摘要:目的" 基于網(wǎng)絡(luò)藥理學(xué)和分子對(duì)接技術(shù),探究中藥厚樸主要成分抑制乳腺癌的分子機(jī)制。方法" 通過數(shù)據(jù)庫篩選厚樸有效成分及其靶點(diǎn),并檢索乳腺癌相關(guān)靶點(diǎn),對(duì)靶點(diǎn)取交集。運(yùn)用STRING平臺(tái)構(gòu)建厚樸抗乳腺癌基因PPI網(wǎng)絡(luò)圖,Cytoscape軟件篩選核心靶點(diǎn), 使用DAVID數(shù)據(jù)庫對(duì)20個(gè)核心靶點(diǎn)基因進(jìn)行GO和 KEGG富集分析。利用AutoDock Vina軟件將關(guān)鍵靶點(diǎn)基因與厚樸2個(gè)有效成分進(jìn)行分子對(duì)接,PyMOL軟件對(duì)接結(jié)果進(jìn)行可視化。結(jié)果" 篩選得到厚樸中2個(gè)主要成分厚樸酚與和厚樸酚,構(gòu)建蛋白-蛋白相互作用網(wǎng)絡(luò)(PPI)將結(jié)果導(dǎo)入Cytoscape軟件中篩選出厚樸抗乳腺癌的20個(gè)核心基因,其中ESR1、ESR2、NCOA3、MED1與厚樸酚、和厚樸酚具有相關(guān)性,確定為關(guān)鍵靶點(diǎn)基因;選用20個(gè)核心基因進(jìn)行GO和KEGG富集分析,其中與4個(gè)關(guān)鍵靶點(diǎn)基因相關(guān)的結(jié)果有:GO分析顯示與RNA聚合酶Ⅱ啟動(dòng)子的轉(zhuǎn)錄正調(diào)控、核染色質(zhì)、轉(zhuǎn)錄因子結(jié)合等相關(guān);KEGG分析顯示主要與內(nèi)分泌的阻力、雌激素信號(hào)通路、癌癥通路、乳腺癌等相關(guān);分子對(duì)接結(jié)果顯示這4個(gè)基因與厚樸酚、和厚樸酚具有很好的結(jié)合活性。結(jié)論" 厚樸主要成分厚樸酚與和厚樸酚可通過作用于ESR1、ESR2、NCOA3、MED1基因發(fā)揮抗乳腺癌作用,有可能作為厚樸治療乳腺癌的潛在靶點(diǎn)。
關(guān)鍵詞:網(wǎng)絡(luò)藥理學(xué);分子對(duì)接;厚樸;乳腺癌;分子機(jī)制
中圖分類號(hào):R285;R736.3" " " " " " " " " " " " " " "文獻(xiàn)標(biāo)識(shí)碼:A" " " " " " " nbsp; " " " " " " DOI:10.3969/j.issn.1006-1959.2024.14.003
文章編號(hào):1006-1959(2024)14-0012-07
Molecular Mechanism of the Main Components of Cortex Magnoliae Officinalis in Anti-breast
Cancer Based on Network Pharmacology and Molecular Docking
DU Juan1,SHAO Bing2,PAN Wang1,MA Jia-yi2,F(xiàn)U Xiu2,HAN Xiao1
(1.School of Pharmacy,Beihua University,Jilin 132013,Jilin,China;
2.School of Public Health,Jilin Medical University,Jilin 132013,Jilin,China)
