摘" " 要:【目的】建立蘋(píng)果半矮化砧木新品種魯砧1號(hào)離體葉片高效不定梢再生技術(shù)體系,為該砧木快繁和遺傳改良奠定技術(shù)基礎(chǔ)?!痉椒ā恳贼斦?號(hào)無(wú)菌苗離體葉片為外植體,研究碳源、細(xì)胞分裂素種類和質(zhì)量濃度對(duì)葉片不定梢再生的影響;以不定梢為試材,研究基本培養(yǎng)基、蔗糖質(zhì)量濃度對(duì)不定梢生根的影響。【結(jié)果】MS添加較低質(zhì)量濃度(0.6 mg·L-1)細(xì)胞分裂素(TDZ)時(shí),碳源物質(zhì)為D-山梨醇的葉片不定梢再生率顯著高于蔗糖;其他激素處理下,D-山梨醇和蔗糖之間葉片不定梢再生率無(wú)顯著差異。兩種碳源上的平均每葉不定芽(梢)數(shù),都表現(xiàn)較高細(xì)胞分裂素質(zhì)量濃度處理高于或顯著高于較低細(xì)胞分裂素質(zhì)量濃度處理,以TDZ質(zhì)量濃度為1 mg·L-1時(shí)產(chǎn)生的不定芽數(shù)最多,平均每葉不定芽數(shù)為3.8~4個(gè)。在不定芽誘導(dǎo)培養(yǎng)基上,6-芐基氨基嘌呤(BA)比TDZ更容易誘導(dǎo)產(chǎn)生直接伸長(zhǎng)生長(zhǎng)的不定梢。不定梢生根率和平均每株生根條數(shù),兩種基本培養(yǎng)基及兩個(gè)蔗糖質(zhì)量濃度之間都表現(xiàn)差異不顯著,但以1/4MS基本培養(yǎng)基和20 g·L-1蔗糖組合的生根培養(yǎng)基上獲得的生根率和單株生根條數(shù)最高,分別超過(guò)93%和5.8?!窘Y(jié)論】魯砧1號(hào)離體葉片容易誘導(dǎo)再生不定芽和不定梢生根,誘導(dǎo)葉片不定芽再生最佳培養(yǎng)基為MS添加1 mg·L-1 TDZ、0.3 mg·L-1 IBA和30 g·L-1蔗糖,最佳生根培養(yǎng)基為1/4MS添加0.3~0.5 mg·L-1 IBA和20 g·L-1蔗糖。
關(guān)鍵詞:蘋(píng)果;矮化砧木;離體葉片;葉片不定梢再生;不定梢生根
中圖分類號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)09-1781-08
High-efficiency regeneration from leaf explants of apple rootstock Luzhen 1
WANG Haibo1, WANG Sen1, ZHENG Wenyan1, WANG Ping2, HE Xiaowen1, CHANG Yuansheng1, HE Ping1, SUN Qingrong1, LI Linguang1*
(1Shandong Institute of Pomology, Tai’an 271000, Shandong, China; 2Shandong Yanfu Agricultural Science amp; Technology Co., Ltd., Yantai 265699, Shandong, China)
Abstract: 【Objective】 Apple rootstocks are used to influence precocity, tree size, fruit quality, yield efficiency, mineral uptake and disease related to replanting, and to withstand adverse environmental conditions. Dwarfing rootstocks play an important role in developing modern orchards. New apple rootstock cultivar Luzhen 1 is a semi-dwarfing rootstock which was selected and released by Shandong Institute of Pomology. This new rootstock has similar effect on tree size to M.26. It can be propagated clonally and has good grafting compatibility with many scion cultivars. The purpose of this paper is to establish a system of high-efficiency plant regeneration from leaf explants of Luzhen 1 and to provide a method for commercial propagation of the plant and genetic improvement using biotechnological methods. 【Methods】 In mid-to-late April, semi-lignified healthy shoots of Luzhen 1 were used as explants for culture of in vitro sterile plantlets. The leaves from the aseptic plantlets were cultured to induce adventitious shoots. Through the above experiments, the effects of carbon source and type and concentration of cytokinin on leaf regeneration were studied. Further, the effects of basic medium and sucrose concentration on rooting of adventitious shoots were also studied. 【Results】 The axillary buds on semi-lignified shoots broke and extended to form aseptic green plantlets, after culturing on the axillary bud initiation medium for 3 weeks. These plantlets grew well on the secondary proliferation medium with good proliferation and elongation growth, and the monthly multiplication ratio was above 5.0, indicating easy multiplication and propagation of Luzhen 1. In the two carbon sources tested, D-sorbitol and sucrose were both effective in inducing adventitious bud. Except that the adventitious bud regeneration rate on D-sorbitol was significantly higher than that on sucrose at a low cytokinin (TDZ) concentration of 0.6 mg·L-1, there was no significant difference in the adventitious bud regeneration rate between the two carbon sources in other treatments, both of which were as high as 90%. For the average number of adventitious buds per leaf, there was no significant