【摘要】 主動(dòng)脈夾層是一種嚴(yán)重的心血管急癥,其涉及主動(dòng)脈壁結(jié)構(gòu)和血流動(dòng)力學(xué)改變,死亡率極高。臨床上早期監(jiān)測(cè)血管功能并識(shí)別主動(dòng)脈夾層,對(duì)于改善患者的預(yù)后意義重大。目前主動(dòng)脈夾層檢測(cè)技術(shù)發(fā)展迅速,為早期識(shí)別主動(dòng)脈夾層,并減少其潛在并發(fā)癥的發(fā)生提供了可能,現(xiàn)就主動(dòng)脈夾層的臨床病理特點(diǎn)、影像學(xué)檢查技術(shù)、生物標(biāo)志物檢查、血管功能檢測(cè)技術(shù)的研究現(xiàn)狀及進(jìn)展予以綜述。
【關(guān)鍵詞】主動(dòng)脈夾層;診斷;影像學(xué)檢查;血管功能
【DOI】10.16806/j.cnki.issn.1004-3934.2024.08.000
Early Clinical Evaluation Techniques for Aortic Dissection
WEN Huan1,2,ZHANG Qiongge1,2,5,LIU"Jinbo1,2,5,WANG Hongyu1,2,3,4,5,6,7
(1."Peking University Shougang Hospital Vascular Medical Center,Beijing 100144,China;2.Beijing Shijingshan District Vascular Medicine Key Specialty,Beijing 100144,China;3.Center for Vascular Health Research,Peking University School of Medicine,Beijing 100144,China;4.National Key Laboratory of Vascular Homeostasis and Remodeling(Peking University),Beijing 100191,China;5.Center for Heart and Vascular Health,Peking University Clinical Research Institute,Beijing 100191,China;6.Heart and Vascular Health Research Center of Chengdu Medical College,Chengdu"611730,Sichuan,China;7.Intelligent Heart and Vascular Health Digital Management Research Center,National Institute of Health Data Science At Peking University,Beijing 100191,China)
【Abstract】Aortic dissection is a serious cardiovascular emergency involving structural and hemodynamic changes in the aortic wall and a very high mortality rate. Early clinical monitoring of vascular function and identification of aortic dissection is of great significance for improving the prognosis of patients. At present,the rapid development of aortic dissection detection technology provides the possibility for early identification of aortic dissection and the reduction of its potential complications.This paper reviews the research status and progress of the clinicopathological characteristics,imaging examination technology,biomarker examination and vascular function detection technology of aortic dissection.
