• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      心血管疾病自主神經(jīng)調(diào)控的交叉策略研究新進(jìn)展

      2024-12-31 00:00:00劉承哲江洪余鋰鐳
      心血管病學(xué)進(jìn)展 2024年8期

      (武漢大學(xué)人民醫(yī)院心血管醫(yī)院心內(nèi)科 武漢大學(xué)心臟自主神經(jīng)研究中心 武漢大學(xué)心血管病研究所 心血管病湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 武漢 430060)

      摘要】自主神經(jīng)失衡被認(rèn)為在心律失常等心血管疾病的病理生理機(jī)制中至關(guān)重要,針對(duì)自主神經(jīng)調(diào)控心血管疾病已成為一個(gè)研究熱點(diǎn)。隨著材料科學(xué)、醫(yī)學(xué)、物理學(xué)為代表的多學(xué)科快速發(fā)展和交叉融合,近幾十年來(lái)神經(jīng)調(diào)控領(lǐng)域取得了重大進(jìn)展,針對(duì)自主神經(jīng)調(diào)控心血管疾病已開(kāi)發(fā)了許多新的干預(yù)策略?,F(xiàn)重點(diǎn)綜述心臟自主神經(jīng)調(diào)控領(lǐng)域中交叉策略研究新進(jìn)展,以及目前技術(shù)的不足和改進(jìn)方向,指導(dǎo)自主神經(jīng)調(diào)控治療心血管疾病取得進(jìn)一步轉(zhuǎn)化應(yīng)用。

      關(guān)鍵詞】心臟自主神經(jīng);神經(jīng)調(diào)控;醫(yī)工交叉;功能性納米材料

      【DOI】10.16806/j.cnki.issn.1004-3934.2024.08.000

      New Advances in Cross-Cutting Technologies For Autonomic Modulation in Cardiovascular Disease

      LIU Chengzhe,JIANG Hong,YU Lilei

      Department of Cardiology,Cardiovascular Hospital,Renmin Hospital of Wuhan University,Cardiac Autonomic Nervous Research Center,Cardiovascular Research Institute,Wuhan University,Hubei Key Laboratory of Cardiology,Wuhan 430060,Hubei,China

      Abstract】Autonomic imbalance is thought to be crucial in the pathophysiological mechanisms of cardiovascular diseases such as arrhythmias. Autonomic modulation of cardiovascular diseases has become a research hotspot. With the rapid development and intersection of multiple disciplines,such as materials science,medicine,and physics,the field of neuromodulation has made significant progress in recent decades. For cardiovascular diseases,many new intervention strategies have been developed for autonomic neuromodulation. "We now focus on reviewing the new advances in cross-cutting strategies in the field of cardiac autonomic neuromodulation, as well as the shortcomings and directions for improvement of the current technology, to guide the autonomic neuromodulation therapy for cardiovascular diseases to achieve further translational applications.

      Keywords】Cardiac autonomic nerve;Neuromodulation;Medicine-engineering interdisciplinary research;Functional nanomaterials

      在過(guò)去20年里,心臟自主神經(jīng)調(diào)控的研究受到了極大的關(guān)注,開(kāi)發(fā)臨床干預(yù)和植入一系列旨在用于心臟神經(jīng)調(diào)控治療的設(shè)備的熱潮已出現(xiàn),目前正處于實(shí)驗(yàn)結(jié)果臨床轉(zhuǎn)化的關(guān)鍵時(shí)刻。然而,在實(shí)際應(yīng)用中仍面臨各種阻礙,如危險(xiǎn)的病毒工具、較差的生物相容性、不穩(wěn)定的治療效果以及對(duì)有線電源的依賴等。此外,傳統(tǒng)的神經(jīng)調(diào)控技術(shù)通常使用外部設(shè)置的固定參數(shù),缺乏適應(yīng)生理狀態(tài)而調(diào)整刺激參數(shù)的閉環(huán)調(diào)控能力,因此調(diào)控效果并不理想,甚至可能導(dǎo)致更嚴(yán)重的副作用。借助多學(xué)科發(fā)展和交叉融合,研究人員已開(kāi)發(fā)基于電、磁、聲、光和熱等手段的多種神經(jīng)調(diào)控技術(shù),逐步解決并優(yōu)化整個(gè)心臟神經(jīng)調(diào)控策略,現(xiàn)重點(diǎn)分析總結(jié)心臟自主神經(jīng)調(diào)控交叉策略的研究新進(jìn)展。