difference between the two carbon sources under the same type and concentration of cytokinin. These results indicate that the carbon source is not strictly required for adventitious bud regeneration from the isolated leaves of the new rootstock cultivar. Under the same carbon source, the adventitious bud regeneration rate and average bud number per leaf were the lowest when TDZ was at 0.6 mg·L-1, and the results were consistent for the two carbon sources. When the carbon source in the medium was D-sorbitol, there was no significant difference in the regeneration rate of adventitious buds between TDZ and BA, and between different concentrations. However, the average number of adventitious buds per leaf at 1 mg·L-1 concentration of TDZ was significantly higher than that at 0.6 mg·L-1, while there was no significant difference between the two concentrations of BA. When the carbon source in the medium was sucrose, the regeneration rate of TDZ at 0.6 mg·L-1 was significantly lower than that of other treatments, but the average number of adventitious buds per leaf was not significantly different among different treatments. On adventitious-bud induction medium, cytokinin BA was more effective than TDZ in inducing the elongated and growing adventitious shoots, while the adventitious buds induced by TDZ needed to be transferred to the proliferation medium without TDZ in order to obtain such adventitious shoots. The best medium for inducing adventitious buds from leaves was MS medium with 1 mg·L-1 TDZ, 0.3 mg·L-1 IBA and 30 g·L-1 sucrose. After root induction culture for 12 days, the emergence of early adventitious root protrusions could be observed. After culture for 18 days, the formation of short roots became obvious, with final root formation rates above 88%. After culture for 22 days, no new adventitious roots were induced and root elongation growth could be observed. All the eight rooting media tested could successfully induce rooting from the adventitious shoots, but the rooting rate varied greatly, while the average number of roots per shoot had no significant difference. Independent of the concentration of IBA, the basic medium of 1/4 MS with the lower sucrose (20 g·L-1) was more effective to increase rooting rate and the number of roots per shoot than that with a higher sucrose (30 g·L-1). In addition to 0.3 mg·L-1 IBA, rooting rate on 20 g·L-1 sucrose was significantly higher than that on 30 g·L-1 sucrose. On the basic medium of 1/2 MS, there was no significant difference in rooting rate and number of roots per plant between the two sucrose concentrations or between the two IBA concentrations. The rooting rate of the four treatments could be higher than 70%, indicating that, on the basic medium of 1/2 MS, there was no strict requirement on sucrose or IBA concentration for the adventitious rooting in Luzhen 1. The results indicated that adventitious shoots of Luzhen 1 root easily. The optimal rooting medium was 1/4 MS supplemented with 0.3-0.5 mg·L-1 IBA and 20 g·L-1 sucrose. The rooting rate was over 93% and the average number of roots per plant was 5.9. 【Conclusions】 It is relatively easy to induce bud regeneration from leaf explants and in vitro rooting from the adventitious shoots in the new semi-dwarfing apple rootstock cultivar Luzhen 1. Based on this study, the optimal medium for adventitious bud induction of Luzhen 1 is MS+1 mg·L-1 TDZ+0.3 mg·L-1 IBA+30 g·L-1 sucrose, and the best medium for in vitro rooting from the adventitious shoots is 1/4MS+0.3-0.5 mg·L-1 IBA+20 g·L-1 sucrose.