【Keywords】Dissection of aorta; Diagnosis;"Imaging"examination; Vascular function
主動(dòng)脈夾層是心血管疾病的危重急癥,人類(lèi)對(duì)主動(dòng)脈夾層的認(rèn)識(shí)可追溯到18世紀(jì)中期,起初主動(dòng)脈夾層被描述為血液通過(guò)主動(dòng)脈裂隙形成的凸起[1]。血液進(jìn)入裂隙后可將主動(dòng)脈血管壁分為真腔與假腔并進(jìn)行順行或逆行傳播,從而導(dǎo)致一系列致命并發(fā)癥的發(fā)生。根據(jù)全球疾病負(fù)擔(dān)項(xiàng)目[2]報(bào)告,主動(dòng)脈瘤和主動(dòng)脈夾層的全球總體死亡率為2.78人/10萬(wàn)人,相較于女性,男性更容易受到影響。急性主動(dòng)脈夾層臨床表現(xiàn)多樣,突發(fā)的劇烈胸痛是最常見(jiàn)的首發(fā)癥狀。臨床上常根據(jù)夾層的起源與受累部位對(duì)主動(dòng)脈夾層進(jìn)行分型[3],主要包括DeBakey分型和Stanford分型。早期診斷對(duì)主動(dòng)脈夾層患者而言至關(guān)重要,故現(xiàn)對(duì)主動(dòng)脈夾層的臨床評(píng)價(jià)技術(shù)進(jìn)行綜述(圖1)。
1""影像學(xué)檢查
1.1""計(jì)算機(jī)體層成像與計(jì)算機(jī)體層血管成像
數(shù)字減影血管造影(digital subtraction angiography,DSA)是診斷主動(dòng)脈夾層的“金標(biāo)準(zhǔn)”[4],但因其操作有創(chuàng)并且價(jià)格昂貴使用受到限制。相較DSA而言,計(jì)算機(jī)體層成像(computed tomography,CT)操作簡(jiǎn)單并且價(jià)格實(shí)惠,可準(zhǔn)確識(shí)別主動(dòng)脈夾層、壁內(nèi)血腫以及其余受累部位。計(jì)算機(jī)體層血管成像(computed tomography angiography,CTA)將靜脈注射碘造影劑與 CT 聯(lián)合運(yùn)用,目前已成為評(píng)估主動(dòng)脈夾層最常用的檢測(cè)方法。CTA可更準(zhǔn)確地測(cè)量主動(dòng)脈環(huán)、主動(dòng)脈根部、升主動(dòng)脈和主動(dòng)脈弓的直徑與面積。血管CTA的敏感性和特異性均為100%,其診斷效果與DSA幾乎相同[5]。CTA還可運(yùn)用于主動(dòng)脈夾層的治療和治療后評(píng)估,近年來(lái)有學(xué)者提出,將術(shù)前CTA納入主動(dòng)脈夾層術(shù)前計(jì)劃中,將有利于患者外科手術(shù)的選擇。Zhou等[6]發(fā)現(xiàn),基于CTA的深度學(xué)習(xí)算法,可自動(dòng)預(yù)測(cè)急性主動(dòng)脈夾層術(shù)后遠(yuǎn)端主動(dòng)脈的重塑情況。但靜脈造影劑的使用增加了患者過(guò)敏、甲狀腺功能紊亂以及造影劑誘發(fā)的腎功能下降等風(fēng)險(xiǎn)。美國(guó)放射學(xué)會(huì)和國(guó)家腎臟基金會(huì)的共識(shí)[7]聲明,靜脈碘造影劑使用后,腎功能下降的患者發(fā)生急性腎損傷的風(fēng)險(xiǎn)被高估與夸大。CTA也可出現(xiàn)假陽(yáng)性結(jié)果,例如搏動(dòng)主動(dòng)脈的運(yùn)動(dòng)偽影可模擬內(nèi)膜瓣或假通道,Budeanu等[8]發(fā)現(xiàn)心電圖門(mén)控CTA可消除部分運(yùn)動(dòng)偽影,改善急性主動(dòng)脈夾層的診斷。三維卷積神經(jīng)網(wǎng)絡(luò)與基于金字塔場(chǎng)景解析網(wǎng)絡(luò)的二維卷積神經(jīng)網(wǎng)絡(luò)等算法,可避免內(nèi)膜瓣的假陽(yáng)性[9]。近年來(lái),生成對(duì)抗網(wǎng)絡(luò)被證實(shí)可減少CTA過(guò)程中的運(yùn)動(dòng)偽影,但其在主動(dòng)脈夾層患者CTA中的適用性有待進(jìn)一步證實(shí)[10]。
