摘要:【目的】明確鼠傷寒沙門(mén)氏菌感染后文昌雞盲腸內(nèi)容物中代謝物的變化,篩選出與沙門(mén)氏菌感染高度相關(guān)的代謝物,揭示禽沙門(mén)氏菌病對(duì)文昌雞盲腸代謝的影響,為進(jìn)一步了解及防治該病提供數(shù)據(jù)支撐?!痉椒ā恳?×109 CFU/mL的鼠傷寒沙門(mén)氏菌懸液經(jīng)口灌胃感染14日齡雄性文昌雞建立禽沙門(mén)氏菌病模型,同時(shí)設(shè)健康對(duì)照組和滅活菌對(duì)照組,感染后第8 d基于代謝組學(xué)對(duì)文昌雞盲腸內(nèi)容物進(jìn)行代謝物檢測(cè)分析,篩選出存在顯著差異的代謝物,并對(duì)差異代謝物進(jìn)行KEGG通路富集分析。【結(jié)果】從文昌雞盲腸內(nèi)容物樣本共鑒定出577種代謝物,在正離子(ESI+)、負(fù)離子(ESI-)模式下鑒定到的代謝物分別為417和160種。以Plt;0.05且權(quán)重值(VIP)gt;1為篩選條件,從577種代謝物中篩選出32種差異代謝物。相對(duì)于健康對(duì)照組,感染鼠傷寒沙門(mén)組存在24種差異代謝物,滅活菌對(duì)照組存在25種差異代謝物。在感染鼠傷寒沙門(mén)氏菌組中,花生四烯酸、3-(3-羥基苯基)丙酸、D-核糖、N6-乙酰基-L-賴氨酸、鳥(niǎo)嘌呤核苷、鄰苯二酚、黃體酮、3-甲基-L-酪氨酸和4-羥基苯乙烯等9種代謝物顯著升高(Plt;0.05,下同),而L-蘇氨酸、黃嘌呤、鳥(niǎo)嘌呤、次黃嘌呤、尿嘧啶和酪胺等15種代謝物顯著降低,以花生四烯酸含量升高最明顯,其與健康對(duì)照組相比的差異倍數(shù)為8.60;KEGG通路富集分析結(jié)果顯示,24種差異代謝物富集于嘌呤代謝、ABC轉(zhuǎn)運(yùn)蛋白、嘧啶代謝及不飽和脂肪酸生物合成等20條通路上,其中嘌呤代謝和ABC轉(zhuǎn)運(yùn)蛋白2條通路的富集程度達(dá)顯著水平?!窘Y(jié)論】鼠傷寒沙門(mén)氏菌感染能引起文昌雞機(jī)體代謝紊亂,尤其是盲腸內(nèi)容物中的花生四烯酸及其代謝產(chǎn)物或許是介導(dǎo)禽沙門(mén)氏菌性腸炎的關(guān)鍵物質(zhì),可作為解析沙門(mén)氏菌致病機(jī)制的切入點(diǎn)。
關(guān)鍵詞:文昌雞;鼠傷寒沙門(mén)氏菌;盲腸內(nèi)容物;代謝組學(xué);花生四烯酸
中圖分類(lèi)號(hào):S858.31文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)10-3117-10
Metabolomics-based analysis on the effects of Salmonellatyphimurium infection on cecum metabolism ofWenchang chickens
CHEN Sheng-hong,XIE Yao-chen,WEN Xiao-bo,RAN Xu-hua*
(School of Tropical Agriculture and Forestry,Hainan University,Haikou,Hainan 570228,China)
Abstract:【Objective】To clarify the changes of metabolites in cecum contents of Wenchang chickens after Salmonella typhimurium infection,to screen out metabolites highly correlated with Salmonella infection,to reveal the effects of avian salmonellosis on cecum metabolism of Wenchang chickens,and to provide data support for further understanding and prevention of the disease.