      1 "心臟自主神經(jīng)環(huán)路的構(gòu)成

      自主神經(jīng)對(duì)心臟的活動(dòng)進(jìn)行調(diào)控,滿足整個(gè)循環(huán)系統(tǒng)和生物體在休息、壓力和鍛煉期間行為變化的需要。心臟的自主神經(jīng)與中樞神經(jīng)系統(tǒng)之間相互聯(lián)系,同時(shí)也具有相對(duì)的獨(dú)立性。目前認(rèn)為支配心臟的自主神經(jīng)系統(tǒng)可分為三個(gè)水平:(1)較高的中樞包括大腦皮層、腦干和脊髓;(2)外源性心臟自主神經(jīng),即胸內(nèi)外神經(jīng)元,包括星狀神經(jīng)節(jié)(stellate ganglion,SG);(3)內(nèi)源性心臟自主神經(jīng)(心臟的“大腦”)[1]

      心臟輸出迷走神經(jīng)或交感神經(jīng)通路的興奮性取決于中樞以及心臟外源性和內(nèi)源性神經(jīng)節(jié)的幾個(gè)層次的共同輸入。在某些病理狀態(tài)下,如高血壓、心肌梗死和慢性心力衰竭的情況下,神經(jīng)生理變化發(fā)生在各個(gè)層面[2]。交感神經(jīng)與迷走神經(jīng)組成自主神經(jīng)系統(tǒng),相互拮抗,二者在各個(gè)器官,特別是心臟和中樞神經(jīng)系統(tǒng)之間架起神經(jīng)環(huán)路網(wǎng)絡(luò),傳遞神經(jīng)信號(hào),也為神經(jīng)調(diào)控策略奠定作用的基礎(chǔ)和靶點(diǎn)。針對(duì)這些心臟自主神經(jīng)環(huán)路和關(guān)鍵靶點(diǎn),已開(kāi)發(fā)出基于電、磁、聲、光和熱等多學(xué)科交叉神經(jīng)調(diào)控技術(shù)(圖1)。

      2 "無(wú)創(chuàng)電學(xué)神經(jīng)調(diào)控

      神經(jīng)系統(tǒng)通過(guò)電信號(hào)傳導(dǎo),大量的自主神經(jīng)電刺激手段用于治療心血管疾病已廣泛開(kāi)展。針對(duì)自主神經(jīng)環(huán)路中的多個(gè)靶點(diǎn),開(kāi)發(fā)了頸部迷走神經(jīng)刺激、頸動(dòng)脈竇電刺激和脊髓刺激等治療方案。大量研究表明這些技術(shù)可起到調(diào)控自主神經(jīng)保護(hù)心血管的作用,但都無(wú)法避免植入電池和神經(jīng)電極,這些侵入性操作限制了臨床的廣泛應(yīng)用。

      為了解決這些植入的問(wèn)題,研究人員將目光聚焦在耳迷走神經(jīng)上。作為人體重要的迷走神經(jīng)分支,耳緣迷走神經(jīng)介導(dǎo)的無(wú)創(chuàng)迷走神經(jīng)調(diào)控應(yīng)運(yùn)而生。耳支迷走神經(jīng)受到刺激后,首先傳入激活中樞的迷走神經(jīng)核團(tuán),之后再通過(guò)頸部迷走神經(jīng)等傳出支影響心臟。2013年,Yu等[3]首次通過(guò)對(duì)耳迷走神經(jīng)進(jìn)行經(jīng)皮電刺激來(lái)治療心律失常,通過(guò)固定在耳屏的鱷魚(yú)夾以80%閾值(減緩竇性心率或房室傳導(dǎo)所需的電壓)進(jìn)行低水平耳屏迷走刺激(low-level tragus nerve stimulation,LL-TS),結(jié)果表明,LL-TS持續(xù)3 h可逆轉(zhuǎn)快速心房起搏引起的心房重構(gòu),抑制心房顫動(dòng)的誘發(fā)。在犬心肌梗死模型中,持續(xù)90 d的LL-TS可減輕心肌纖維化并抑制左心室心塑,同時(shí)也抑制SG活性,減少梗死邊界區(qū)的電重構(gòu),甚至抑制室性心律失常(ventricular arrhythmia,VA)的發(fā)生[4]。2015年,Stavrakis等[5]首次將該設(shè)備用于臨床陣發(fā)性心房顫動(dòng)患者,以50%閾值的電壓程度進(jìn)行1 h的LL-TS,可抑制心房顫動(dòng)的持續(xù)時(shí)間和誘發(fā),并減少炎性細(xì)胞因子。Yu等[6]進(jìn)行了一項(xiàng)隨機(jī)對(duì)照臨床試驗(yàn),針對(duì)ST段抬高型心肌梗死患者在球囊擴(kuò)張時(shí)進(jìn)行2 h的LL-TS,抑制了心肌缺血再灌注損傷,減少了心肌梗死面積,降低了炎癥標(biāo)志物水平以及VA的發(fā)生率。LL-TS具有非藥物、無(wú)創(chuàng)、經(jīng)濟(jì)和可調(diào)節(jié)的優(yōu)點(diǎn),這表明它可能具有治療各種心血管或炎癥性疾病的廣泛前景。但是,仍需進(jìn)一步的基礎(chǔ)研究和大規(guī)模臨床試驗(yàn)來(lái)驗(yàn)證LL-TS在臨床應(yīng)用中的可靠性和安全性。由于其方便性,LL-TS可應(yīng)用于心血管疾病患者便攜長(zhǎng)期使用,以顯著減少患者發(fā)病風(fēng)險(xiǎn),改善預(yù)后,減輕社會(huì)醫(yī)療負(fù)擔(dān)。