Key words: Apple; Dwarfing rootstock; Leaf explant; Shoot induction; In vitro rooting from adventitious shoots
樹(shù)體矮化容易實(shí)現(xiàn)果園的機(jī)械化、集約化管理,可以增加種植密度,提高單位面積果實(shí)產(chǎn)量和土地利用率,對(duì)果樹(shù)生產(chǎn)具有重要意義。在果樹(shù)栽培中,控制樹(shù)體大小最常用的就是使用矮化砧木。通過(guò)應(yīng)用矮化砧木實(shí)現(xiàn)矮化集約栽培已成為世界蘋(píng)果栽培的主要趨勢(shì),而優(yōu)良矮化砧木是實(shí)現(xiàn)這一模式的基礎(chǔ)[1]。
世界蘋(píng)果生產(chǎn)國(guó)都非常重視矮化砧木的選育,如英國(guó)東茂林試驗(yàn)站選育出的M系和MM系矮化和半矮化砧木[2-3],美國(guó)康奈爾大學(xué)幾內(nèi)瓦試驗(yàn)站選育的G系矮化砧木[4],前蘇聯(lián)米丘林大學(xué)選育的B系抗寒半矮化和矮化砧木[2],波蘭選育的P系矮化砧木[4],日本選育的JM系矮化砧木[5],中國(guó)選育的GM系抗寒矮化砧木、SH系半矮化砧木、冀砧系列矮化砧木等[6-8]。盡管國(guó)內(nèi)外選育了多種矮化砧木,但受知識(shí)產(chǎn)權(quán)保護(hù)、適應(yīng)性、繁育技術(shù)等因素影響,長(zhǎng)期以來(lái)中國(guó)蘋(píng)果產(chǎn)業(yè)應(yīng)用矮化砧木品種仍以M系砧木為主,相對(duì)單一,在應(yīng)對(duì)多樣、不利的條件中,難以滿足生產(chǎn)需求,亟須選育一批抗逆性、適應(yīng)性強(qiáng),生產(chǎn)性能好且具有自主知識(shí)產(chǎn)權(quán)的蘋(píng)果優(yōu)良砧木品種,豐富中國(guó)砧木品種結(jié)構(gòu),促進(jìn)矮砧集約栽培模式的應(yīng)用,保證蘋(píng)果產(chǎn)業(yè)健康發(fā)展。
蘋(píng)果受基因型和遺傳背景差異影響,不同品種的葉片再生和不定梢生根難易不同[9-10]。碳源是對(duì)葉片再生率影響較大的因素之一,研究表明,M9-T337[11]、山丁子砧木[12]及富士品種[13]等對(duì)碳源要求嚴(yán)格,三者僅在碳源為D-山梨醇時(shí)有較高的不定芽再生率,砧木54-118[14]和品種魯麗[15]在蔗糖和D-山梨醇上都可以獲得較高不定梢再生率,但以加D-山梨醇的培養(yǎng)基再生率最高,D-山梨醇更有利于提高砧木BP-176的葉片不定梢再生率[16],蔗糖能夠誘導(dǎo)多數(shù)砧木品種,如M7A、M26、平邑甜茶和G.41的不定梢再生[17-19]。生長(zhǎng)素(主要是吲哚丁酸IBA、1-萘乙酸NAA、吲哚-3-乙酸IAA)在蘋(píng)果根誘導(dǎo)中是必需的激素成分[10]。在蘋(píng)果砧木的離體生根誘導(dǎo)中以IBA最常用[20-22],也有IBA和NAA共同使用的報(bào)道[3]。
魯砧1號(hào)是山東省果樹(shù)研究所以M9×60-160雜交育成的蘋(píng)果半矮化砧木新品種,該砧木具有生長(zhǎng)勢(shì)中庸、半矮化、易生根、抗寒性強(qiáng)、與栽培品種嫁接親和性好的特點(diǎn),獲農(nóng)業(yè)農(nóng)村部植物新品種權(quán)。筆者在本研究中擬建立魯砧1號(hào)砧木新品種離體葉片高效不定梢再生技術(shù)體系,為蘋(píng)果矮化栽培優(yōu)良苗木的快速繁殖奠定技術(shù)基礎(chǔ),并為蘋(píng)果矮化砧遺傳改良提供技術(shù)參考。
1 材料和方法
1.1 材料
山東省果樹(shù)研究所選育的半矮化砧木新品種魯砧1號(hào),壓條繁殖自根樹(shù),5年生,定植于山東省泰安市岱岳區(qū)天平湖蘋(píng)果試驗(yàn)基地(117.03° E,36.23° N),常規(guī)管理。
1.2 方法
1.2.1 無(wú)菌苗的培養(yǎng) 4月中下旬,剪取正在生長(zhǎng)的魯砧1號(hào)半木質(zhì)化健康新梢(圖1-A),去掉葉片,把枝條剪成一芽一段的枝段,按孫清榮等[16]殺菌流程對(duì)枝段進(jìn)行表面殺菌,殺菌后的芽段種植于裝有腋芽啟動(dòng)培養(yǎng)基MS + 1 mg·L-1 6-芐基氨基嘌呤(BA)+ 0.2 mg·L-1 IBA的試管內(nèi),每管1個(gè)芽段,放培養(yǎng)室培養(yǎng),促進(jìn)腋芽萌發(fā)。培養(yǎng)室晝夜溫度為(25±2) ℃,光照周期為14 h·d-1。除特別說(shuō)明外,所有處理的培養(yǎng)條件都相同。