【Method】A model of avian salmonellosis was established by infecting 14-day-old male Wenchang chickens with S.typhimurium suspension of 8×109 CFU/mL by oral gavage,and a healthy control group and an inactivated bacterial control group were simultaneously established.Metabolite detection and analysis based on metabolo-mics was performed on the cecum contents of Wenchang chickens on the 8th d after infection,and metabolites with signifi-cant differences were screened out,and the differential metabolites were analyzed by KEGG enrichment.【Result】A total of 577 metabolites were identified in cecum content samples of Wenchang chickens,and the number of metabolites identi-fied in positive ion(ESI+)mode and negative ion(ESI-)mode were 417 and 160 respectively.A total of 32 differential metabolites were screened from the 577 metabolites using Plt;0.05 and weight(VIP)gt;1 as the screening condition.Com-pared to the healthy control group,24 differential metabolites were present in the S.typhimurium infected group and 25 differential metabolites were present in the inactivated bacterial control group.In the group infected with S.typhimurium,9 metabolites including arachidonic acid,3-(3-hydroxyphenyl)propionic acid,D-ribose,N6-acetyl-L-lysine,guano-sine,catechol,progesterone,3-methyl-L-tyrosine and 4-hydroxystyrene exhibited significant increase(Plt;0.05,the same below),while 15 metabolites including L-threonine,xanthine,guanine,hypoxanthine,uracil and tyramine demon-strated significant decline.Arachidonic acid content increase was the most obvious,the its fold difference compared to the healthy control group was 8.60.KEGG pathway enrichment analysis revealed that 24 differential metabolites enriched in 20 pathways,including purine metabolism,ABC transport protein,pyrimidine metabolism and biosynthesis of unsatu-rated fatty acid.Of these,the purine metabolism and ABC transport protein pathways reached significant level of enrich-ment.