值分別為0.419和0.958 mg·L-1。河南省鄭州市連續(xù)兩年進(jìn)行采樣監(jiān)測(cè),監(jiān)測(cè)數(shù)據(jù)表明,該地區(qū)桃粉蚜對(duì)雙丙環(huán)蟲(chóng)酯敏感度變化不大。
3 討 論
監(jiān)測(cè)害蟲(chóng)對(duì)常用藥劑的敏感度不僅可以為害蟲(chóng)的高效防控提供關(guān)鍵信息,還有助于合理選擇農(nóng)藥并進(jìn)行科學(xué)管理[19]。這一過(guò)程對(duì)理解害蟲(chóng)對(duì)藥劑抗性的演變尤為重要。通過(guò)對(duì)敏感度變化趨勢(shì)的詳細(xì)分析,能夠及早地發(fā)現(xiàn)抗性問(wèn)題,并據(jù)此為制定長(zhǎng)期、可持續(xù)的防治策略提供堅(jiān)實(shí)的科學(xué)依據(jù)。作為一種廣泛危害十字花科蔬菜和桃樹(shù)的害蟲(chóng),桃蚜的繁殖周期短且快速,這加速了其對(duì)藥劑的抗藥性發(fā)展[20-21]。因此,在藥劑的選擇和使用方法上,不僅要求對(duì)靶標(biāo)害蟲(chóng)的快速有效作用,還需要考慮藥劑的時(shí)效性和使用的便捷性。由此可見(jiàn),對(duì)桃蚜藥劑敏感度的監(jiān)測(cè)需要快速有效的檢測(cè)方法。
筆者連續(xù)兩年對(duì)我國(guó)主要桃產(chǎn)區(qū)的桃蚜和桃粉蚜種群對(duì)常用藥劑吡蟲(chóng)啉和雙丙環(huán)蟲(chóng)酯的敏感度進(jìn)行監(jiān)測(cè)。結(jié)果表明,桃蚜種群對(duì)吡蟲(chóng)啉的敏感度在不同地區(qū)之間存在顯著差異。2022年浙江省嘉興市的桃蚜種群對(duì)吡蟲(chóng)啉的敏感度最高。相比之下,河北省秦皇島市、陜西省西安市和甘肅省蘭州市的桃蚜種群則表現(xiàn)出較低的敏感性。此外,桃粉蚜的監(jiān)測(cè)結(jié)果表明,河北省秦皇島市和安徽省宿州市的種群對(duì)吡蟲(chóng)啉的敏感度顯著降低。劉俊麗[21]對(duì)我國(guó)9個(gè)地區(qū)桃蚜田間種群對(duì)吡蟲(chóng)啉的抗藥性進(jìn)行監(jiān)測(cè),結(jié)果表明,桃蚜種群的整體抗性水平存在地區(qū)差異。不同地區(qū)桃蚜種群對(duì)藥劑敏感度差異可能受到多種因素的影響,包括地理、環(huán)境和人為因素等。首先,地理和環(huán)境因素可能對(duì)桃蚜種群的生態(tài)學(xué)特征產(chǎn)生影響,從而影響其對(duì)藥劑的敏感度。其次,不同地區(qū)的用藥歷史和農(nóng)業(yè)實(shí)踐也可能導(dǎo)致種群對(duì)藥劑的敏感度差異。吡蟲(chóng)啉作為一種兼具高效性和廣譜性的新煙堿類(lèi)殺蟲(chóng)劑,在我國(guó)已有近20年的田間推廣使用歷史,其過(guò)量和頻繁使用可能導(dǎo)致了多種靶標(biāo)害蟲(chóng)對(duì)其產(chǎn)生不同程度的抗藥性。宮亞軍等[4]在2011年對(duì)北京地區(qū)不同桃蚜種群的抗藥性進(jìn)行了研究,發(fā)現(xiàn)不同地區(qū)的桃蚜對(duì)吡蟲(chóng)啉均產(chǎn)生了高倍抗性。這表明長(zhǎng)期的殺蟲(chóng)劑使用可能導(dǎo)致抗性基因在某些地區(qū)的桃蚜種群中積累,從而降低了對(duì)特定殺蟲(chóng)劑的敏感性。此外,交互抗性也可能導(dǎo)致害蟲(chóng)對(duì)其他類(lèi)似結(jié)構(gòu)或相似作用機(jī)制的殺蟲(chóng)劑的敏感度降低或抗藥性的產(chǎn)生。