      3 "電磁學(xué)神經(jīng)調(diào)控

      3.1 "電磁場(chǎng)神經(jīng)調(diào)控

      電磁場(chǎng)(electromagnetic filed,EMF)治療的原理是通過(guò)磁場(chǎng)產(chǎn)生電流,非侵入性地激活和抑制部分區(qū)域的神經(jīng)元活性,已被臨床應(yīng)用于緩解癲癇、帕金森病和抑郁癥等神經(jīng)系統(tǒng)疾病[7]。先前的研究[8]表明,磁刺激可能通過(guò)改變自主神經(jīng)活動(dòng)來(lái)影響心律的變化。頻率<300 Hz的低頻電磁場(chǎng)(low-frequency EMF,LF-EMF)可抑制心律失常的發(fā)生,但高頻電磁場(chǎng)刺激可能誘發(fā)心律失常。Wang等[9]證明LF-EMF可能通過(guò)抑制心房神經(jīng)節(jié)(內(nèi)源性心臟自主神經(jīng)節(jié))的神經(jīng)活動(dòng)來(lái)預(yù)防心房顫動(dòng)。此外,SG是心臟交感神經(jīng)系統(tǒng)中的一個(gè)關(guān)鍵節(jié)點(diǎn),抑制其活性可抵抗心律失常并防止心臟損傷。LF-EMF在犬模型中可實(shí)現(xiàn)誘導(dǎo)SG活性降低和VA發(fā)生率降低,其機(jī)制還可能與血管內(nèi)一氧化氮合成以及抗氧化和抗炎特性相關(guān)[10]。2020年,Markman等[11]對(duì)5例持續(xù)性室性心動(dòng)過(guò)速患者進(jìn)行了經(jīng)皮磁刺激,這是該技術(shù)的首次人體試驗(yàn),連接到磁刺激系統(tǒng)的線圈被放置在第七頸椎棘突的側(cè)面,靠近SG的位置。EMF以左斜方肌活動(dòng)閾值的80%進(jìn)行60 min刺激,治療后48 h內(nèi)持續(xù)性室性心動(dòng)過(guò)速負(fù)荷下降,室性心動(dòng)過(guò)速發(fā)生率降低。

      3.2 "磁納米神經(jīng)調(diào)控

      此外,EMF也可用做引導(dǎo)靶向傳輸?shù)姆绞?,針?duì)循環(huán)系統(tǒng)的阻塞,包括動(dòng)脈粥樣硬化斑塊,通過(guò)磁納米顆粒攜帶溶栓藥物靶向到局部,增強(qiáng)治療效果。血管內(nèi)給予具有神經(jīng)毒性的N-異丙基丙烯酰胺單體或鈣劑的超順磁性納米顆??纱虐邢虻叫姆可窠?jīng)節(jié),隨后釋放神經(jīng)毒性藥物來(lái)降低其神經(jīng)活性,借助這種新型靶向給藥系統(tǒng)可用于血管內(nèi)靶向自主神經(jīng)去神經(jīng),治療與心臟自主神經(jīng)系統(tǒng)亢進(jìn)相關(guān)的心律失常[12]。