【Conclusion】S.typhimurium infection can cause metabolic disorders in the body of Wenchang chickens.Inparticu-lar,arachidonic acid and its metabolites in the contents of the cecum may be the key substances mediating avian salmo-nellaenteritis.This can provide a perspective forth study of Salmonella pathogenesis.
Key words:Wenchang chicken;Salmonella typhimurium;cecum contents;metabolomics;arachidonic acid
Foundation items:Regional Project of National Natural Science Foundation of China(32360878);Hainan Natural Science Foundation(321RC1020);Hainan Local Chicken Industry Technical System Special Project(HNARS-06-G05)
0引言
【研究意義】禽沙門(mén)氏菌病是由沙門(mén)氏菌(Sal-monella)感染引起的一種禽類(lèi)疾病,根據(jù)其血清型的不同可分為雞白痢、禽傷寒和禽副傷寒(張珍等,2019)。雞白痢由雞白痢沙門(mén)氏菌引起,主要通過(guò)種蛋傳播,嚴(yán)重影響種蛋孵化率和雛雞成活率(Cariou et al.,2013);禽傷寒由雞傷寒沙門(mén)氏菌引起,通常引起3周齡以上的家禽發(fā)病,在成年雞群中有較高的發(fā)病率(崔宏曉,2022);禽副傷寒由腸炎沙門(mén)氏菌(S.enteritidis)、鼠傷寒沙門(mén)氏菌(S.typhimurium)等有鞭毛可運(yùn)動(dòng)的沙門(mén)氏菌引起,主要威脅2周齡左右的雛雞,在成年雞群中多表現(xiàn)為陰性感染或慢性疾病癥狀(Saad etal.,2018;李惠龍,2020)。沙門(mén)氏菌屬于革蘭氏陰性菌,已知的血清型超過(guò)2600種,最常見(jiàn)的血清型為腸炎沙門(mén)氏菌和鼠傷寒沙門(mén)氏菌(張珍等,2019;張璐,2021;程佳瑩等,2023)。沙門(mén)氏菌感染會(huì)進(jìn)一步引起禽類(lèi)對(duì)其他病原菌感染的抵抗力下降,嚴(yán)重時(shí)引起病雞死亡(Ramtahal et al.,2022)。沙門(mén)氏菌對(duì)雛雞的高威脅性及其在成年雞群中的隱性致病狀態(tài),給家禽養(yǎng)殖業(yè)帶來(lái)巨大經(jīng)濟(jì)損失(Maroufetal.,2022),而深入了解沙門(mén)氏菌感染對(duì)禽類(lèi)機(jī)體的影響是防治該病最根本的途徑和手段。【前人研究進(jìn)展】鼠傷寒沙門(mén)氏菌的黏附與侵襲,會(huì)導(dǎo)致宿主出現(xiàn)以腹瀉為主的臨床特征,同時(shí)誘發(fā)腸道炎癥反應(yīng)(李萍等,2022),進(jìn)而引起宿主腸道菌群失調(diào)及機(jī)體代謝紊亂等(袁曉慧等,2020;Lee et al.,2021)。代謝物變化能反映細(xì)胞功能的變化,因此通過(guò)代謝組學(xué)可快速檢測(cè)并鑒定禽沙門(mén)氏菌病所引起的代謝紊亂特征(Schrimpe-Rutledge et al.,2016),為其臨床診斷、病因與病理機(jī)制研究提供數(shù)據(jù)支持,有利于深入了解沙門(mén)氏菌感染對(duì)宿主機(jī)體代謝的影響。Antunes等(2011)通過(guò)代謝組學(xué)分析發(fā)現(xiàn),鼠傷寒沙門(mén)氏菌感染顯著影響小鼠類(lèi)固醇、類(lèi)花生酸、膽汁酸、碳水化合物和嘌呤類(lèi)等代謝通路;Gutiérrez等(2021)研究表明,鼠傷寒沙門(mén)氏菌通過(guò)破壞胰島素信號(hào)傳導(dǎo),而損害巨噬細(xì)胞的防御功能。