1.2""磁共振成像與磁共振血管成像
相較于CTA,磁共振成像(magnetic resonance imaging,MRI)避免了碘造影劑的使用以及電離輻射??蓹z測(cè)動(dòng)脈血流的方向、流量與速度,幫助識(shí)別出并發(fā)癥風(fēng)險(xiǎn)較高的患者,對(duì)主動(dòng)脈夾層相關(guān)事件具有獨(dú)立的預(yù)后價(jià)值[11],其敏感性和特異性均為 98%。四維相差磁共振成像(4D phase-contrast magnetic resonance imaging,4D PC-MRI)相對(duì)于 CTA 和傳統(tǒng) MRI,可顯示整個(gè)心動(dòng)周期中血流等信息[12],適用于內(nèi)臟血管灌注不良綜合征和腎功能損害的患者[13]。Kilinc等[14]發(fā)現(xiàn),壓縮感應(yīng)加速4D PC-MRI掃描主動(dòng)脈夾層時(shí)間更短,具備臨床應(yīng)用潛力。Zhu等[15]發(fā)現(xiàn)計(jì)算流體動(dòng)力學(xué)與4D PC-MRI相結(jié)合,可預(yù)測(cè)動(dòng)脈夾層風(fēng)險(xiǎn),為患者制定個(gè)體化治療方案。但MRI 由于檢測(cè)環(huán)境具有幽閉性、空間分辨率較低、采集時(shí)間長(zhǎng),不利于對(duì)疑似急性主動(dòng)脈病變的患者的早期診斷。三維磁共振血管成像(3D magnetic resonance angiography,3D MRA)利用血流流動(dòng)特點(diǎn)對(duì)血管進(jìn)行成像,其診斷主動(dòng)脈夾層敏感性與特異性與CTA相近,對(duì)碘造影劑過(guò)敏或腎功能不全而無(wú)法接受 CTA檢查的患者,美國(guó)放射學(xué)會(huì)適宜性標(biāo)準(zhǔn)推薦磁共振血管成像(magnetic resonance angiography,MRA)輔助評(píng)估主動(dòng)脈夾層[16]。近年來(lái)Kinner等[17]提出,動(dòng)態(tài) MRA 雖然圖像質(zhì)量不如 3D MRA 和 CTA,但可提供真假腔中血流流動(dòng)方向、填充速度以及實(shí)質(zhì)器官灌注情況等信息,可幫助制定治療規(guī)劃,但MRA對(duì)重癥患者的病情診斷與評(píng)估意義還需進(jìn)一步證實(shí)。
1.3 "超聲檢查
目前廣泛運(yùn)用于臨床診斷主動(dòng)脈夾層的超聲技術(shù)包括經(jīng)胸超聲心動(dòng)圖 (transthoracic echocardiography,TTE) 、經(jīng)食管超聲心動(dòng)圖檢查(trans-esophageal echocardiography,TEE)以及血管內(nèi)超聲(intravascular ultrasound,IVUS)等。TTE可充分評(píng)估主動(dòng)脈根部和近端升主動(dòng)脈內(nèi)膜瓣、心包積液、心臟壓塞以及左心室功能等。聯(lián)合主動(dòng)脈夾層檢測(cè)風(fēng)險(xiǎn)評(píng)分、D-二聚體、POC-TTE的方案[18]已被提出作為可作為主動(dòng)脈夾層的高敏感性臨床決策工具,TTE對(duì)A 型主動(dòng)脈夾層的敏感性為 78%~100%,但對(duì)B 型主動(dòng)脈夾層的敏感性?xún)H為 31%~55%,且TTE 陰性并不能排除主動(dòng)脈夾層。