      EMF刺激可以“集中”或“全身”的方式應(yīng)用于人體,頭、頸和胸部是“集中”刺激最常見(jiàn)的區(qū)域。LF-EMF的安全性和有效性在多種醫(yī)療條件下得到了證明。由于許多患者同時(shí)患有一系列復(fù)雜的心血管疾病,因此這種設(shè)備可同時(shí)實(shí)現(xiàn)多種目標(biāo),應(yīng)用前景廣闊??偠灾?,在未來(lái),這些設(shè)備可能會(huì)填補(bǔ)常規(guī)醫(yī)療護(hù)理的空白,不幸的是,顯示臨床益處的數(shù)據(jù)仍缺乏,應(yīng)進(jìn)行充分的對(duì)照臨床試驗(yàn)來(lái)證明其潛在有效性。

      4 "聲學(xué)神經(jīng)調(diào)控

      4.1 "聲學(xué)神經(jīng)調(diào)控——腦心環(huán)路

      超聲作為一種傳遞能量的載體,具有良好的穿透性、靶向性且無(wú)電離輻射。超聲可通過(guò)熱效應(yīng)、空化和聲輻射力等生物效應(yīng)發(fā)揮治療作用,治療性超聲成為近年來(lái)越來(lái)越受關(guān)注的技術(shù),包括體外治療性超聲和血管內(nèi)超聲,已成功應(yīng)用于皮膚、神經(jīng)、腫瘤等領(lǐng)域[13]。Yao等[14]構(gòu)建了一個(gè)由超聲成像換能器和聚焦超聲(頻率3.8 MHz)組成的導(dǎo)管消融系統(tǒng),在犬模型中通過(guò)經(jīng)食管超聲消融SG,實(shí)驗(yàn)組的心臟搏動(dòng)QT間期低于假手術(shù)組和基線組,成功破壞神經(jīng)節(jié)組織。隨后,研究人員研究了頻率為1 MHz的低強(qiáng)度聚焦超聲對(duì)中樞和外周交感神經(jīng)節(jié)的影響。研究[15]結(jié)果表明,聚焦超聲可抑制神經(jīng)節(jié)中c-fos蛋白的表達(dá)和減少梗死周圍的炎癥,減弱交感神經(jīng)功能,顯著減少VA的發(fā)生。

      4.2 "聲學(xué)神經(jīng)調(diào)控——腎交感神經(jīng)靶點(diǎn)

      腎交感神經(jīng)是自主神經(jīng)系統(tǒng)環(huán)路上的重要靶點(diǎn),去腎交感神經(jīng)術(shù)(renal sympathetic denervation,RDN)可顯著影響心臟等其他器官?;诔暤臒嵝?yīng),已成功開(kāi)發(fā)出經(jīng)導(dǎo)管超聲消融裝置,如Paradise RDN系統(tǒng),使用球囊導(dǎo)管來(lái)輸送超聲換能器,在血管周圍1~6 mm處進(jìn)行環(huán)形消融。多中心RADIANCE-HTN SOLO研究[16]中經(jīng)導(dǎo)管超聲消融術(shù)可在無(wú)藥物輔助和不良事件的情況下降低患者的動(dòng)態(tài)高血壓。隨后,RADIANCE-HTN TRIO研究[17]進(jìn)一步證明,超聲消融可降低耐藥性高血壓患者的動(dòng)態(tài)血壓。對(duì)比發(fā)現(xiàn)超聲消融比射頻消融更能顯著降低血壓,潛在的原因可能是消融目標(biāo)位于血管外,傾向于選擇穿透性的、累積熱效應(yīng)的方式來(lái)消融腎交感神經(jīng)[18]。

      此外,體外聚焦超聲RDN系統(tǒng)也在研發(fā)中。Wang等[19]通過(guò)具有中心同軸傳感器換能器的球形超聲換能器(頻率0.98 MHz)用于構(gòu)建非侵入性RDN消融系統(tǒng)。在犬模型上工作27.4 min后,血壓和血漿去甲腎上腺素水平顯著降低,組織學(xué)檢查顯示神經(jīng)纖維斷裂和神經(jīng)元壞死。之后10例高血壓患者接受非侵入性RDN治療9 min,隨訪六個(gè)月后患者動(dòng)態(tài)血壓降低,左室射血分?jǐn)?shù)改善,且無(wú)并發(fā)癥[20]。Surround Sound?系統(tǒng)提供了更快的非侵入式超聲RDN系統(tǒng)。由220個(gè)相位元件組成的相控陣換能器允許在2.8 min內(nèi)均勻消融腎動(dòng)脈周圍半徑為6 mm的球體上的14個(gè)區(qū)域。共有69例持續(xù)性高血壓患者參加了WAVE Ⅰ、Ⅱ、Ⅲ系列研究[21],這些研究顯示患者的血壓顯著降低;此外,在1年的隨訪中,患者腎臟結(jié)構(gòu)和功能良好,無(wú)嚴(yán)重并發(fā)癥。未來(lái),還需更多的研究來(lái)進(jìn)一步闡明超聲消融的最佳靶點(diǎn)。同時(shí),個(gè)體化差異也對(duì)超聲RDN提出了很高的要求,包括檢測(cè)和定位設(shè)備。