1.2.2 無(wú)菌苗的增殖 芽段在啟動(dòng)培養(yǎng)基上培養(yǎng)獲得的腋芽萌發(fā)生長(zhǎng)的綠苗,即是離體無(wú)菌苗,無(wú)菌苗用作進(jìn)一步增殖培養(yǎng)的材料。無(wú)菌苗轉(zhuǎn)移到增殖培養(yǎng)基MS +0.5 mg·L-1 BA+ 0.05 mg·L-1 IBA上進(jìn)行繼代增殖培養(yǎng),4~5周繼代1次,繼代3次后獲得葉片培養(yǎng)所用足夠試材。
1.2.3 離體葉片不定芽的誘導(dǎo) 根據(jù)葉片大小,切3~5刀。切傷的葉片接種于葉片不定芽誘導(dǎo)培養(yǎng)基上,先置連續(xù)黑暗條件下培養(yǎng)4周,然后轉(zhuǎn)光周期為14 h·d-1的光照條件下繼續(xù)培養(yǎng)2周,共誘導(dǎo)培養(yǎng)6周后,觀察計(jì)數(shù)產(chǎn)生不定芽(梢)葉片數(shù)及每葉不定芽(梢)數(shù),計(jì)算不定芽再生率和平均每葉不定芽(梢)數(shù)。不定芽誘導(dǎo)培養(yǎng)基設(shè)兩種碳源D-山梨醇和蔗糖,每一碳源分別添加細(xì)胞分裂素(TDZ)(0.6和1 mg·L-1)和BA(2和4 mg·L-1),共構(gòu)成8個(gè)處理(表1),所有處理都添加0.3 mg·L-1 IBA。
1.2.4 不定芽增殖伸長(zhǎng)培養(yǎng)和不定梢生根誘導(dǎo) 將葉片產(chǎn)生的不定芽(梢)轉(zhuǎn)移到繼代增殖培養(yǎng)基上進(jìn)行增殖和伸長(zhǎng)生長(zhǎng)培養(yǎng),獲得足夠用以生根培養(yǎng)的健壯生長(zhǎng)的不定梢綠苗。選取高度在1.5 cm以上的不定梢轉(zhuǎn)移到生根培養(yǎng)基上,置連續(xù)黑暗條件下誘導(dǎo)培養(yǎng)5 d,然后轉(zhuǎn)光下培養(yǎng),生根培養(yǎng)20 d,計(jì)數(shù)統(tǒng)計(jì)不定梢生根率及單株生根條數(shù)。生根培養(yǎng)基設(shè)基本培養(yǎng)基1/4MS和1/2MS,蔗糖設(shè)兩個(gè)質(zhì)量濃度20 g·L-1和30 g·L-1,IBA設(shè)兩個(gè)質(zhì)量濃度0.3 mg·L-1和0.5 mg·L-1,共構(gòu)成8種處理。
1.3 統(tǒng)計(jì)分析
試驗(yàn)結(jié)果采用DPS v3.01軟件進(jìn)行統(tǒng)計(jì)分析,不同處理間的平均值用最小顯著性差異LSD法進(jìn)行差異性分析比較。
2 結(jié)果與分析
2.1 無(wú)菌苗的培養(yǎng)和增殖
將半木質(zhì)化新梢芽段在腋芽啟動(dòng)培養(yǎng)基上培養(yǎng)3周,腋芽萌發(fā)并伸長(zhǎng)生長(zhǎng)形成無(wú)菌綠苗(圖1-B)。無(wú)菌綠苗在繼代增殖培養(yǎng)基上生長(zhǎng)良好,既表現(xiàn)出良好的增殖生長(zhǎng),又有良好的伸長(zhǎng)生長(zhǎng),月增殖倍數(shù)超過(guò)5.0(圖1-C),表明魯砧1號(hào)容易增殖擴(kuò)繁。
2.2 離體葉片不定芽誘導(dǎo)
2.2.1 碳源對(duì)葉片不定芽再生的影響 供試的兩種碳源D-山梨醇和蔗糖對(duì)誘導(dǎo)不定芽再生都有效,除了TDZ在較低質(zhì)量濃度0.6 mg·L-1時(shí),D-山梨醇上的不定芽再生率顯著高于蔗糖外,其他處理之間的不定芽再生率兩種碳源之間差異不顯著,都超過(guò)90%(表1)。平均每葉不定芽數(shù),在相同細(xì)胞分裂素種類和濃度條件下,兩種碳源之間差異不顯著。這些結(jié)果表明新優(yōu)系砧木魯砧1號(hào)離體葉片不定芽再生對(duì)碳源要求不嚴(yán)格。
2.2.2 細(xì)胞分裂素TDZ和BA及其質(zhì)量濃度對(duì)葉片不定芽再生的影響 在同一碳源條件下,TDZ在較低質(zhì)量濃度0.6 mg·L-1時(shí),獲得的不定芽再生率和平均每葉芽數(shù)最低,兩種碳源上結(jié)果一致(表1)。