TEE克服了 TTE 在胸主動(dòng)脈評(píng)估中的局限性,可明確夾層撕裂的位置、機(jī)制以及嚴(yán)重程度,為監(jiān)測(cè)以及完成血管內(nèi)治療提供了可能性。Kim等[19]發(fā)現(xiàn),TEE 可作為診斷主動(dòng)脈夾層患者是心肺復(fù)蘇術(shù)期間心臟驟停原因的有效工具。但是,TEE獨(dú)立診斷具有誤診的可能性,可通過(guò)與TTE互補(bǔ)的方式使用。IVUS是一種新型的血管內(nèi)成像技術(shù),除可顯示主動(dòng)脈的大小、彎曲、斑塊等征象外,還識(shí)別血管內(nèi)治療的高危或禁忌證患者,為早期管理主動(dòng)脈夾層患者并輔助進(jìn)行血管內(nèi)介入治療提供了可能。Lortz等[20]發(fā)現(xiàn),CT圖像質(zhì)量較差的情況下,IVUS引導(dǎo)下B型主動(dòng)脈夾層的支架移植物尺寸的測(cè)量顯示出對(duì)主動(dòng)脈重塑的有益作用。根據(jù)最新研究[21]表明,聯(lián)合運(yùn)用超聲心動(dòng)圖與經(jīng)腹血管超聲,與CTA術(shù)中診斷主動(dòng)脈夾層及分類(lèi)具有高度一致性,為患者早期個(gè)體化治療提供重要的臨床意義。
2 "生物標(biāo)志物
主動(dòng)脈夾層進(jìn)展過(guò)程中伴隨著一系列生物標(biāo)志物的變化,表1總結(jié)了生物標(biāo)志物在主動(dòng)脈夾層病理發(fā)展、診斷及預(yù)后等方面的提示意義。生物標(biāo)志物對(duì)診斷急性主動(dòng)脈夾層顯示出一定的價(jià)值與意義,但其敏感性以及特異性存在一定的局限性,單一的生物標(biāo)志物難以準(zhǔn)確鑒別主動(dòng)脈夾層。雖然目前的研究表明蛋白多肽類(lèi)、小分子RNA、遺傳診斷等多種生物標(biāo)志物有助于主動(dòng)脈夾層的早期診斷,但其臨床可行性有待進(jìn)一步探索。
3 "血管功能評(píng)估指標(biāo)
近年來(lái)人們對(duì)心血管疾病的認(rèn)知,已從診斷后進(jìn)行治療逐漸聚焦在早期識(shí)別危險(xiǎn)人群并進(jìn)行靶向干預(yù)的領(lǐng)域。AAD-RS 與AORTAs等急性主動(dòng)脈夾層風(fēng)險(xiǎn)評(píng)分系統(tǒng)[29]通過(guò)納入家族病史、疼痛性質(zhì)以及伴隨癥狀與體征等多項(xiàng)評(píng)分標(biāo)準(zhǔn),可對(duì)急性主動(dòng)脈夾層進(jìn)行診斷評(píng)估。近來(lái)有研究數(shù)據(jù)[30]表明,動(dòng)脈僵硬是首次心血管疾病事件發(fā)生的強(qiáng)而獨(dú)立的危險(xiǎn)因素。隨著年齡的增加以及高血壓的發(fā)生,人體血管硬化伴隨著彈性功能下降,主動(dòng)脈僵硬作為主動(dòng)脈夾層的獨(dú)立危險(xiǎn)因素參與主動(dòng)脈夾層的進(jìn)展[31]。然而目前國(guó)際上存在的預(yù)測(cè)心血管疾病風(fēng)險(xiǎn)的評(píng)分系統(tǒng),均未將直接評(píng)估血管結(jié)構(gòu)與功能的指標(biāo)納入評(píng)價(jià)體系。檢測(cè)并評(píng)估血管功能與僵硬度,對(duì)早期識(shí)別主動(dòng)脈夾層危險(xiǎn)人群有重要意義。
3.1""肱動(dòng)脈血流介導(dǎo)的血管舒張功能
血管內(nèi)皮功能障礙與血管硬化的進(jìn)展息息相關(guān),一項(xiàng)對(duì)633例受試者的隊(duì)列研究結(jié)果[32]顯示,相關(guān)激酶可通過(guò)影響血管內(nèi)皮功能調(diào)控血管舒張狀態(tài),參與心血管疾病的進(jìn)展。血管舒張功能(flowmediated dilation,F(xiàn)MD)是一種無(wú)創(chuàng)檢測(cè)血管內(nèi)皮功能早期異常的檢查方法,可反映血流介導(dǎo)的內(nèi)皮細(xì)胞釋放一氧化氮引起的動(dòng)脈擴(kuò)張狀態(tài)。