      4.3 "聲遺傳學(xué)神經(jīng)調(diào)控

      神經(jīng)具有多種機(jī)械敏感性離子通道,可感受人體內(nèi)血管壓力、肌肉張力等,Ibsen等[22]在2015年首先提出了聲遺傳學(xué)的概念,將超聲和機(jī)械敏感性離子通道結(jié)合起來(lái),具有很高的神經(jīng)調(diào)控準(zhǔn)確性和特異性。Duque等[23]發(fā)現(xiàn),在細(xì)胞中瞬時(shí)受體電位A1(transient receptor potential ankyrin 1,TRPA1)對(duì)頻率為7 MHz的超聲敏感,將TPRA1基因轉(zhuǎn)移到小鼠大腦的特定皮層區(qū)域進(jìn)行超聲刺激,鈣成像和電生理檢測(cè)顯示,只有表達(dá)TRPA1基因的神經(jīng)元被超聲刺激激活,這表明基于TRPA1的聲遺傳學(xué)可有效地調(diào)節(jié)哺乳動(dòng)物神經(jīng)元。眾所周知,TRPA1等機(jī)械敏感性離子通道不僅在中樞神經(jīng)系統(tǒng)中表達(dá),且分布在心臟[24],因此,有理由推測(cè)基于機(jī)械敏感性離子通道的聲遺傳學(xué)神經(jīng)調(diào)控可能是心臟神經(jīng)調(diào)控的一種潛在策略。

      5 "光學(xué)和光熱神經(jīng)調(diào)控

      5.1 "光學(xué)神經(jīng)調(diào)控

      臨床上光療治療新生兒高膽紅素血癥過(guò)程中,出乎意料地發(fā)現(xiàn)患者心率變異性顯著降低[25]。因此,Wang等[26]將610 nm波長(zhǎng)的光源固定在中樞下丘腦室旁核表面,并給予30 min的光照,證明了光療通過(guò)抑制交感神經(jīng)活動(dòng)和炎癥反應(yīng)對(duì)心臟缺血再灌注損傷和心肌梗死的保護(hù)作用。針對(duì)SG的光療已被證明可緩解神經(jīng)性疼痛并穩(wěn)定心率變異性,Sato等[27]使用半導(dǎo)體激光器對(duì)患者進(jìn)行SG光照,通過(guò)皮膚照射波長(zhǎng)為810 nm的激光5 min,可減少室性期前收縮次數(shù)。

      2006年,Deisseroth等[28]首次提出并定義了光遺傳學(xué)。隨著光遺傳學(xué)的快速發(fā)展,其已成為神經(jīng)研究領(lǐng)域的一個(gè)非常重要的組成部分。目前,人們?cè)絹?lái)越關(guān)注心臟的光遺傳學(xué)刺激及其在心律調(diào)節(jié)中的轉(zhuǎn)化潛力,包括基于光遺傳學(xué)的心臟起搏、再同步和除顫。Nyns等[29]通過(guò)腺相關(guān)病毒在大鼠心肌細(xì)胞中表達(dá)對(duì)紅光敏感型的視紫紅質(zhì)離子通道。然后將這些心臟置于Langendorff設(shè)置中研究發(fā)現(xiàn),照明終止了97%的單形性室性心動(dòng)過(guò)速和57%的多形性室性心動(dòng)過(guò)速,而在無(wú)照明的情況下這一比例為0。Yu等[30]通過(guò)腺相關(guān)病毒載體將古視紫紅質(zhì)-T蛋白轉(zhuǎn)染到犬的SG中,通過(guò)黃綠光照(565 nm)產(chǎn)生神經(jīng)抑制作用。這項(xiàng)研究表明,光遺傳學(xué)技術(shù)能可逆性地抑制交感神經(jīng)活動(dòng),穩(wěn)定心室的電生理,降低梗死誘導(dǎo)的VA發(fā)生率。