Abstract:Objective" To explore the molecular mechanism of the main components of Cortex Magnoliae Officinalis in inhibiting breast cancer based on network pharmacology and molecular docking technology.Methods" The effective components and targets of Cortex Magnoliae Officinalis were screened by database, and the related targets of breast cancer were retrieved, and the targets were intersected. The STRING platform was used to construct the PPI network diagram of Cortex Magnoliae Officinalis anti-breast cancer gene. Cytoscape software was used to screen the core targets. DAVID database was used to analyze the GO and KEGG enrichment of 20 core target genes. AutoDock Vina software was used to dock the key target genes with the two effective components of Cortex Magnoliae Officinalis, and the docking results were visualized by PyMOL software.Results" Two main components in Cortex Magnoliae Officinalis were screened, which were magnolol and honokiol. By constructing protein-protein interaction network (PPI), the results were imported into Cytoscape software to screen out 20 core genes of Cortex Magnoliae Officinalis anti-breast cancer. Among them, ESR1, ESR2, NCOA3 and MED1 were correlated with magnolol and honokiol, and were identified as key target genes. Twenty core genes were selected for GO and KEGG enrichment analysis. Among them, the results related to four key target genes were as follows: GO analysis showed that it was related to the positive regulation of RNA polymerase Ⅱ promoter transcription, nuclear chromatin, transcription factor binding, etc.; KEGG analysis showed that it was mainly related to endocrine resistance, estrogen signaling pathway, cancer pathway, breast cancer and so on. Molecular docking results showed that these four genes had good binding activity with magnolol and honokiol.Conclusion" Magnolol and honokiol, the main components of Cortex Magnoliae Officinalis, can exert anti-breast cancer effects by acting on ESR1, ESR2, NCOA3 and MED1 genes, which may be used as potential targets for the treatment of breast cancer.