因此,針對(duì)本研究中桃蚜對(duì)吡蟲(chóng)啉敏感度較低的地區(qū),應(yīng)明確是否存在靶標(biāo)基因突變導(dǎo)致敏感度顯著降低的情況。此外,為降低桃蚜或桃粉蚜對(duì)吡蟲(chóng)啉產(chǎn)生抗性的風(fēng)險(xiǎn),建議輪換使用不同作用機(jī)制的殺蟲(chóng)劑,這不僅有助于持續(xù)有效的害蟲(chóng)管理,也有助于減少對(duì)環(huán)境的負(fù)面影響。
雙丙環(huán)蟲(chóng)酯自2019年在中國(guó)登記后被廣泛應(yīng)用于對(duì)蚜蟲(chóng)和粉虱等刺吸式口器害蟲(chóng)的防治中。為了提高藥劑的防控效果,延緩抗藥性的發(fā)生,科研人員已開(kāi)始監(jiān)測(cè)蚜蟲(chóng)和粉虱田間種群對(duì)雙丙環(huán)蟲(chóng)酯的敏感度。研究結(jié)果表明,我國(guó)棉蚜田間種群對(duì)雙丙環(huán)蟲(chóng)酯處于敏感水平,但敏感度呈現(xiàn)逐年下降趨勢(shì)[22-23]。相對(duì)而言,煙粉虱的監(jiān)測(cè)結(jié)果則顯示北京市海淀區(qū)的種群已對(duì)雙丙環(huán)蟲(chóng)酯產(chǎn)生約40倍的抗性[24]。在此基礎(chǔ)上進(jìn)行抗藥性機(jī)制的分析研究,初步推斷細(xì)胞色素P450酶可能參與抗性的形成[25]。本研究結(jié)果表明,除北京市昌平區(qū)和甘肅省蘭州市的桃蚜種群外,其余地區(qū)的桃蚜和桃粉蚜種群對(duì)雙丙環(huán)蟲(chóng)酯的LC50值均小于1.0 mg·L-1。北京市昌平區(qū)的桃蚜種群對(duì)雙丙環(huán)蟲(chóng)酯的LC50值高達(dá)7.819 mg·L-1,明顯高于其他監(jiān)測(cè)地區(qū)。結(jié)合煙粉虱的監(jiān)測(cè)結(jié)果分析,筆者推斷北京地區(qū)雙丙環(huán)蟲(chóng)酯的藥劑使用頻次較高,這可能導(dǎo)致該地區(qū)的靶標(biāo)害蟲(chóng)蚜蟲(chóng)和粉虱對(duì)其敏感度下降,且產(chǎn)生一定的抗藥性。后續(xù)應(yīng)加強(qiáng)對(duì)重點(diǎn)區(qū)域桃蚜種群的監(jiān)測(cè),以便及時(shí)發(fā)現(xiàn)抗藥性的發(fā)展趨勢(shì)。這些研究結(jié)果對(duì)制定有效的抗藥性管理策略至關(guān)重要,通過(guò)持續(xù)的監(jiān)測(cè)和分析,可以更好地了解抗藥性發(fā)展的模式,從而有助于減緩抗藥性的發(fā)展速度。
本研究結(jié)果揭示了桃蚜和桃粉蚜種群對(duì)常用殺蟲(chóng)劑的敏感性存在顯著的地域和年份差異。這些差異可能源于多種因素,包括各地區(qū)的殺蟲(chóng)劑使用歷史、不同的環(huán)境因素以及種群間的遺傳多樣性。鑒于這些影響因素的復(fù)雜性,制訂害蟲(chóng)防控策略時(shí),應(yīng)綜合考慮這些變量,以便采取更為有效和針對(duì)性的控制措施,不僅有助于提高防治效果,還有助于減緩抗性的發(fā)展速度。
4 結(jié) 論
本研究結(jié)果表明,陜西省咸陽(yáng)市和河南省鄭州市的桃蚜或桃粉蚜種群對(duì)吡蟲(chóng)啉的敏感度呈現(xiàn)逐漸降低的趨勢(shì)。除北京市昌平區(qū)和甘肅省蘭州市的桃蚜種群外,其余地區(qū)的桃蚜或桃粉蚜對(duì)雙丙環(huán)蟲(chóng)酯均處于敏感水平。對(duì)于敏感度降低的地區(qū),建議加強(qiáng)對(duì)重點(diǎn)區(qū)域桃蚜種群的監(jiān)測(cè),同時(shí)輪換使用不同作用機(jī)制的殺蟲(chóng)劑。