當(dāng)培養(yǎng)基中的碳源為D-山梨醇時(shí),TDZ和BA之間及其不同質(zhì)量濃度之間,不定芽再生率都沒(méi)有達(dá)到顯著差異水平(處理1~4),但當(dāng)TDZ質(zhì)量濃度為1 mg·L-1時(shí),平均每葉不定芽數(shù)顯著高于質(zhì)量濃度0.6 mg·L-1 TDZ時(shí),而在BA的兩個(gè)質(zhì)量濃度之間差異不顯著。
當(dāng)培養(yǎng)基中碳源為蔗糖時(shí),TDZ在較低質(zhì)量濃度0.6 mg·L-1時(shí)的再生率顯著低于其他處理的再生率(處理5~8),但平均每葉不定芽數(shù)不同處理間差異不顯著。
2.2.3 TDZ和BA對(duì)不定芽伸長(zhǎng)生長(zhǎng)的影響 在不定芽誘導(dǎo)培養(yǎng)基上,細(xì)胞分裂素BA(圖2-A~D)比TDZ(圖2-E~H)更容易直接誘導(dǎo)形成伸長(zhǎng)生長(zhǎng)的不定梢,而TDZ誘導(dǎo)產(chǎn)生的不定芽在誘導(dǎo)培養(yǎng)基上不易獲得此類不定梢,需轉(zhuǎn)移到不加TDZ的增殖培養(yǎng)基上進(jìn)行誘導(dǎo)。
綜上,魯砧1號(hào)是一個(gè)離體葉片比較容易誘導(dǎo)再生不定芽的優(yōu)良砧木無(wú)性系品種,對(duì)碳源無(wú)論是D-山梨醇還是蔗糖要求不嚴(yán)格,但蔗糖比D-山梨醇價(jià)格便宜,所以推薦誘導(dǎo)葉片不定芽再生的最佳培養(yǎng)基組合是添加1 mg·L-1 TDZ、0.3 mg·L-1 IBA和30 g·L-1蔗糖的MS培養(yǎng)基。
2.3 不定梢生根誘導(dǎo)
2.3.1 不定根產(chǎn)生進(jìn)程 生根誘導(dǎo)培養(yǎng)12 d時(shí),裸眼可觀察到早期不定根突起的產(chǎn)生,培養(yǎng)至18 d,可觀察到明顯的短根形成(圖3-A~D),并且此時(shí)可達(dá)最終生根率的88%(詳細(xì)資料沒(méi)有列出),培養(yǎng)至22 d時(shí),基本上不再生新的不定根,生根率達(dá)到最高值,之后隨著培養(yǎng)時(shí)間的延長(zhǎng),主要是根的伸長(zhǎng)生長(zhǎng)(圖3-E~H),個(gè)別也有單株根數(shù)的增加,但根數(shù)增加并不明顯。
2.3.2 基本培養(yǎng)基和蔗糖質(zhì)量濃度對(duì)生根的影響 供試的8種生根培養(yǎng)基處理都能成功誘導(dǎo)不定梢生根(表2),但不同處理間生根率差異較大,不同處理間平均每株生根條數(shù)差異不顯著。
在基本培養(yǎng)基1/4MS上,不依賴于生長(zhǎng)素IBA質(zhì)量濃度,都表現(xiàn)蔗糖在較低質(zhì)量濃度20 g·L-1(處理1和2)比高質(zhì)量濃度30 g·L-1(處理3和4)更有利于提高生根率和平均單株生根條數(shù)。在添加0.3 mg·L-1 IBA處理上,20 g·L-1蔗糖上的生根率顯著高于30 g·L-1蔗糖(處理1和3),這一結(jié)果表明,在基本培養(yǎng)基1/4MS上,蔗糖質(zhì)量濃度20 g·L-1比30 g·L-1更有效。
在基本培養(yǎng)基1/2MS上,不管是2個(gè)蔗糖質(zhì)量濃度之間還是2個(gè)IBA質(zhì)量濃度之間,其生根率和單株生根條數(shù)都無(wú)顯著差異,4個(gè)處理上的生根率都可達(dá)70%以上,表明在基本培養(yǎng)基1/2MS上,魯砧1號(hào)不定梢的生根對(duì)蔗糖質(zhì)量濃度和IBA質(zhì)量濃度的要求不嚴(yán)格,供試的2個(gè)蔗糖質(zhì)量濃度和2個(gè)IBA質(zhì)量濃度對(duì)魯砧1號(hào)不定梢的生根具有相似的效果。
綜合以上分析,表明魯砧1號(hào)組織培養(yǎng)獲得的不定梢生根較易,最佳生根培養(yǎng)基為1/4MS添加0.3~0.5 mg·L-1 IBA和20 g·L-1蔗糖,生根率超過(guò)93%,平均單株生根條數(shù)為5.9(處理1和2)。
3 討 論