Key words:Network pharmacology;Molecular docking;Cortex Magnoliae Officinalis;Breast cancer;Molecular mechanism
乳腺癌是發(fā)生在乳腺上皮細(xì)胞的惡性腫瘤。據(jù)2020年全球癌癥統(tǒng)計(jì)數(shù)據(jù)顯示,乳腺癌的發(fā)病率已在全球大多數(shù)國家排名第一位,僅2020年,全球乳腺癌新發(fā)患者超過肺癌,約230萬病例(11.7%),死亡數(shù)約68.5萬[1]。目前乳腺癌治療以手術(shù)為主,根據(jù)病情分期,加以放化療和免疫治療、靶向治療。這些治療手段可以大大提高生存率,但是對(duì)患者后期的生活質(zhì)量有著嚴(yán)重影響,同時(shí)還要承擔(dān)巨額費(fèi)用,因此探索成本低、不良反應(yīng)少的中藥治療乳腺癌具有長遠(yuǎn)意義。在中醫(yī)中,乳腺癌被稱為“乳巖”“乳石癰”等[2],中醫(yī)藥治療原則注重調(diào)節(jié)整體平衡,相對(duì)減輕手術(shù)等治療后的副作用[3]。隨著中醫(yī)不斷的進(jìn)步和發(fā)展,在乳腺癌治療過程中,中醫(yī)藥治療已成為標(biāo)準(zhǔn)治療中的重要輔助手段[4,5]。厚樸為木蘭科木蘭屬厚樸或者凹葉厚樸干燥的干皮、根皮和枝皮。厚樸味苦、辛,性溫,具有燥濕消痰,下氣除滿的功效。厚樸的主要成分為厚樸酚與和厚樸酚等酚類成分,少量的生物堿類、揮發(fā)油、多糖類成分[6]?,F(xiàn)代研究表明[7],厚樸酚與和厚樸酚對(duì)腫瘤具有抑制作用,其研究受到廣泛關(guān)注。本研究基于網(wǎng)絡(luò)藥理學(xué)和分子對(duì)接技術(shù),研究厚樸主要成分抗乳腺癌的分子機(jī)制,為厚樸的臨床開發(fā)應(yīng)用提供參考。
1資料與方法
1.1厚樸有效成分和作用靶點(diǎn)篩選" 通過BATMAN-TCM數(shù)據(jù)庫篩選厚樸有效成分和作用靶點(diǎn)。在Select input type中選擇Herb or Herb list,輸入Houpo,并設(shè)置Score dutoff≥30,Adjusted P-value<0.05進(jìn)行篩選。在TCMSP(Traditional Chinese Medicine Systems Pharmacol)中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫與分析平臺(tái)中,以口服生物利用度(OB)≥30%且類藥性(DL)≥0.18作為篩選條件,篩選厚樸的有效成分和作用靶點(diǎn)。
1.2乳腺癌相關(guān)靶點(diǎn)篩選" 利用GeneCards數(shù)據(jù)庫、網(wǎng)上《人類孟德爾遺傳》數(shù)據(jù)庫-OMIM(Online Mendelian Inheritance in Man)、PharmGKB數(shù)據(jù)庫(Pharmacogenetics and Pharmacogenomics Knowledge Base)、TTD數(shù)據(jù)庫(Therapeutic Target Database)和DrugBank Online數(shù)據(jù)庫中,分別輸入“breast cancer”,檢索得到與乳腺癌疾病相關(guān)的作用靶點(diǎn)信息。
1.3厚樸作用靶點(diǎn)與乳腺癌相關(guān)靶點(diǎn)基因整合" 運(yùn)用BioVenn網(wǎng)站,在“選擇文件”處分別導(dǎo)入厚樸靶點(diǎn)和乳腺癌疾病靶點(diǎn),選擇結(jié)果輸出格式后,結(jié)果以韋恩圖導(dǎo)出,得到厚樸靶點(diǎn)和乳腺癌疾病靶點(diǎn)的交集,即厚樸抗乳腺癌的作用靶點(diǎn)。