致謝:感謝國(guó)家桃產(chǎn)業(yè)技術(shù)體系的大力支持!文中測(cè)試蟲(chóng)源由國(guó)家桃產(chǎn)業(yè)技術(shù)體系相關(guān)綜合試驗(yàn)站協(xié)助提供。
參考文獻(xiàn)References:
[1] 王力榮. 我國(guó)桃產(chǎn)業(yè)現(xiàn)狀與發(fā)展建議[J]. 中國(guó)果樹(shù),2021(10):1-5.
WANG Lirong. Current situation and development suggestions of peach industry in China[J]. China Fruits,2021(10):1-5.
[2] 宮慶濤,李桂祥,李素紅,武海斌,姜莉莉,孫瑞紅,張安寧. 桃樹(shù)蚜蟲(chóng)調(diào)查及藥效與安全性評(píng)價(jià)[J]. 農(nóng)學(xué)學(xué)報(bào),2022,12(3):23-29.
GONG Qingtao,LI Guixiang,LI Suhong,WU Haibin,JIANG Lili,SUN Ruihong,ZHANG Anning. Investigation on peach aphids and study on insecticides' control efficacy and safety for natural enemies[J]. Journal of Agriculture,2022,12(3):23-29.
[3] 閆樂(lè)樂(lè),卜璐璐,牛良,曾文芳,魯振華,崔國(guó)朝,苗玉樂(lè),潘磊,王志強(qiáng). 廣泛靶向代謝組學(xué)解析桃蚜危害對(duì)桃樹(shù)次生代謝產(chǎn)物的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2022,55(6):1149-1158.
YAN Lele,BU Lulu,NIU Liang,ZENG Wenfang,LU Zhenhua,CUI Guochao,MIAO Yule,PAN Lei,WANG Zhiqiang. Widely targeted metabolomics analysis of the effects of Myzus persicae feeding on Prunus persica secondary metabolites[J]. Scientia Agricultura Sinica,2022,55(6):1149-1158.
[4] 宮亞軍,王澤華,石寶才,康總江,朱亮,郭曉軍,劉建華,魏書(shū)軍. 北京地區(qū)不同桃蚜種群的抗藥性研究[J]. 中國(guó)農(nóng)業(yè)科學(xué),2011,44(21):4385-4394.
GONG Yajun,WANG Zehua,SHI Baocai,KANG Zongjiang,ZHU Liang,GUO Xiaojun,LIU Jianhua,WEI Shujun. Resistance status of Myzus persicae (Sulzer) (Hemiptera:Aphididae) populations to pesticide in Beijing[J]. Scientia Agricultura Sinica,2011,44(21):4385-4394.