其檢測(cè)方法為,應(yīng)用血管超聲設(shè)備,通過(guò)檢測(cè)基線及袖帶阻斷血流并釋放后的肱動(dòng)脈內(nèi)徑,計(jì)算肱動(dòng)脈內(nèi)徑變化率為 FMD,即FMD=(動(dòng)脈反應(yīng)性充血后內(nèi)徑-動(dòng)脈基礎(chǔ)內(nèi)徑)/動(dòng)脈基礎(chǔ)內(nèi)徑×100%,一般正常值FMDgt;10%[33]。 FMD操作簡(jiǎn)單并可重復(fù),2019年FMD專(zhuān)家共識(shí)與循證建議[34]表明,F(xiàn)MD 可作為識(shí)別心血管事件風(fēng)險(xiǎn)的檢測(cè)工具。
3.2""脈搏波傳導(dǎo)速度
動(dòng)脈僵硬度可導(dǎo)致靶器官結(jié)構(gòu)與功能受損,從而增加心血管疾病的死亡率與發(fā)病率。脈搏波傳導(dǎo)速度(pulse wave velocity,PWV)是動(dòng)脈僵硬度的常用評(píng)估指標(biāo),可由血管超聲設(shè)備或血管自動(dòng)檢測(cè)裝置測(cè)量?jī)蓚€(gè)動(dòng)脈節(jié)段之間的脈搏波傳導(dǎo)距離和時(shí)間計(jì)算得到[35]。一項(xiàng)納入了3"837例參與者的前瞻性隊(duì)列研究[36],對(duì)受試者隨訪平均10.3年,發(fā)現(xiàn)主動(dòng)脈脈搏波速度可作為評(píng)估心血管疾病風(fēng)險(xiǎn)的輔助風(fēng)險(xiǎn)標(biāo)志物。歐洲心臟病會(huì)指南[37]證實(shí),主動(dòng)脈脈搏波傳導(dǎo)速度是評(píng)估主動(dòng)脈僵硬度的金標(biāo)準(zhǔn),可作為預(yù)測(cè)心血管疾病的獨(dú)立預(yù)測(cè)因子。脈搏波傳導(dǎo)速度可評(píng)估患者血管病變整體風(fēng)險(xiǎn),有助于早期識(shí)別血管損傷。
3.3""心踝血管指數(shù)
2006年,心踝血管指數(shù)( cardio ankle vascular index,CAVI)作為評(píng)估動(dòng)脈硬度和擴(kuò)張性的檢測(cè)方法,被Kohji Shirai等[38]首次提出,相較于脈搏波速度具有不受患者血壓水平波動(dòng)的影響的優(yōu)勢(shì)。其檢測(cè)方法為,通過(guò)儀器自動(dòng)檢測(cè)心踝脈搏波速度、雙側(cè)上下肢收縮壓及舒張壓,儀器根據(jù)測(cè)繪儀器自動(dòng)計(jì)算CAVI,測(cè)定指標(biāo)為CAVI=a×[2p×ln(SBP/DBP)×haPWV2/PP]+b(a和b:公式中的常數(shù);p:血液密度(常數(shù));SBP:收縮壓;DBP:舒張壓;haPWV:心踝脈搏波速度;PP:脈壓),正常值lt;9[35]。一項(xiàng)多中心前瞻性隊(duì)列研究[39]表明,CAVI可作為預(yù)測(cè)因子,評(píng)估具有心血管疾病危險(xiǎn)因素的患者未來(lái)心血管事件的風(fēng)險(xiǎn)。
3.4""BVHS與主動(dòng)脈夾層
動(dòng)脈僵硬作為心血管疾病的獨(dú)立危險(xiǎn)因素,參與到了主動(dòng)脈夾層等心血管事件的進(jìn)展中,通過(guò)檢測(cè)評(píng)估血管功能與僵硬度,對(duì)于早期識(shí)別主動(dòng)脈夾層危險(xiǎn)人群并預(yù)防不良結(jié)局的發(fā)生提供了可能。2015年北京大學(xué)醫(yī)學(xué)部血管健康研究中心提出了北京血管健康分級(jí)法(BVHS)[40],其納入了FMD、PWV、CAVI等評(píng)估血管功能與結(jié)構(gòu)的指標(biāo)進(jìn)行分級(jí)。Ⅰ級(jí):結(jié)構(gòu)與功能均正常;Ⅱ級(jí):內(nèi)皮功能障礙;Ⅲ級(jí)動(dòng)脈僵硬期;Ⅳ級(jí):結(jié)構(gòu)性血管病變?cè)缙?;Ⅴ?jí):結(jié)構(gòu)性血管病變中期;Ⅵ級(jí):結(jié)構(gòu)性血管病變晚期;Ⅶ:臨床血管事件(需緊急住院)。