1.4厚樸成分與乳腺癌靶點(diǎn)基因網(wǎng)絡(luò)調(diào)控" 運(yùn)用Perl軟件,將厚樸有效成分通過相對(duì)應(yīng)的靶基因,與乳腺癌靶點(diǎn)基因進(jìn)行網(wǎng)絡(luò)構(gòu)建。將得到的厚樸成分-靶點(diǎn)文件、基因類型文件等導(dǎo)入Cytoscape3.8.0,繪制厚樸成分與靶點(diǎn)基因相互映射的網(wǎng)絡(luò)圖。靶點(diǎn)基因面積越大,與其相對(duì)應(yīng)的成分越多;藥物成分與其相連線路越多,說明其對(duì)應(yīng)的靶點(diǎn)基因越多。
1.5蛋白-蛋白相互作用網(wǎng)絡(luò)的構(gòu)建(PPI)" 將厚樸抗乳腺癌的潛在作用靶點(diǎn)基因輸入到STRING數(shù)據(jù)庫(https://cn.sring-db.org/)中,物種選擇Homo sapiens,將所得數(shù)據(jù)以tsv格式導(dǎo)出到Excel表格,構(gòu)建蛋白-蛋白質(zhì)互作網(wǎng)絡(luò)。將STRING數(shù)據(jù)庫所得文件導(dǎo)入Cytoscape軟件,利用MCODE插件進(jìn)行分析和打分篩選,再通過R軟件平臺(tái),對(duì)得到的基因進(jìn)行中位值過濾,得到厚樸與乳腺癌的網(wǎng)絡(luò)核心基因。
1.6 GO富集分析和KEGG通路富集分析" 將1.5中得到厚樸抗乳腺癌作用的20個(gè)核心靶點(diǎn)基因?qū)氲紻AVID數(shù)據(jù)庫(http://david.ncifcrf.gov/),利用DAVID數(shù)據(jù)庫進(jìn)行GO富集分析和KEGG通路富集分析,進(jìn)一步闡明厚樸抗乳腺癌相關(guān)機(jī)制。在微生信網(wǎng)站將GO和KEGG富集結(jié)果繪制成柱狀圖和氣泡圖。
1.7分子對(duì)接" 選擇1.5中PPI網(wǎng)絡(luò)關(guān)鍵靶點(diǎn)基因與厚樸有效成分進(jìn)行分子對(duì)接,驗(yàn)證兩者之間的結(jié)合活性。運(yùn)用PubChem數(shù)據(jù)庫(https://pubchem.ncbi.nlm.nih.gov/)檢索厚樸有效成分的3D結(jié)構(gòu),PDB數(shù)據(jù)庫(https://www.rcsb.org/)輸入核心基因,下載蛋白受體3D結(jié)構(gòu)文件,再利用PyMOL軟件刪除蛋白受體3D結(jié)構(gòu)中的水分子和小分子配體。運(yùn)用AutoDock Vina軟件對(duì)小分子配體和蛋白受體進(jìn)行加氫后進(jìn)行分子對(duì)接,用結(jié)合自由能高低來作為靶點(diǎn)和有效成分結(jié)合程度標(biāo)準(zhǔn),自由能越低,結(jié)合越穩(wěn)定。最后,用PyMOL軟件將分子對(duì)接結(jié)果進(jìn)行可視化展示。
2結(jié)果
2.1厚樸有效成分和作用靶點(diǎn)" 分別運(yùn)用BATMAN-TCM數(shù)據(jù)庫和TCMSP數(shù)據(jù)庫,得到厚樸44個(gè)有效成分,920個(gè)作用靶點(diǎn),其中15種主要活性成分信息見表1。
2.2乳腺癌相關(guān)基因整合" 通過GeneCards、OMIM、PharmGKB、TTD和DrugBank數(shù)據(jù)庫分別檢索得到與乳腺癌疾病相關(guān)的作用靶點(diǎn)基因,其中GeneCards數(shù)據(jù)庫檢索12 761個(gè)靶基因,OMIM數(shù)據(jù)庫檢索113個(gè)靶基因,PharmGKB數(shù)據(jù)庫檢索296個(gè)靶基因,TTD數(shù)據(jù)庫檢索172個(gè)靶基因,DrugBank數(shù)據(jù)庫檢索163個(gè)靶基因。利用韋恩圖,刪除5個(gè)數(shù)據(jù)庫中重復(fù)的基因,得到乳腺癌的作用靶點(diǎn)取并集,共得到12 878個(gè)作用靶點(diǎn),見圖1。