對(duì)于果樹(shù)作物,其砧木育種比接穗品種的育種需時(shí)更長(zhǎng),難度更大,一般情況下,雜交后獲得的種子實(shí)生苗經(jīng)過(guò)生長(zhǎng)期初步評(píng)價(jià),或有利性狀分子標(biāo)記篩選后,再進(jìn)行砧木選育的其他評(píng)價(jià)階段[23]。單株實(shí)生苗嫁接后,就不能繼續(xù)繁殖,所以必須把單株實(shí)生苗繁殖足夠數(shù)量才能用以嫁接品種和其他測(cè)試,以滿足重復(fù)試驗(yàn)的要求,才能最終選出優(yōu)良砧木,因此選育出一個(gè)可在生產(chǎn)上推廣應(yīng)用的優(yōu)良砧木相當(dāng)不易。所以世界不同育種機(jī)構(gòu)對(duì)自己選育出的砧木都注冊(cè)專利品種保護(hù)。筆者在本研究中使用的砧木新品種魯砧1號(hào)是山東省果樹(shù)研究所選育的蘋(píng)果優(yōu)良半矮化砧木,已申請(qǐng)并獲農(nóng)業(yè)農(nóng)村部植物新品種權(quán)授權(quán)(CNA20191005762)。為盡早在生產(chǎn)上推廣應(yīng)用這一優(yōu)良砧木,同時(shí)為遺傳改良奠定基礎(chǔ),筆者進(jìn)行了魯砧1號(hào)組織培養(yǎng)的離體葉片不定梢誘導(dǎo)及不定梢生根研究,發(fā)現(xiàn)該砧木葉片不定梢再生及不定梢生根都相對(duì)較易,符合作為砧木較易繁殖和生根的要求,易于用組培快繁工廠化育苗技術(shù)進(jìn)行苗木繁育。
由于蘋(píng)果砧木對(duì)蘋(píng)果優(yōu)質(zhì)豐產(chǎn)和省力化栽培的重要性,世界各國(guó)不斷選育砧木新品種。不同砧木的組織培養(yǎng)及離體葉片不定梢的研究,以及葉片不定芽再生成功的品種也都在日益增多[7,12,14,16,20],但由于基因型和遺傳背景的差異,不同品種的再生難易不同[9],至今研究者們還不能實(shí)現(xiàn)對(duì)所有品種的葉片培養(yǎng)再生。在本研究中,蘋(píng)果半矮化砧木魯砧1號(hào)離體葉片的不定梢再生,不同于對(duì)碳源要求嚴(yán)格的砧木M9-T337[11]、山丁子[12]及品種富士[13]等,M9-T337、山丁子及富士?jī)H在碳源為D-山梨醇上有較高的不定芽再生率;也不同于砧木54-118[13]和栽培品種魯麗[15],雖然在蔗糖和D-山梨醇上都可以獲得較高不定梢再生率,但最高再生率以加D-山梨醇的培養(yǎng)基最高;與蔗糖相比D-山梨醇更有利于提高砧木BP-176的不定梢再生率[9];與蔗糖能夠誘導(dǎo)多數(shù)砧木品種如G.41[14]、M7A和M26[9,17-18]獲得90%的不定梢再生率相似。
無(wú)菌苗離體生根是組培快繁成功的關(guān)鍵一步。蘋(píng)果砧木離體生根研究已有較多報(bào)道[24],業(yè)內(nèi)專業(yè)領(lǐng)域普遍接受的是生長(zhǎng)素(主要是IBA、NAA、IAA)是根誘導(dǎo)所必需的[10],但在蘋(píng)果砧木的離體生根誘導(dǎo)中以IBA最常用[20-22],也有IBA和NAA共同使用的[3]。不同基因型的生根難易不同,存在難生根品種和易生根品種,Da Silva等[10]研究報(bào)道生根率在18%~100%之間。在本研究中,半矮化砧木品種魯砧1號(hào)的試管苗的離體生根結(jié)果表明,蔗糖質(zhì)量濃度和基本培養(yǎng)基組成對(duì)生根率的高低也有明顯影響,在蔗糖質(zhì)量濃度為20 g·L-1條件下,基本培養(yǎng)基1/4MS比1/2MS顯著提高生根率,但在蔗糖質(zhì)量濃度為30 g·L-1時(shí),基本培養(yǎng)基1/4MS與1/2MS上的生根率無(wú)顯著差異。在基本培養(yǎng)基1/4MS上,蔗糖質(zhì)量濃度20 g·L-1比30 g·L-1顯著提高生根率,而在1/2MS上,蔗糖質(zhì)量濃度在20 g·L-1與30 g·L-1之間無(wú)顯著差異,表明了蔗糖和基本培養(yǎng)基對(duì)魯砧1號(hào)的離體生根具有協(xié)同效應(yīng)。
4 結(jié) 論
魯砧1號(hào)離體葉片容易誘導(dǎo)再生不定芽,對(duì)碳源要求不嚴(yán)格,推薦誘導(dǎo)葉片不定芽再生的最佳培養(yǎng)基是添加1 mg·L-1 TDZ、0.3 mg·L-1 IBA和30 g·L-1蔗糖的MS培養(yǎng)基。該砧木也容易實(shí)現(xiàn)不定梢生根,最佳生根培養(yǎng)基為1/4MS添加0.3~0.5 mg·L-1 IBA和20 g·L-1蔗糖,生根率達(dá)93%,平均單株生根5.9條。
參考文獻(xiàn) References:
[1] 韓明玉. 蘋(píng)果矮砧集約栽培技術(shù)模式芻議[J]. 中國(guó)果樹(shù),2015(3):76-79.