相較于其他評(píng)分系統(tǒng)實(shí)現(xiàn)了對(duì)心血管疾病的早期識(shí)別與干預(yù),幫助臨床醫(yī)生早期識(shí)別危險(xiǎn)人群并根據(jù)血管健康情況對(duì)病人進(jìn)行分級(jí)管理,從而降低心血管事件的發(fā)病風(fēng)險(xiǎn),延緩疾病病程發(fā)展速度,提高患者預(yù)后與生活質(zhì)量,有助于心血管事件預(yù)防、治療和康復(fù)一體化,北京血管健康分級(jí)法對(duì)心血管疾病的早期干預(yù)與管理的臨床實(shí)用性與成效有待進(jìn)一步驗(yàn)證。
4 "總結(jié)與展望
主動(dòng)脈夾層是一種嚴(yán)重的心血管急癥,具有高住院率、高死亡率的特點(diǎn),其潛在致命并發(fā)癥對(duì)患者的生存及預(yù)后產(chǎn)生了極大威脅,因此早期監(jiān)測(cè)血管功能與早期識(shí)別主動(dòng)脈夾層至關(guān)重要 。隨著對(duì)主動(dòng)脈夾層的流行病學(xué)、病理生理以及分型等層面的認(rèn)識(shí)不斷深入,主動(dòng)脈夾層的診斷手段以及血管功能檢測(cè)手段迅速發(fā)展。影像檢查技術(shù)是目前臨床診斷主動(dòng)脈夾層不可或缺的手段 ,早期監(jiān)測(cè)血管功能為預(yù)防主動(dòng)脈夾層引發(fā)的一系列的嚴(yán)重心血管事件提供了方向。相信未來(lái)會(huì)有更加有效的診斷技術(shù)及血管功能監(jiān)測(cè)手段,造福更多臨床主動(dòng)脈夾層患者。
參 考 文 獻(xiàn)
[1] Leonard JC. Thomas Bevill Peacock and the early history of dissecting aneurysm[J]. Br"Med"J,1979,2(6184):260-262.
[3] Erbel R,Alfonso F,Boileau C,et al. Diagnosis and management of aortic dissection[J]. Eur"Heart J,2001,22(18):1642-1681.
[4] Lyons J,Gershlick A,Norell M,et al. Intravenous digital subtraction angiography in the diagnosis and management of acute aortic dissection[J]. Eur"Heart J,1987,8(2):186-189.
[5] Chen H,Yan S,Xie M,et al. Application of cascaded GAN based on CT scan in the diagnosis of aortic dissection[J]. Comput"Methods"Programs"Biomed,2022,226:107130.
[6] Zhou M,Luo X,Wang X,et al. Deep learning prediction for distal aortic remodeling after thoracic endovascular aortic repair in Stanford type B aortic dissection[J]. J"Endovasc"Ther,2023.DOI: 10.1177/15266028231160101.
[7] Davenport MS,Perazella MA,Yee J,et al. Use of intravenous iodinated contrast media in patients with kidney disease:Consensus Statements from the American College of Radiology and the National Kidney Foundation[J]. Radiology,2020,294(3):660-668.