此外,腸道菌群衍生的代謝物對(duì)宿主免疫防御等也發(fā)揮重要作用(Wang et al.,2023)。例如,多胺能抑制促炎細(xì)胞因子產(chǎn)生,吲哚可增強(qiáng)上皮細(xì)胞的屏障功能(Postler and Ghosh,2017);短鏈脂肪酸能促進(jìn)抗炎因子表達(dá)(Levy et al.,2017),以及調(diào)節(jié)糖代謝紊亂(Serino,2018)、膽固醇合成(Michael et al.,2020)和緊密連接(Xia et al.,2020)等。Sokol等(2008)研究發(fā)現(xiàn),糞桿菌(Fecalbacterium)代謝產(chǎn)物能阻斷NF-κB通路并抑制IL-8產(chǎn)生;Levy等(2017)研究表明,脆弱擬桿菌(Bacteroides fragilis)分泌的聚糖A能刺激Treg細(xì)胞生成;Hu等(2021)研究證實(shí),初級(jí)膽汁酸被腸道微生物轉(zhuǎn)化為次級(jí)膽汁酸后,可發(fā)揮抑制促炎細(xì)胞因子分泌的作用。鑒于機(jī)體代謝物及腸道微生物代謝物對(duì)宿主健康有著至關(guān)重要的影響,揭示沙門(mén)氏菌感染后雞盲腸代謝物的變化情況,不僅能豐富人們對(duì)禽沙門(mén)氏菌病的認(rèn)知,還有助于從分子層面尋求防治方法?!颈狙芯壳腥朦c(diǎn)】禽類(lèi)盲腸是沙門(mén)氏菌的易感腸段,也是微生物豐度和數(shù)量最高的腸段(張春善等,2009),但目前關(guān)于鼠傷寒沙門(mén)氏菌感染對(duì)雞盲腸代謝影響的研究鮮見(jiàn)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】基于代謝組學(xué)檢測(cè)分析鼠傷寒沙門(mén)氏菌感染后文昌雞盲腸內(nèi)容物中代謝物的變化,篩選出與沙門(mén)氏菌感染高度相關(guān)的代謝物,旨在揭示禽沙門(mén)氏菌病對(duì)文昌雞盲腸代謝的影響,為進(jìn)一步了解及防治該病提供數(shù)據(jù)支撐。
1材料與方法
1.1試驗(yàn)材料
供試菌種為鼠傷寒沙門(mén)氏菌ATCC 14028株,購(gòu)自廣東環(huán)凱微生物科技有限公司;14日齡文昌雞購(gòu)自海南(潭牛)文昌雞股份有限公司;甲酸、甲醇和乙腈購(gòu)自賽默飛世爾科技(中國(guó))有限公司;2-氯-L-苯丙氨酸和甲酸銨購(gòu)自上海阿拉丁生化科技股份有限公司。Q Exactive HF-X質(zhì)譜儀和Vanquish超高效液相系統(tǒng)購(gòu)自美國(guó)ThermoFisher Scientific公司。
1.2試驗(yàn)分組及樣本采集
選取30羽14日齡雄性文昌雞(文昌維拉德品系),隨機(jī)分為3組。健康對(duì)照組(A組):正常飼喂;滅活菌對(duì)照組(B組):經(jīng)口灌胃1 mL的8×109 CFU/mL滅活鼠傷寒沙門(mén)氏菌懸液(70℃滅活30min);攻活菌組(C組):經(jīng)口灌胃1 mL的8×109 CFU/mL鼠傷寒沙門(mén)氏菌懸液。所有試驗(yàn)雞提供相同的飼料與飲水條件,分別飼養(yǎng)于溫濕度、光照等環(huán)境條件基本一致的不同房舍。試驗(yàn)開(kāi)始計(jì)為第0 d,于第8 d采取頸椎脫臼法安樂(lè)處死所有試驗(yàn)雞,在冰上無(wú)菌采集腸道內(nèi)容物樣品用于檢測(cè)分析(n=3),代謝組學(xué)檢測(cè)委托蘇州帕諾米克生物醫(yī)藥科技有限公司完成。動(dòng)物試驗(yàn)由海南大學(xué)倫理委員會(huì)批準(zhǔn),許可證號(hào)HNUAUCC-2023-00080。
1.3樣本檢測(cè)