HAN Mingyu. Discussion on intensive apple orchard systems[J]. China Fruits,2015(3):76-79.
[2] AUTIO W,ROBINSON T,BLACK B,CRASSWELLER R,F(xiàn)ALLAHI E,HOYING S,PARKER M,QUEZADA R P,REIG G,WOLFE D. Budagovsky,geneva,pillnitz,and malling apple rootstocks affect ‘Fuji’ performance over eight years in the 2010 NC-140 ‘Fuji’ apple rootstock trial[J]. Journal of the American Pomological Society,2020,74(4):196-209.
[3] MODGIL M,THAKUR M. In vitro culture of clonal rootstocks of apple for their commercial exploitation[J]. Acta Horticulturae,2017,1155:331-336.
[4] CZYNCZYK A,BIELICKI P. Eleven year evaluation of American (Geneva?) and Polish rootstocks with ‘Golden Delicious Reinders’ apple in Poland[J]. Journal of Fruit and Ornamental Plant Research,2012,20(2):11-21.
[5] 副島 淳一,吉田 義雄,羽生田 忠敬,別所 英男,土屋 七郎,増?zhí)?哲男,小森 貞男,真田 哲朗,伊藤 祐司,定盛 昌助,樫村 芳記. リンゴわい性臺(tái)木の新品種‘JM 1’,‘JM 7’ および ‘JM 8’[J]. 果樹(shù)研究所研究報(bào)告,2010(11):1-16.
SOEJIMA J,YOSHIDA Y,HANIUD T,BESSHO H,TSUCHIYA S,MASUDA T,KOMORI S,SANADA T,ITO Y,SADAMORI S,KASHIMURA Y. New dwarfing apple rootstocks ‘JM 1’,‘JM 7’and‘JM 8’[J]. Bulletin of the National Institute of Fruit Tree Science,2010(11):1-16.
[6] 張冰冰,李粵渤,宋洪偉,趙晨輝. 蘋(píng)果抗寒矮化砧木新品種GM310的選育[J]. 中國(guó)果樹(shù),2011(6):4-5.
ZHANG Bingbing,LI Yuebo,SONG Hongwei,ZHAO Chenhui. The selection of apple cold-resistance dwarfing rootstock GM310[J]. China Fruits,2011(6):4-5.
[7] 鄭亞杰,姚環(huán)宇. 蘋(píng)果矮化砧GM256組織培養(yǎng)與快繁技術(shù)研究[J]. 吉林農(nóng)業(yè)科學(xué),2008,33(1):26-27.
ZHENG Yajie,YAO Huanyu. Studies on tissue culture technology of GM256,a dwarf rootstock of apple[J]. Journal of Jilin Agricultural Sciences,2008,33(1):26-27.
[8] 張學(xué)英,李中勇,邵建柱,陳海江,徐繼忠. 蘋(píng)果矮化砧木新品種‘冀砧1號(hào)’[J]. 園藝學(xué)報(bào),2020,47(1):195-196.
ZHANG Xueying,LI Zhongyong,SHAO Jianzhu,CHEN Haijiang,XU Jizhong. A new apple dwarfing rootstock cultivar ‘Jizhen 1’[J]. Acta Horticulturae Sinica,2020,47(1):195-196.
[9] SUN Q R,SUN M J,SUN H Y,BELL R L,LI L G,ZHANG W,TAO J H. Comparative organogenic response of six clonal apple rootstock cultivars[J]. HortScience,2016,51(3):272-278.
[10] DA SILVA J A T,GULYáS A,MAGYAR-TáBORI K,WANG M R,WANG Q C,DOBRáNSZKI J. In vitro tissue culture of apple and other Malus species:Recent advances and applications[J]. Planta,2019,249(4):975-1006.
[11] H?HNLE M K,WEBER G. Efficient adventitious shoot formation of leaf segments of in vitro propagated shoots of the apple rootstock M.9/T337[J]. European Journal of Horticultural Science,2010,75(3):128-131.
[12] SUN C Y,WANG Y,XU X F,SUN Y,ZHU L H,HAN Z H. Regeneration from leaf segments of in vitro-grown shoots of Malus baccata[J]. New Zealand Journal of Crop and Horticultural Science,2008,36(4):233-238.