      5.2 "光熱神經(jīng)調(diào)控

      光照的同時(shí)也會(huì)帶來(lái)熱能,神經(jīng)也表達(dá)一系列的熱敏離子通道,這也為直接調(diào)控神經(jīng)奠定基礎(chǔ)。借助于光熱納米材料可通過(guò)近紅外光實(shí)現(xiàn)局部精準(zhǔn)的微創(chuàng)神經(jīng)光熱調(diào)控。Ye等[31]將金納米顆粒注射到SG組織中并接受5 min 808 nm近紅外光光照,交感神經(jīng)功能和神經(jīng)活性受到抑制,從而降低了心肌缺血誘導(dǎo)的VA發(fā)生率。之后Zhang等[32]進(jìn)一步借助共價(jià)有機(jī)框架納米材料實(shí)現(xiàn)近紅外光二區(qū)1064 nm的光熱調(diào)控,達(dá)到穿透深度更深,光熱效率更好的神經(jīng)調(diào)控。這種微創(chuàng)光熱神經(jīng)調(diào)控不僅可精確控制神經(jīng)活性,還可通過(guò)近紅外光介導(dǎo)的神經(jīng)調(diào)控應(yīng)用于深層組織,且無(wú)需病毒轉(zhuǎn)染,具有很好的轉(zhuǎn)化潛力。

      6 "自供電技術(shù)與閉環(huán)調(diào)控策略

      6.1 "自供電神經(jīng)調(diào)控技術(shù)

      美中不足的是,這些器件都依賴于外部的能源供應(yīng),需要的電池一般剛性強(qiáng)、體積較大、使用壽命較短,給患者帶來(lái)不便,更嚴(yán)重的是更換電池需進(jìn)行相應(yīng)的手術(shù),增加了患者的經(jīng)濟(jì)負(fù)擔(dān)和風(fēng)險(xiǎn)。自王中林教授[33]首次成功制備了壓電和摩擦電納米發(fā)電機(jī)以來(lái),基于納米發(fā)電機(jī)的自供電技術(shù)因其能將環(huán)境中的機(jī)械能轉(zhuǎn)化為電能而受到了全世界的廣泛關(guān)注。Zhang等[34]構(gòu)建了一個(gè)基于壓電納米發(fā)電機(jī)的自供電迷走神經(jīng)刺激裝置,可成功地從犬的頸動(dòng)脈搏動(dòng)中獲取生物機(jī)械能并轉(zhuǎn)化為電能刺激頸部迷走神經(jīng),調(diào)控自主神經(jīng)。Zhou等[35]構(gòu)建了一種基于摩擦電納米發(fā)電機(jī)無(wú)線自供電光遺傳調(diào)節(jié)系統(tǒng),利用人體運(yùn)動(dòng)能量供電,實(shí)現(xiàn)了光遺傳神經(jīng)調(diào)控所需的有效光學(xué)照明。長(zhǎng)期調(diào)控可顯著減輕心肌梗死誘導(dǎo)的交感神經(jīng)重構(gòu),改善心室功能障礙、減小梗死面積、增加電生理穩(wěn)定性。雖然只是一個(gè)初步的探索,但這些工作為設(shè)計(jì)自供電神經(jīng)調(diào)控器件提出了一種有見(jiàn)地的策略。

      6.2 "閉環(huán)神經(jīng)調(diào)控策略

      納米發(fā)電機(jī)不僅可供能,還可通過(guò)感受細(xì)微的形變轉(zhuǎn)換為電信號(hào)的形式實(shí)現(xiàn)自驅(qū)動(dòng)的傳感監(jiān)測(cè),具有高靈敏度、實(shí)時(shí)響應(yīng)和柔性可穿戴等優(yōu)異的特點(diǎn)。納米發(fā)電機(jī)可將心臟跳動(dòng)轉(zhuǎn)化為電脈沖,通過(guò)示波器直接展示出心臟的節(jié)律,大量研究顯示這些心電信號(hào)具有一定的診斷價(jià)值[36]。此外,納米發(fā)電機(jī)還可用來(lái)監(jiān)測(cè)血壓、汗液電解質(zhì)等生物信息。Sun等[37]設(shè)計(jì)了一種混合納米發(fā)電機(jī),可實(shí)現(xiàn)閉環(huán)自供電迷走神經(jīng)調(diào)控系統(tǒng),可實(shí)時(shí)監(jiān)測(cè)患者的脈搏波狀態(tài),并在心房顫動(dòng)發(fā)展過(guò)程中自動(dòng)進(jìn)行刺激脈沖。“監(jiān)測(cè)-調(diào)控”一體化的閉環(huán)調(diào)控能基于個(gè)體的狀態(tài)實(shí)時(shí)調(diào)整刺激參數(shù),實(shí)現(xiàn)治療最優(yōu)效果并減少副作用??偟膩?lái)說(shuō),這種基于納米發(fā)電技術(shù)的閉環(huán)策略有望用于自我供電,智能化、便攜性管理和治療慢性疾病。