2.3厚樸和乳腺癌相關(guān)靶點(diǎn)基因整合" 將厚樸920個(gè)作用靶點(diǎn)和乳腺癌12 878個(gè)靶點(diǎn)基因繪制韋恩圖,得到694個(gè)交集基因,見圖2。
2.4厚樸成分-乳腺癌-靶點(diǎn)網(wǎng)絡(luò)的構(gòu)建" 將厚樸的44種有效成分和694個(gè)靶點(diǎn)基因,利用Cytoscape軟件構(gòu)建厚樸有效成分-靶點(diǎn)基因的調(diào)控網(wǎng)絡(luò)圖,并計(jì)算節(jié)點(diǎn)的度值(Degree),節(jié)點(diǎn)越大,表示Degree值越大,且厚樸酚與和厚樸酚在厚樸中含量高,篩選出厚樸的主要成分為厚樸酚與和厚樸酚。厚樸同一有效成分對(duì)應(yīng)多個(gè)靶點(diǎn)基因,同時(shí)多個(gè)有效成分也可對(duì)應(yīng)同一靶點(diǎn)基因,這種對(duì)應(yīng)關(guān)系體現(xiàn)出厚樸多成分和多靶點(diǎn)抗乳腺癌的作用機(jī)制。
2.5 PPI網(wǎng)絡(luò)構(gòu)建及核心靶點(diǎn)基因篩選" 運(yùn)用STRING數(shù)據(jù)庫對(duì)694個(gè)基因進(jìn)行PPI網(wǎng)絡(luò)分析,設(shè)置minimum required interaction score為0.95,得到PPI網(wǎng)絡(luò)圖有406個(gè)節(jié)點(diǎn),804條邊。將數(shù)據(jù)導(dǎo)入Cytoscape軟件篩選,由Degree值進(jìn)行打分處理后,再用R軟件對(duì)Betweenness、Closeness、Degree、Eigenvector、LAC和Network進(jìn)行中位值過濾,得到86個(gè)節(jié)點(diǎn),296條邊,見圖3。再次篩選,得到20個(gè)節(jié)點(diǎn),79條邊,為厚樸抗乳腺癌的網(wǎng)絡(luò)核心基因。由圖可見,20個(gè)核心基因包括EGFR、PPARG、CTNNB1、JUN、NCOA3、PIK3R1、NCOA2、NCOA1、IL6、SRC、FOS、ESR1、HIF1A、RXRA、MAPK1、TNF、MED1、AR、PPARA、ESR2,其中與厚樸主要成分厚樸酚與和厚樸酚相關(guān)的基因有ESR1、ESR2、 MED1 和NCOA3,確定為關(guān)鍵靶點(diǎn)基因。
2.6 GO和KEGG通路富集分析結(jié)果" 運(yùn)用DAVID數(shù)據(jù)庫,將厚樸抑制乳腺癌的20個(gè)核心靶點(diǎn)基因進(jìn)行GO和KEGG富集分析。GO富集分析結(jié)果分為三部分,生物過程(BP)得到212個(gè)條目、細(xì)胞組成(CC)得到21個(gè)條目、分子功能(MF)得到56個(gè)條目,按P-Value值大小繪制柱狀圖,見圖4~圖6,柱子高低代表富集在此過程的基因數(shù)目多少。與BP相關(guān)的有轉(zhuǎn)錄正調(diào)控并DNA模板化、RNA聚合酶Ⅱ啟動(dòng)子的轉(zhuǎn)錄正調(diào)控、RNA聚合酶Ⅱ啟動(dòng)子對(duì)pri-miRNA轉(zhuǎn)錄的正向調(diào)節(jié)、過氧化物酶體增殖物激活受體信號(hào)通路、RNA聚合酶Ⅱ啟動(dòng)子的轉(zhuǎn)錄負(fù)調(diào)控等;與CC相關(guān)的有核染色質(zhì)、高分子配合物、RNA聚合酶Ⅱ轉(zhuǎn)錄因子復(fù)合物、轉(zhuǎn)錄、核原生質(zhì)等;與MF相關(guān)的有轉(zhuǎn)錄因子結(jié)合、酶結(jié)合、配體依賴性核受體結(jié)合、RNA聚合酶Ⅱ轉(zhuǎn)錄因子活性并配體激活的序列特異性DNA結(jié)合配體依賴性核受體結(jié)合、染色質(zhì)綁定、雌激素受體結(jié)合等。KEGG通路富集分析結(jié)果,得到113條信號(hào)通路,按P-Value值大小繪制氣泡圖(圖7),氣泡大小代表富集在此通路的基因數(shù)目多少。其KEGG顯著通路有內(nèi)分泌的阻力、雌激素信號(hào)通路、癌癥通路、乳腺癌等。