準(zhǔn)確稱取適量盲腸內(nèi)容物樣本,置于含600μL甲醇(含4 mg/L 2-氯-L-苯丙氨酸)的2 mL離心管中,渦旋振蕩30 s,4℃下12000 r/min離心10 min,取上清液,過(guò)0.22μm濾膜后用于液相色譜—質(zhì)譜檢測(cè)(LC-MS)(Turroni et al.,2016)。色譜條件:使用ACQUITYUPLC?HSS T3色譜柱(2.1 mm×150 mm,1.8μm,柱溫40℃)在Vanquish超高效液相系統(tǒng)中,以0.25 mL/min的液體流速(進(jìn)樣量2μL)進(jìn)行檢測(cè)。正離子(ESI+)模式下,流動(dòng)相為0.1%甲酸乙腈和0.1%甲酸水,并通過(guò)梯度洗脫方式使用0.1%甲酸乙腈和0.1%甲酸水進(jìn)行洗脫;負(fù)離子(ESI-)模式下,流動(dòng)相為乙腈和5 mmol/L甲酸銨水,同樣按梯度洗脫方式以乙腈和5 mmol/L甲酸銨水進(jìn)行洗脫(Zelena et al.,2009)。質(zhì)譜條件:使用Q Exactive HF-X質(zhì)譜儀對(duì)樣本進(jìn)行檢測(cè),在ESI+和ESI-模式下分別采集數(shù)據(jù)(Want et al.,2013)。
1.4數(shù)據(jù)處理
使用ProteoWizard(v3.0.8789)將原始質(zhì)譜下機(jī)文件轉(zhuǎn)換為mzXML格式(Smith et al.,2006),再用XCMS對(duì)數(shù)據(jù)進(jìn)行峰檢測(cè)、峰過(guò)濾及峰對(duì)齊處理(Navarro-Reig et al.,2015),得到物質(zhì)定量列表;獲得的物質(zhì)定量列表在mzCloud和KEGG等數(shù)據(jù)庫(kù)中進(jìn)行物質(zhì)鑒定(Ogata et al.,1999;Abdelrazig et al.,2020)。采用R軟件的Ropls包對(duì)樣本數(shù)據(jù)進(jìn)行主成分分析(PCA)、偏最小二乘判別分析(PLS-DA)、正交偏最小二乘判別分析(OPLS-DA)及制圖(Thévenot et al.,2015),然后根據(jù)PLS-DA降維方法計(jì)算變量權(quán)重值(VIP),以log2 Fold Change表示組間差異倍數(shù),當(dāng)Plt;0.05且VIPgt;1時(shí),認(rèn)為代謝物分子具有統(tǒng)計(jì)學(xué)意義。采用MetaboAnalyst v6.0對(duì)篩選出來(lái)的差異代謝分子進(jìn)行功能通路富集分析(Pang et al.,2020)。在統(tǒng)計(jì)分析過(guò)程中,通過(guò)Unpaired t檢驗(yàn)或Mann-Whitney U檢驗(yàn)對(duì)非正態(tài)分布的樣本進(jìn)行差異顯著性分析,涉及2組以上數(shù)據(jù)時(shí)則進(jìn)行單因素方差分析(One-way ANOVA),使用SPSS 24.0進(jìn)行非參數(shù)Kruskal-Wallis檢驗(yàn),并以GraphPad Prism 8.0進(jìn)行統(tǒng)計(jì)分析。
2結(jié)果與分析
2.1數(shù)據(jù)可靠性檢驗(yàn)結(jié)果
由基峰色譜圖(圖1)可看出,各處理組色譜峰的峰值強(qiáng)度和保留時(shí)間趨勢(shì)基本相似,說(shuō)明重復(fù)性良好,檢測(cè)結(jié)果可靠。
2.2組間差異分析結(jié)果
PLS-DA分析結(jié)果顯示,在ESI-模式下不同比較組的樣本點(diǎn)均分布在原點(diǎn)兩端,界限清晰,各組間分離較明顯,但組內(nèi)均存在樣本較分散現(xiàn)象(圖2-A~圖2-C)。模型置換檢驗(yàn)可驗(yàn)證PLS-DA模型的可靠性,當(dāng)R2(表示模型對(duì)數(shù)據(jù)的擬合程度)和Q2(表示建模后模型的預(yù)測(cè)能力)均低于1.0時(shí),隨著置換保留度的降低,隨機(jī)模型Q2呈逐漸下降趨勢(shì)(圖2-D~圖2-F),說(shuō)明原模型不存在過(guò)擬合現(xiàn)象,模型穩(wěn)健性良好,分析結(jié)果可靠。
2.3代謝物鑒定結(jié)果