      7 "總結(jié)

      借助多學(xué)科的交叉融合,神經(jīng)調(diào)控技術(shù)快速進(jìn)展,特別是功能性納米材料能通過(guò)極低的侵入性實(shí)現(xiàn)精準(zhǔn)、動(dòng)態(tài)的神經(jīng)調(diào)控。借助多科學(xué)交叉,神經(jīng)調(diào)控裝置的微型化和可穿戴化也為實(shí)現(xiàn)個(gè)性化和智能化的閉環(huán)神經(jīng)調(diào)控開(kāi)辟新途徑。

      參考文獻(xiàn)

      [1] Giannino G,Braia V,Griffith Brookles C,et al. The intrinsic cardiac nervous system:from pathophysiology to therapeutic implications[J]. Biology (Basel),2024,13(2):105.

      [2] Herring N,Kalla M,Paterson DJ. The autonomic nervous system and cardiac arrhythmias:current concepts and emerging therapies[J]. Nat Rev Cardiol,2019,16(12):707-726.

      [3] Yu L,Scherlag BJ,Li S,et al. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve:a noninvasive approach to treat the initial phase of atrial fibrillation[J]. Heart Rhythm,2013,10(3):428-435.

      [4] Yu L,Wang S,Zhou X,et al. Chronic intermittent low-level stimulation of tragus reduces cardiac autonomic remodeling and ventricular arrhythmia inducibility in"a"post-infarction canine model[J]. JACC Clin Electrophysiol,2016,2(3):330-339.

      [5] Stavrakis S,Humphrey MB,Scherlag BJ,et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial"fibrillation[J]. J Am Coll Cardiol,2015,65(9):867-875.

      [6] Yu L,Huang B,Po SS,et al. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction:a proof-of-concept study[J]. JACC Cardiovasc Interv,2017,10(15):1511-1520.

      [7] Rosson S,de Filippis R,Croatto G,et al. Brain stimulation and other biological non-pharmacological interventions in mental disorders:an umbrella review[J]. Neurosci Biobehav Rev,2022,139:104743.

      [8] Soltani D,Samimi S,Vasheghani-Farahani A,et al. Electromagnetic field therapy in cardiovascular diseases:a review of patents,clinically effective devices,and mechanism of therapeutic effects[J]. Trends Cardiovasc Med,2023,33(2):72-78.

      [9] Wang S,Zhou X,Huang B,et al. Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmia[J]. Sci Rep,2016,6:30783.

      [10] Lai Y,Zhou X,Guo F,et al. Non-invasive transcutaneous vagal nerve stimulation improves myocardial performance in doxorubicin-induced cardiotoxicity[J]. Cardiovasc Res,2022,118(7):1821-1834.

      [11] Markman TM,Hamilton RH,Marchlinski FE,et al. Case series of transcutaneous magnetic stimulation for ventricular tachycardia storm[J]. JAMA,2020,323(21):2200-2202.

      [12] Yu L,Scherlag BS,Dormer K,et al. Targeted ganglionated plexi denervation using magnetic nanoparticles carrying calcium chloride payload[J]. JACC Clin Electrophysiol,2018,4(10):1347-1358.

      [13] Zhang D,Wang X,Lin J,et al. Multi-frequency therapeutic ultrasound:a review[J]. Ultrason Sonochem,2023,100:106608.

      [14] Yao Y,Qian J,Rong S,et al. Cardiac denervation for arrhythmia treatment with transesophageal ultrasonic strategy in canine models[J]. Ultrasound Med Biol,2019,45(2):490-499.

      [15] Xiang C,Cheng Y,Yu X,et al. Low-intensity focused ultrasound modulation of the paraventricular nucleus to prevent myocardial infarction-induced ventricular arrhythmia[J]. Heart Rhythm,2024,21(3):340-348.

      [16] Azizi M,Schmieder RE,Mahfoud F,et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO):a multicentre,international,single-blind,randomised,sham-controlled trial[J]. Lancet,2018,391(10137):2335-2345.

      [17] Azizi M,Sanghvi K,Saxena M,et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO):a randomised,multicentre,single-blind,sham-controlled trial[J]. Lancet,2021,397(10293):2476-2486.

      [18] Fengler K,Rommel KP,Blazek S,et al. A three-arm randomized trial of different renal denervation devices and techniques in patients with resistant hypertension (RADIOSOUND-HTN)[J]. Circulation,2019,139(5):590-600.