2.7分子對(duì)接結(jié)果分析" 為確定厚樸主要成分與關(guān)鍵靶點(diǎn)之間的結(jié)合活性,將厚樸主要成分厚樸酚、和厚樸酚與4個(gè)關(guān)鍵靶點(diǎn)基因ESR1、ESR2、MED1、NCOA3進(jìn)行分子對(duì)接驗(yàn)證,見表2。結(jié)果顯示,厚樸酚與ESR1結(jié)合自由能為-7.6 kcal/mol、與ESR2結(jié)合自由能為-8.1 kcal/mol、與MED1結(jié)合自由能為-8.0 kcal/mol、與NCOA3 結(jié)合自由能為-8.1 kcal/mol;和厚樸酚與ESR1結(jié)合自由能為-7.2 kcal/mol、與ESR2結(jié)合自由能為-7.9 kcal/mol、與MED1結(jié)合自由能為-8.2 kcal/mol、與NCOA3 結(jié)合自由能為-8.1 kcal/mol。全部自由能均小于-7.0 kcal/mol,有較好的結(jié)合活性。用PyMOL軟件對(duì)分子對(duì)接結(jié)果進(jìn)行可視化展示,見圖8,結(jié)果顯示對(duì)接位置較好。
3討論
厚樸已經(jīng)被證實(shí)具有抗腫瘤的作用,其中抗乳腺癌作用機(jī)制也備受研究者關(guān)注。厚樸酚與和厚樸酚是從厚樸中提取得到的酚類化合物,為同分異構(gòu)體,是厚樸的主要活性成分,其含量已經(jīng)作為厚樸中藥材重要的質(zhì)量標(biāo)準(zhǔn),且藥理活性廣泛。厚樸酚有抗菌、抗氧化和抗炎等作用,近幾年其抗腫瘤作用成為研究熱點(diǎn),尤其在抗消化系統(tǒng)腫瘤和抗肺部腫瘤方面已經(jīng)被驗(yàn)證,在抗白血病、淋巴瘤、肉瘤、皮膚癌、乳腺癌、宮頸癌、前列腺癌、鼻咽癌等腫瘤細(xì)胞方面有相關(guān)報(bào)道[8,9]。和厚樸酚也具有抗氧化和抗菌作用,在抗乳腺癌、胃癌、結(jié)直腸癌、肝癌、膽囊癌、胰腺癌等腫瘤細(xì)胞方面也有相關(guān)報(bào)道[10,11]。厚樸酚與和厚樸酚毒性很小,且對(duì)正常細(xì)胞和其他臟器沒有明顯影響,因此厚樸酚與和厚樸酚用于抗乳腺癌具有潛在應(yīng)用價(jià)值。
本研究顯示,在厚樸抗乳腺癌的20個(gè)核心靶點(diǎn)中,只有ESR1、ESR2、MED1、NCOA3這4個(gè)基因與厚樸酚、和厚樸酚具有相關(guān)性,因此將其作為關(guān)鍵靶點(diǎn)基因。ESR1基因是一種雌激素受體和配體激活的轉(zhuǎn)錄因子,調(diào)節(jié)雌激素誘導(dǎo)基因轉(zhuǎn)錄,在生長、代謝、妊娠、性發(fā)育和其他生殖功能中起到重要作用,在乳腺癌、骨質(zhì)疏松癥和子宮內(nèi)膜癌中發(fā)揮關(guān)鍵作用,且ESR1突變是引起乳腺癌內(nèi)分泌治療耐藥的原因之一[12]。ESR2基因與ESR1同為雌激素受體和核受體轉(zhuǎn)錄因子,與17β-雌二醇或其他配體結(jié)合后,形成同源或異源二聚體,與特定DNA序列相互作用以激活轉(zhuǎn)錄,主要抑制其他雌激素類受體活性,在乳腺癌的預(yù)防和控制等方面發(fā)揮重要功能[13]。MED1內(nèi)質(zhì)網(wǎng)共激活因子,由識(shí)別DNA中的轉(zhuǎn)錄增強(qiáng)子位點(diǎn)因素觸發(fā)轉(zhuǎn)錄激活,指導(dǎo)RNA聚合酶Ⅱ的裝置轉(zhuǎn)錄起始,是一種獨(dú)特的、組織特異性輔助因子,可介導(dǎo)乳腺癌的轉(zhuǎn)移、治療抗雌激素抵抗,還可以調(diào)節(jié)p53所依賴的細(xì)胞凋亡,影響脂肪形成,且有自寡聚的能力[14]。NCOA3是一種核受體的輔激活子,具有和核激素受體作用,能夠增強(qiáng)轉(zhuǎn)錄激活功能,有組蛋白乙酰轉(zhuǎn)移酶的活性,可以激活基因轉(zhuǎn)錄[15]。NCOA3的過表達(dá),在乳腺癌、肝癌、胰腺癌中具有抑制腫瘤的生長、轉(zhuǎn)移、化療耐藥性和侵襲等過程[16]。