[8] Budeanu RG,Broemmer C,Budeanu AR,et al. Comparing the diagnostic performance of ECG gated versus non-gated CT angiography in ascending aortic dissection:a GRRAS study[J]. Tomography,2022,8(5):2426-2434.
[9] Lyu T,Yang G,Zhao X,et al. Dissected aorta segmentation using convolutional neural networks[J]. Comput"Methods"Programs"Biomed,2021,211:106417.
[10] Zhang L,Jiang B,Chen Q,et al. Motion artifact removal in coronary CT angiography based on generative adversarial networks[J]. Eur"Radiol,2023,33(1):43-53.
[11] Evangelista A,Pineda V,Guala A,et al. False lumen flow assessment by magnetic resonance imaging and long-term outcomes in uncomplicated aortic dissection[J]. J"Am"Coll"Cardiol,2022,79(24):2415-2427.
[12] Allen BD,Aouad PJ,Burris NS,et al. Detection and hemodynamic evaluation of flap fenestrations in type B aortic dissection with 4D flow MRI:comparison with conventional MRI and CTA[J]. Radiol"Cardiothorac"Imaging,2019,1(1):e180009.
[13] Chen CW,Tseng YH,Lin CC,et al. Aortic dissection assessment by 4D phase-contrast MRI with hemodynamic parameters:the impact of stent type[J]. Quant"Imaging"Med"Surg,2021,11(2):490-501.
[14] Kilinc O,Chu S,Baraboo J,et al. Hemodynamic evaluation of type B aortic dissection using compressed sensing accelerated 4D flow MRI[J]. J"Magn"Reson"Imaging,2023,57(6):1752-1763.
[15] Zhu Y,Xu XY,Rosendahl U,et al. Advanced risk prediction for aortic dissection patients using imaging-based computational flow analysis[J]. Clin"Radiol,2023,78(3):e155-e165.
[16] Wang GX,Hedgire SS,Le TQ,et al. MR angiography can guide ED management of suspected acute aortic dissection[J]. Am"J"Emerg"Med,2017,35(4):527-530.
[17] Kinner S,Eggebrecht H,Maderwald S,et al. Dynamic MR angiography in acute aortic dissection[J]. J"Magn"Reson"Imaging,2015,42(2):505-514.
[18] Hill A,F(xiàn)arrow R"2nd,Rusoja E,et al. Indirect signs of aortic dissection on POC-TTE despite an ADD-RS of 0 and D-dimer lt; 500 ng/mL[J]. Am"J"Emerg"Med,2021,50:813.e1-813.e4.
[19] Kim YW,Jung WJ,Cha KC,et al. Diagnosis of aortic dissection by transesophageal echocardiography during cardiopulmonary resuscitation[J]. Am"J"Emerg"Med,2021,39:92-95.
[20] Lortz J,Tsagakis K,Rammos C,et al. Intravascular ultrasound assisted sizing in thoracic endovascular aortic repair improves aortic remodeling in Type B aortic dissection[J]. PloS One,2018,13(4):e0196180.
[21] Zhong W,Li K,Wang F,et al. The clinical value of echocardiography combined with transabdominal vascular ultrasound in the diagnosis of different types of aortic dissection[J]. J"Clin"Ultrasound,2023,51(8):1312-1317.
[22] Suzuki T,Distante A,Zizza A,et al. Diagnosis of acute aortic dissection by D-dimer:the International Registry of Acute Aortic Dissection Substudy on Biomarkers (IRAD-Bio) experience[J]. Circulation,2009,119(20):2702-2707.
[23] Wang Y,Tan X,Gao H,et al. Magnitude of soluble ST2 as a novel biomarker for acute aortic dissection[J]. Circulation,2018,137(3):259-269.
[24] Peng W,Peng Z,Chai X,et al. Potential biomarkers for early diagnosis of acute aortic dissection[J]. Heart Lung,2015,44(3):205-208.