所有文昌雞盲腸內(nèi)容物樣本共鑒定出577種代謝物,在ESI+、ESI-模式下鑒定到的代謝物數(shù)量分別為417和160種。根據(jù)化學(xué)分類(lèi)歸屬信息對(duì)鑒定到的所有代謝物進(jìn)行分類(lèi)統(tǒng)計(jì),結(jié)果(圖3)顯示,有80種代謝物歸屬于羧酸及其衍生物(Carboxylic acids and derivatives),占13.86%;77種歸屬于脂肪酰基(Fatty acyls),占13.44%;42種歸屬于苯及其取代衍生物(Benzene and substituted derivatives),占7.28%;35種歸屬于類(lèi)固醇及其衍生物(Steroids and steroid derivatives),占6.07%;31種歸屬于有機(jī)氧化合物(Organooxygen compounds),占5.37%;21種歸屬于腎上腺素脂質(zhì)(Prenol lipids),占3.64%;13種歸屬于酚類(lèi)(Phenols),占2.25%;10種歸屬于吡啶及其衍生物(Pyridines and derivatives),占1.73%。
2.4代謝物分析結(jié)果
以rlt;0.05且VIPgt;1為篩選條件,從577種代謝物中篩選出32種差異代謝物。相對(duì)于A組,C組存在24種差異代謝物(表1),其中,花生四烯酸、3-(3-羥基苯基)丙酸、D-核糖、N6-乙?;?L-賴氨酸、鳥(niǎo)嘌呤核苷、鄰苯二酚、黃體酮、3-甲基-L-酪氨酸和4-羥基苯乙烯等9種代謝物顯著升高(rlt;0.05,下同),而L-蘇氨酸、黃嘌呤、鳥(niǎo)嘌呤、次黃嘌呤、尿嘧啶和酪胺等15種代謝物顯著降低;以花生四烯酸的差異倍數(shù)最大,為8.60。相對(duì)于A組,B組存在25種差異代謝物(表2),其中,12-酮基四氫白三烯B4、抗壞血酸鹽、赤蘚糖醇、3-(3-羥基苯基)丙酸、N6-乙?;?L-賴氨酸和壬二酸等12種代謝物顯著升高,而N-乙酰胞壁酸酯、胸腺嘧啶、鳥(niǎo)嘌呤、次黃嘌呤和三甲銨乙內(nèi)酯等13種代謝物顯著降低。差異代謝物Z-socre分析結(jié)果(圖4-A)及差異代謝物聚類(lèi)分析結(jié)果(圖4-B)均顯示,B組和C組的差異代謝物與A組間存在明顯差異,但B組與C組間存在較相似的代謝模式。
2.5差異代謝物KEGG通路富集分析結(jié)果
KEGG通路富集分析結(jié)果(圖5)顯示,C組中的24種差異代謝物主要富集于嘌呤代謝(Purine metabolism)、ABC轉(zhuǎn)運(yùn)蛋白(ABC transport proteins)、嘧啶代謝(Pyrimidine metabolism)及不飽和脂肪酸生物合成(Biosynthesis of unsaturated fatty acids)等20條通路(圖5-A)上,其中嘌呤代謝和ABC轉(zhuǎn)運(yùn)蛋白2條通路的富集程度達(dá)顯著水平;B組中的25種差異代謝物主要富集于嘌呤代謝、PPAR信號(hào)通路(PPAR signaling pathway)、ABC轉(zhuǎn)運(yùn)蛋白、酪氨酸代謝(Tyrosine metabolism)等16條通路(圖5-B)上,其中嘌呤代謝和PPAR信號(hào)通路的富集程度達(dá)顯著水平。
3討論
禽類(lèi)腸道菌群結(jié)構(gòu)具有較高的豐度及多樣性(Bjerrum etal.,2006;Stanley et al.,2014),能分解復(fù)雜的有機(jī)質(zhì),并產(chǎn)生多種具有益生作用的次級(jí)代謝產(chǎn)物(Sun et al.,2018;Michael et al.,2020),直接或間接參與宿主的多種代謝通路調(diào)節(jié)(Zhu et al.,2023;Ren etal.,2024)。本研究結(jié)果表明,文昌雞感染鼠傷寒沙門(mén)氏菌后其盲腸內(nèi)容物中的花生四烯酸含量差異倍數(shù)為8.60(r=0.007),滅活菌對(duì)照組文昌雞盲腸內(nèi)容物中的花生四烯酸差異倍數(shù)為6.87(r=0.09),差異代謝物聚類(lèi)分析也發(fā)現(xiàn)B組與C組間存在較相似的代謝模式,可能是熱滅活處理釋放了細(xì)菌脂多糖所導(dǎo)致。值得注意的是,花生四烯酸屬于不飽和脂肪酸,在生物體內(nèi)主要是以磷脂的形式存在于細(xì)胞膜上,可在磷脂酶A2(PLA2)的作用下分解成游離形式,或在多種酶的作用下通過(guò)環(huán)氧合酶(COX)、脂氧合酶(LOX)和細(xì)胞色素P450(CYP450)代謝途徑分解成具有生物活性的類(lèi)花生酸(Zhang et al.,2023)。