本研究中KEGG富集分析結(jié)果顯示,厚樸抗乳腺癌得到113條通路,主要通路涉及內(nèi)分泌的阻力、雌激素信號(hào)通路、癌癥通路、乳腺癌等。研究表明,雌激素信號(hào)通路對(duì)正常乳腺細(xì)胞的生長、發(fā)育和凋亡等有很大影響,如果通路信號(hào)紊亂則影響ESR1、ESR2、MED1、NCOA3基因表達(dá),導(dǎo)致乳腺癌細(xì)胞增殖、凋亡等生物過程失衡,引發(fā)乳腺癌,因此調(diào)控雌激素信號(hào)通路也是抑制乳腺癌的關(guān)鍵,為后期研究提供方向[17,18]。內(nèi)分泌阻力通路中,乳腺癌患者ESR1基因的LBD位點(diǎn)產(chǎn)生復(fù)發(fā)性突變,一般采用內(nèi)分泌療法;ESR1融合蛋白在乳腺癌中富集,產(chǎn)生內(nèi)分泌抵抗,進(jìn)而形成耐藥[19];沉默子SALL2與DNA啟動(dòng)子結(jié)合與否,上調(diào)或下調(diào)ESR1與PTEN的轉(zhuǎn)錄水平,同樣會(huì)導(dǎo)致內(nèi)分泌治療耐藥。另外,核因子κB促進(jìn)組蛋白一線轉(zhuǎn)移酶p300與 NCOA3形成轉(zhuǎn)錄復(fù)合體,此復(fù)合體啟動(dòng)并激活抗凋亡基因BCL2、MCL1、BCL2A1、BCL2L2等表達(dá),導(dǎo)致細(xì)胞不凋亡進(jìn)而致癌,在雌激素受體陽性乳腺癌細(xì)胞中過表達(dá),阻斷或靶向NCOA3也是治療雌激素受體陽性乳腺癌的新方向[20]。MED1也與抗內(nèi)分泌治療相關(guān),是抗雌激素治療抵抗和內(nèi)質(zhì)網(wǎng)功能的關(guān)鍵介質(zhì),是乳腺癌治療的新靶點(diǎn)[21]。
總之,中藥具有多成分、多靶點(diǎn)、多效應(yīng)的治療優(yōu)點(diǎn)。本研究通過網(wǎng)絡(luò)藥理學(xué)有效整合厚樸主要活性成分,并通過數(shù)據(jù)庫查找乳腺癌靶點(diǎn)基因,篩選出厚樸抗乳腺癌2個(gè)主要活性成分厚樸酚與和厚樸酚以及4個(gè)關(guān)鍵靶點(diǎn)基因ESR1、ESR2、MED1、NCOA3。利用分子對(duì)接技術(shù)驗(yàn)證了主要成分與關(guān)鍵靶點(diǎn)基因之間的結(jié)合自由能,顯示結(jié)合狀態(tài)較好,GO和KEGG富集分析結(jié)果顯示厚樸酚與和厚樸酚可能通過內(nèi)分泌的阻力、雌激素信號(hào)通路、癌癥通路、乳腺癌等生物學(xué)通路發(fā)揮抗乳腺癌作用。
參考文獻(xiàn):
[1]劉宗超,李哲軒,張陽,等.2020全球癌癥統(tǒng)計(jì)報(bào)告解讀[J].腫瘤綜合治療電子雜志,2021,7(2):1-14.
[2]周易,鄭里翔.乳巖的病因、病傳及形成探析[J].中華中醫(yī)藥雜志,2020,35(7):3334-3337.
[3]沙珊焱,李思雨,朱瑋,等.中藥溫腎升白方結(jié)合艾灸治療乳腺癌蒽環(huán)類藥物化療患者白細(xì)胞減少癥34例臨床觀察[J].中醫(yī)雜志,2023,64(5):482-489.
[4]戴燕,羅薇,孫楊,等.基于早期乳腺癌分期辨證規(guī)范化研究探索中醫(yī)疾病診療規(guī)范化研究的方法學(xué)[J].中醫(yī)腫瘤學(xué)雜志,2022,4(5):69-74.