[5] 高希武,鄭炳宗,曹本鈞. 北京地區(qū)桃蚜抗藥性研究初報(bào)[J]. 農(nóng)藥,1991,30(2):37-39.
GAO Xiwu,ZHENG Bingzong,CAO Benjun. Preliminary report on the study of peach aphid resistance in the Beijing Area[J]. Pesticides,1991,30(2):37-39.
[6] 顧春波,王開(kāi)運(yùn),辛海軍,郭慶龍,王剛. 山東省主要煙區(qū)煙(桃)蚜[Myzus persicae (Sulzer)]抗藥性研究[J]. 中國(guó)煙草學(xué)報(bào),2005,11(4):21-23.
GU Chunbo,WANG Kaiyun,XIN Haijun,GUO Qinglong,WANG Gang. Study on the resistance of Myzus persicae (Sulzer) in major tobacco planting areas in Shandong province[J]. Acta Tabacaria Sinica,2005,11(4):21-23.
[7] 宋春滿(mǎn),吳興富,鄧建華,雷朝亮. 云南主要煙區(qū)煙蚜抗藥性的監(jiān)測(cè)[J]. 昆蟲(chóng)知識(shí),2006,43(4):500-503.
SONG Chunman,WU Xingfu,DENG Jianhua,LEI Chaoliang. Monitoring insecticide resistance of Myzus persicae in tobacco fields in Yunnan[J]. Chinese Bulletin of Entomology,2006,43(4):500-503.
[8] 郭媛,郭一凡,申紅英,張?jiān)埔? 苜蓿田噴施高劑量吡蟲(chóng)啉對(duì)蜜蜂采集行為的影響[J]. 中國(guó)植保導(dǎo)刊,2023,43(11):15-19.
GUO Yuan,GUO Yifan,SHEN Hongying,ZHANG Yunyi. Effects of high doses of imidacloprid sprayed in alfalfa fields on honey bees foraging[J]. China Plant Protection,2023,43(11):15-19.
[9] QU Y Y,XIAO D,LI J Y,CHEN Z,BIONDI A,DESNEUX N,GAO X W,SONG D L. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines[J]. Ecotoxicology,2015,24(3):479-487.
[10] 吳世雄,王曉軍. 吡蟲(chóng)啉在我國(guó)的生產(chǎn)與應(yīng)用[J]. 農(nóng)藥科學(xué)與管理,1999,20(1):37-38.
WU Shixiong,WANG Xiaojun. Production and application of imidacloprid in China[J]. Pesticide Science and Administration,1999,20(1):37-38.
[11] BASS C,PUINEAN A M,ANDREWS M,CUTLER P,DANIELS M,ELIAS J,PAUL V L,CROSSTHWAITE A J,DENHOLM I,F(xiàn)IELD L M,F(xiàn)OSTER S P,LIND R,WILLIAMSON M S,SLATER R. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae[J]. BMC Neuroscience,2011,12:51.
[12] PUINEAN A M,F(xiàn)OSTER S P,OLIPHANT L,DENHOLM I,F(xiàn)IELD L M,MILLAR N S,WILLIAMSON M S,BASS C. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae[J]. PLoS Genetics,2010,6(6):e1000999.
[13] HORIKOSHI R,GOTO K,MITOMI M,OYAMA K,HIROSE T,SUNAZUKA T,ōMURA S. Afidopyropen,a novel insecticide originating from microbial secondary extracts[J]. Scientific Reports,2022,12(1):2827.
[14] KOCH R L,DA SILVA Q O,AITA R C,HODGSON E W,POTTER B D,NYOIKE T,ELLERS-KIRK C D. Efficacy of afidopyropen against soybean aphid (Hemiptera:Aphididae) and toxicity to natural enemies[J]. Pest Management Science,2020,76(1):375-383.