      [19] Wang Q,Guo R,Rong S,et al. Noninvasive renal sympathetic denervation by extracorporeal high-intensity focused ultrasound in a pre-clinical canine model[J]. J Am Coll Cardiol,2013,61(21):2185-2192.

      [20] Rong S,Zhu H,Liu D,et al. Noninvasive renal denervation for resistant hypertension using high-intensity focused ultrasound[J]. Hypertension,2015,66(4):e22-e25.

      [21] Neuzil P,Ormiston J,Brinton TJ,et al. Externally delivered focused ultrasound"for renal denervation[J]. JACC Cardiovasc Interv,2016,9(12):1292-1299.

      [22] Ibsen S,Tong A,Schutt C,et al. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans[J]. Nat Commun,2015,6:8264.

      [23] Duque M,Lee-Kubli CA,Tufail Y,et al. Sonogenetic control of mammalian cells using exogenous transient receptor potential A1 channels[J]. Nat Commun,2022,13(1):600.

      [24] Ding Q,Liu X,Qi Y,et al. TRPA1 promotes the maturation of embryonic stem cell-derived cardiomyocytes by regulating mitochondrial biogenesis and dynamics[J]. Stem Cell Res Ther,2023,14(1):158.

      [25] Javorka K,Ma?a?ová K,Javorka M,et al. Mechanisms of cardiovascular changes of phototherapy in newborns with hyperbilirubinemia[J]. Physiol Res,2023,72(S1):S1-S9.

      [26] Wang S,Wu L,Li X,et al. Light-emitting diode therapy protects against ventricular arrhythmias by neuro-immune modulation in myocardial ischemia and reperfusion rat model[J]. J Neuroinflammation,2019,16(1):139.

      [27] Sato T,Kamada R,Koizumi T,et al. Refractory ventricular tachycardia in a patient with a left ventricular assist device successfully treated with stellate ganglion phototherapy[J]. Can J Cardiol,2020,36(12):1977.e1-1977.e3.

      [28] Zhang F,Wang LP,Boyden ES,et al. Channelrhodopsin-2 and optical control of excitable cells[J]. Nat Methods,2006,3(10):785-792.

      [29] Nyns ECA,Kip A,Bart CI,et al. Optogenetic termination of ventricular arrhythmias in the whole heart:towards biological cardiac rhythm management[J]. Eur Heart J,2017,38(27):2132-2136.

      [30] Yu L,Zhou L,Cao G,et al. Optogenetic modulation of cardiac"sympathetic nerve activity to prevent ventricular arrhythmias[J]. J Am Coll Cardiol,2017,70(22):2778-2790.

      [31] Ye T,Lai Y,Wang Z,et al. Precise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near-infrared neuromodulation[J]. Adv Funct Mater,2019,29(36):1902128.1-1902128.9.

      [32] Zhang L,Guo F,Xu S,et al. AIEgen-based covalent organic frameworks for preventing malignant ventricular arrhythmias via local hyperthermia therapy[J]. Adv Mater,2023:e2304620.

      [33] Zhong-Lin W. Piezoelectric nanogenerators—Their principle and potential applications[J]. 2006,35(11):897-903.

      [34] Zhang Y,Zhou L,Gao X,et al. Performance-enhanced flexible piezoelectric nanogenerator via layer-by-layer assembly for self-powered vagal neuromodulation[J]. Nano Energy,2021,89(Pt.A):106319.

      [35] Zhou L,Zhang Y,Cao G,et al. Wireless Self-powered optogenetic system for long-term cardiac neuromodulation to improve post-MI cardiac remodeling and malignant arrhythmia[J]. Adv Sci (Weinh),2023,10(9):e2205551.

      [36] Tang W,Sun Q,Wang ZL. Self-powered sensing in wearable electronics─A paradigm shift technology[J]. Chem Rev,2023,123(21):12105-12134.

      [37] Sun Y,Chao S,Ouyang H,et al. Hybrid nanogenerator based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment[J]. Sci Bull (Beijing),2022,67(12):1284-1294.

      收稿日期:2024-03-26

      聂荣县| 漳州市| 金门县| 东乡县| 龙川县| 延吉市| 辽宁省| 柳河县| 电白县| 松潘县| 沭阳县| 贺州市| 东乡县| 莫力| 固始县| 临武县| 昌宁县| 酒泉市| 名山县| 麻城市| 治县。| 甘孜县| 宁晋县| 新竹县| 尼勒克县| 铜川市| 高要市| 株洲县| 渝中区| 连平县| 孝感市| 仙居县| 木里| 怀化市| 吉林市| 双城市| 茂名市| 安顺市| 靖宇县| 包头市| 南城县|