[5]Peng CY,Yu CC,Huang CC,et al.Magnolol inhibits cancer stemness and IL-6/Stat3 signaling in oral carcinomas[J].Formos Med Assoc,2022,121(1 Pt1):51-57.
[6]張夢(mèng)娜.厚樸葉和厚樸籽化學(xué)成分分析及生物活性研究[D].綿陽:西南科技大學(xué),2019.
[7]Ranaware AM,Banik K,Deshpande V,et al.Magnolol:A Neolignan from the Magnolia Family for the Prevention and Treatment of Cancer[J].Int J Mol Sci,2018,19(8):2362.
[8]Wang X,Liu Q,F(xiàn)u Y,et al.Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight[J].Molecules,2022,27(19):6441.
[9]Wang TH,Chan CW,F(xiàn)ang JY,et al.2-O-Methylmagnolol upregulates the long non-coding RNA, GAS5, and enhances apoptosis in skin cancer cells[J].Cell Death Dis,2017,8(3):e2638.
[10]Yi X,Qi M,Huang M,et al.Honokiol Inhibits HIF-1α-Mediated Glycolysis to Halt Breast Cancer Growth[J].Front Pharmacol,2022,13:796763.
[11]Okuda K,Umemura A,Umemura S,et al.Honokiol Prevents Non-Alcoholic Steatohepatitis-Induced Liver Cancer via EGFR Degradation through the Glucocorticoid Receptor-MIG6 Axis[J].Cancers (Basel),2021,13(7):1515.
[12]劉斌亮,馬飛,陳閃閃,等.循環(huán)腫瘤DNA中ESR1突變?cè)诩に厥荏w陽性晚期乳腺癌內(nèi)分泌治療中的價(jià)值研究[J].癌癥進(jìn)展,2018,16(15):1845-1849.
[13]Piperigkou Z,Koutsandreas A,F(xiàn)ranchi M,et al.ESR2 Drives Mesenchymal-to-Epithelial Transition in Triple-Negative Breast Cancer and Tumorigenesis In Vivo[J].Front Oncol,2022,12:917633.
[14]Zhang X,Krutchinsky A,F(xiàn)ukuda A,et al.MED1/TRAP220 exists predominantly in a TRAP/ Mediator subpopulation enriched in RNA polymerase II and is required for ER-mediated transcription[J].Mol Cell,2005,19(1):89-100.
[15]Lira MC,Rosa FD,Aiello I,et al.NCoA3 upregulation in breast cancer-associated adipocytes elicits an inflammatory profile[J].Oncol Rep,2023,49(5):105.
[16]艾明發(fā),付康,金艷花.核受體共激活因子3在腫瘤中的作用[J].生命科學(xué),2021,33(10):1304-1312.
[17]沈娜.miR-301a靶向雌激素受體信號(hào)通路對(duì)乳腺癌細(xì)胞侵襲及上皮-間質(zhì)轉(zhuǎn)化的影響[J].河北醫(yī)藥,2022,44(21):3239-3242.
[18]潘國鳳,張奇,高建莉,等.基于雌激素受體信號(hào)通路雷公藤甲素抗乳腺癌作用及機(jī)制研究[J].中華中醫(yī)藥雜志,2014,29(12):3739-3742.
[19]Hanker AB,Sudhan DR,Arteaga CL.Overcoming Endocrine Resistance in Breast Cancer[J].Cancer Cell,2020,37(4):496-513.
[20]Wang J,Zhou Z.Estrogen-dependent activation of NCOA3 couples with p300 and NF-κB to mediate antiapoptotic genes in ER-positive breast cancer cells[J].Discov Oncol,2023,14(1):28.
[21]Bick G,Zhang J,Lower EE,et al.Transcriptional coactivator MED1 in the interface of anti-estrogen and anti-HER2 therapeutic resistance[J].Cancer Drug Resist,2022,5(2):498-510.
收稿日期:2023-08-10;修回日期:2023-08-23
編輯/成森