[15] KUMAR V,MCKENZIE C L,OSBORNE L S. Effect of foliar application of afidopyropen on Bemisia tabaci and Amblyseius swirskii,2018[J]. Arthropod Management Tests,2018,43(1):tsy071.
[16] KANDASAMY R,LONDON D,STAM L,VON DEYN W,ZHAO X L,SALGADO V L,NESTEROV A. Afidopyropen:New and potent modulator of insect transient receptor potential channels[J]. Insect Biochemistry and Molecular Biology,2017,84:32-39.
[17] LEICHTER C A,THOMPSON N,JOHNSON B R,SCOTT J G. The high potency of ME-5343 to aphids is due to a unique mechanism of action[J]. Pesticide Biochemistry and Physiology,2013,107(2):169-176.
[18] ZHANG Z,SHI H J,XU W,LIU J T,GENG Z Q,CHU D,GUO L. Pymetrozine-resistant whitefly Bemisia tabaci (Gennadius) populations in China remain susceptible to afidopyropen[J]. Crop Protection,2021,149:105757.
[19] 陳黔,楊朗,黃立飛,曹雪梅,張建民,姜建軍. 瓜實(shí)蠅成蟲(chóng)對(duì)不同殺蟲(chóng)劑相對(duì)敏感基線的建立[J]. 中國(guó)瓜菜,2023,36(4):106-112.
CHEN Qian,YANG Lang,HUANG Lifei,CAO Xuemei,ZHANG Jianmin,JIANG Jianjun. The relative sensitivity baseline of Zeugodacus cucurbitae (Diptera:Tephritidae) adults to different insecticides[J]. China Cucurbits and Vegetables,2023,36(4):106-112.
[20] 湯秋玲. 我國(guó)桃蚜田間種群抗藥性和遺傳變異研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2015.
TANG Qiuling. Insecticide resistance and genetic variation of field population of Myzus persicae (Sulzer),in China[D]. Beijing:China Agricultural University,2015.
[21] 劉俊麗. 我國(guó)桃蚜抗藥性機(jī)制及檢測(cè)[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2010.
LIU Junli. Insecticide resistance mechanisms and detection of the peach-potato aphid,Myzus persicae,in China[D]. Beijing:China Agricultural University,2010.
[22] LI R,CHENG S H,LIANG P Z,CHEN Z B,ZHANG Y J,LIANG P,ZHANG L,GAO X W. Status of the resistance of Aphis gossypii Glover,1877 (Hemiptera:Aphididae) to afidopyropen originating from microbial secondary metabolites in China[J]. Toxins,2022,14(11):750.
[23] SHI D D,LIANG P Z,ZHANG L,LV H X,GAO X W,YOU H,LI J H,MA K S. Susceptibility baseline of Aphis gossypii Glover (Hemiptera:Aphididae) to the novel insecticide afidopyropen in China[J]. Crop Protection,2022,151:105834.
[24] WANG R,GAO B L,CHE W N,QU C,ZHOU X,LUO C. First report of field resistance to afidopyropen,the novel pyropene insecticide,on Bemisia tabaci Mediterranean (Q Biotype) from China[J]. Agronomy,2022,12(3):724.
[25] WANG R,ZHANG Q H,ZHOU X,ZHANG M,YANG Q Y,SU Q,LUO C. Characterization of field-evolved resistance to afidopyropen,a novel insecticidal toxin developed from microbial secondary metabolites,in Bemisia tabaci[J]. Toxins,2022,14(7):453.
基金項(xiàng)目:國(guó)家桃產(chǎn)業(yè)技術(shù)體系(CARS-30);國(guó)家重點(diǎn)研發(fā)計(jì)劃(2022YFD2000100)
作者簡(jiǎn)介:劉新新,女,在讀碩士研究生,研究方向?yàn)槔ハx(chóng)毒理。E-mail:l15832034837@163.com
*通信作者Author for correspondence. E-mail:xiaoda@ippbaafs.cn;E-mail:xuqxfarmer@126.com