[13] LEE Y K,KWON Y,HYUNG N I. Optimal medium compositions for plant regeneration via adventitious shoot formation using ‘Fuji’ apple leaf explants[J]. Journal of Plant Biotechnology,2019,46(4):310-317.
[14] 孫清榮,關(guān)秋竹,孫洪雁,李林光,陶吉寒,王海波,何平. 蘋(píng)果抗寒半矮化砧木‘54-118’的組織培養(yǎng)及其離體葉片不定梢再生[J]. 植物生理學(xué)報(bào),2017,53(11):2007-2012.
SUN Qingrong,GUAN Qiuzhu,SUN Hongyan,LI Linguang,TAO Jihan,WANG Haibo,HE Ping. Tissue culture and shoot regeneration from leaf explants of cold-hardy and semi-dwarf apple rootstock ‘54-118’[J]. Plant Physiology Journal,2017,53(11):2007-2012.
[15] 孫清榮,關(guān)秋竹,李林光,何平,王海波,孫洪雁. 蘋(píng)果新品種‘魯麗’離體葉片高效不定芽再生體系的建立[J]. 北方園藝,2021(19):42-47.
SUN Qingrong,GUAN Qiuzhu,LI Linguang,HE Ping,WANG Haibo,SUN Hongyan. Establishment of high-efficiency adventitious bud regeneration from leaf explants of Malus domestica" ‘Luli’[J]. Northern Horticulture,2021(19):42-47.
[16] 孫清榮,關(guān)秋竹,王海波,李林光,陶吉寒,孫洪雁. 蘋(píng)果抗寒矮化砧木‘BP-176’的組織培養(yǎng)及其葉片不定梢誘導(dǎo)[J]. 果樹(shù)學(xué)報(bào),2019,36(6):812-818.
SUN Qingrong,GUAN Qiuzhu,WANG Haibo,LI Linguang,TAO Jihan,SUN Hongyan. Tissue culture and induction of adventitious shoot regeneration from leaf explants of cold-hardy dwarfing apple rootstock ‘BP-176’[J]. Journal of Fruit Science,2019,36(6):812-818.
[17] YEPES L M,ALDWINEKLE H S. Factors that effect leaf regeneration efficiency in apple,and effect of antibiotics in morphogenesis[J]. Plant Cell,Tissue and Organ Culture,1994,37(3):257-269.
[18] JIN W M,WANG Y H,WANG H. Adventitious shoot regeneration from leaves of apple rootstock ‘Pingyitiancha’ (Malus hupehensis var. pinyiensis) and genetic fidelity of regenerated plantlets using SSR markers[J]. Canadian Journal of Plant Science,2014,94(8):1345-1354.
[19] ZHANG X,QIN Y,LIANG D,ZOU Y J,MA F W. Enhancement of in vitro shoot regeneration from leaf explants of apple rootstock G. 41[J]. In Vitro Cellular amp; Developmental Biology - Plant,2014,50(2):263-270.
[20] YASSEN M,AHMAD T,ABBASI N A,HAFIZ I A. Assessment of apple rootstock M9 and M26 for in vitro rooting potential using different carbon sources[J]. Pakistan Journal of Botany,2009,41(2):769-781.
[21] SUN Q R,SUN H Y,BELL R L,LI L G,XIN L,TAO J H,LI Q. Optimisation of the media for in vitro shoot proliferation and root induction in three new cold-hardy and dwarfing or semi-dwarfing clonal apple rootstocks[J]. The Journal of Horticultural Science and Biotechnology,2014,89(4):381-388.
[22] BAHMANI R,GHOLAMI M,MOZAFARI A A,ALIVAISIS R. Effects of salinity on in vitro shoot proliferation and rooting of apple rootstock MM. 106[J]. World Applied Sciences Journal,2012,17(3):292-295.
[23] COUSINS P. Rootstock breeding:An analysis of intractability[J]. HortScience,2005,40(7):1945-1946.
[24] SHARMA T,MODGIL M,THAKUR M. Factors affecting induction and development of in vitro rooting in apple rootstocks[J]. Indian Journal of Experimental Biology,2007,45(9):824-829.
基金項(xiàng)目:山東省重點(diǎn)研發(fā)計(jì)劃(2023LZGCQY009);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(xiàng)資金(CARS-27);山東省自然科學(xué)基金(ZR2021MC045);山東省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)科技創(chuàng)新工程(CXGC2023A28)
作者簡(jiǎn)介:王海波,副研究員,博士,研究方向?yàn)楣麡?shù)遺傳育種。E-mail:wangharboo@163.com
*通信作者Author for correspondence. Tel:0538-8266645,E-mail:llg6536@163.com