[25] Schillinger M,Domanovits H,Bayegan K,et al. C-reactive protein and mortality in patients with acute aortic disease[J]. Intensive Care Med,2002,28(6):740-745.
[26] Du R,Li D,Yu J,et al. Association of platelet to lymphocyte ratio and risk of in-hospital mortality in patients with type B acute aortic dissection[J]. Am"J"Emerg"Med,2017,35(2):368-370.
[27] Takagi H,Manabe H,Kawai N,et al. Circulating matrix metalloproteinase-9 concentrations and abdominal aortic aneurysm presence:a meta-analysis[J]. Interact"Cardiovasc"Thorac"Surg,2009,9(3):437-440.
[28] Song J,Peng H,Lai M,et al. Relationship between inflammatory-related cytokines with aortic dissection[J]. Int"Immunopharmacol,2023,122:110618.
[29] Isselbacher EM,Preventza O,Hamilton Black J"3rd,et al. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease:a report of the American Heart Association/American College of Cardiology Joint Committee on clinical practice guidelines[J]. Circulation,2022,146(24):e334-e482.
[30] Andersson C,Nayor M,Tsao CW,et al. Framingham Heart Study:JACC focus seminar,1/8[J]. J"Am"Coll"Cardiol,2021,77(21):2680-2692.
[31] Wang S,Wu J,Li X,et al. CXCR6 mediates pressure overload-induced aortic stiffness by increasing macrophage recruitment and reducing exosome-miRNA29b[J]. J"Cardiovasc"Transl"Res,2023,16(2):271-286.
[32] Kajikawa M,Noma K,Maruhashi T,et al. Rho-associated kinase activity is a predictor of cardiovascular outcomes[J]. Hypertension,2014,63(4):856-864.
[33] 王宏宇. 血管衰老臨床檢測(cè)技術(shù)——重視血管內(nèi)皮功能的評(píng)價(jià)與Endo FIND研究啟示[J]. 中國(guó)心血管雜志,2021,26(5):418-424.
[34] Thijssen DHJ,Bruno RM,van Mil ACCM,et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans[J]. Eur"Heart J,2019,40(30):2534-2547.
[35] 中國(guó)醫(yī)藥教育協(xié)會(huì)血管醫(yī)學(xué)專(zhuān)業(yè)委員會(huì),中華醫(yī)學(xué)會(huì)北京心血管病學(xué)分會(huì)血管專(zhuān)業(yè)學(xué)組,北京大學(xué)醫(yī)學(xué)部血管疾病社區(qū)防治中心.中國(guó)血管健康評(píng)估系統(tǒng)應(yīng)用指南(2018第三次報(bào)告) [J]."中華醫(yī)學(xué)雜志,2018,98(37):2955-2967.
[36] Valencia-Hernández CA,Lindbohm JV,Shipley MJ,et al. Aortic pulse wave velocity as adjunct risk marker for assessing cardiovascular disease risk:prospective study[J]. Hypertension,2022,79(4):836-843.
[37] Covic A,Siriopol D. Pulse wave velocity ratio:the new “gold standard” for measuring arterial stiffness[J]. Hypertension,2015,65(2):289-290.
[38] Hayashi K,Yamamoto T,Takahara A,et al. Clinical assessment of arterial stiffness with cardio-ankle vascular index:theory and applications[J]. J"Hypertens,2015,33(9):1742-1757.
[39] Miyoshi T,Ito H,Shirai K,et al. Predictive value of the cardio-ankle vascular index for cardiovascular events in patients at cardiovascular risk[J]. J"Am"Heart Assoc,2021,10(16):e020103.
[40] 蔣姍彤,王宏宇. 基于北京血管健康分級(jí)指導(dǎo)的智能化全生命周期心臟和血管健康管理[J]. 中華臨床醫(yī)師雜志(電子版),2019,13(11):868-871.
收稿日期:2024-02-24