花生四烯酸衍生的前列腺素(PGs)和白三烯(LTs)在機(jī)體腸道中發(fā)揮促炎與抗炎作用,且這些作用是由不同類(lèi)型的G蛋白偶聯(lián)受體(GPRs)介導(dǎo)(Stenson,2014;Kawahara et al.,2015;Yokomizo et al.,2018)。在促進(jìn)炎癥方面,前列腺素E2(PGE2)通過(guò)中性粒細(xì)胞和腫瘤相關(guān)成纖維細(xì)胞上的前列腺素E受體2(EP2)在多個(gè)步驟中促進(jìn)炎癥反應(yīng),從而形成結(jié)直腸癌的腫瘤微環(huán)境(Aoki and Narumiya,2017)。已有研究顯示,抑制花生四烯酸衍生的類(lèi)花生酸可降低Th17和Th1細(xì)胞介導(dǎo)的炎癥反應(yīng),進(jìn)而緩解結(jié)腸炎(Monk et al.,2014);而白三烯B4(LTB4)刺激樹(shù)突狀細(xì)胞上的高親和力受體BLT1,導(dǎo)致促炎細(xì)胞因子IL-6、TNF-“和IL-12分泌合成,誘導(dǎo)Th1和Th17細(xì)胞增加TNBS誘導(dǎo)的結(jié)腸炎嚴(yán)重程度(Zhou et al.,2018)。此外,類(lèi)花生酸可發(fā)揮抗炎作用,在炎癥性腸病中PGE2通過(guò)其受體EP4的信號(hào)傳導(dǎo),增加上皮完整性而發(fā)揮保護(hù)作用(Kabashima et al.,2002;Jiang et al.,2007)。結(jié)腸炎患者的中性粒細(xì)胞表現(xiàn)出前列腺素D受體(DP)高水平表達(dá)(Sturm et al.,2014),而DP激動(dòng)劑治療可降低腸道中的髓過(guò)氧化物酶活性,說(shuō)明中性粒細(xì)胞的遷移受PGD2-DP軸抑制(Ajueboretal.,2000),對(duì)炎癥發(fā)揮控制效果。LTB4對(duì)12-羥基十七碳三烯酸(12-HHT)受體具有高親和力,當(dāng)缺乏12-HHT受體時(shí)會(huì)增加DSS誘導(dǎo)的結(jié)腸炎嚴(yán)重程度,進(jìn)一步說(shuō)明LTB4和12-HHT介導(dǎo)的信號(hào)傳導(dǎo)具有抗炎特性(Iizuka et al.,2010)。LTB4還能通過(guò)其受體控制組織炎癥期間的巨噬細(xì)胞遷移(Ermis et al.,2024)??梢?jiàn),花生四烯酸的代謝產(chǎn)物既具有促炎作用,也具有抗炎作用。
炎癥反應(yīng)受多種復(fù)雜且龐大的細(xì)胞通路調(diào)控(殷斌等,2023)。已有研究表明,在巨噬細(xì)胞中ABC轉(zhuǎn)運(yùn)蛋白介導(dǎo)膽固醇外流,可減少TLR4引起的炎癥信號(hào)(Sontagetal.,2010);巨噬細(xì)胞可通過(guò)調(diào)控嘌呤代謝產(chǎn)生細(xì)胞外腺苷,使巨噬細(xì)胞偏向M2極化(Ohradanova-Repic et al.,2018);PPAR可被多不飽和脂肪酸衍生物激活,進(jìn)而調(diào)節(jié)炎癥反應(yīng)(Korbecki et al.,2019)。本研究的差異代謝物KEGG通路富集分析結(jié)果顯示,經(jīng)鼠傷寒沙門(mén)氏菌感染后文昌雞盲腸中的多種差異代謝物富集于嘌呤代謝、ABC轉(zhuǎn)運(yùn)蛋白及PPAR信號(hào)通路上,故推測(cè)禽沙門(mén)氏菌性腸炎的發(fā)生受多種代謝通路調(diào)控。因此,通過(guò)代謝組學(xué)篩選可進(jìn)一步明確與禽沙門(mén)氏菌性腸炎高度相關(guān)的分子,結(jié)合選擇性育種在禽類(lèi)抗病育種方面的應(yīng)用(Berghofetal.,2019),有利于加速推進(jìn)禽類(lèi)抗沙門(mén)氏菌病育種進(jìn)程。
綜上所述,鼠傷寒沙門(mén)氏菌感染導(dǎo)致文昌雞盲腸內(nèi)容物中的花生四烯酸含量顯著升高,而花生四烯酸的代謝產(chǎn)物廣泛參與炎癥反應(yīng),故推測(cè)花生四烯酸及其代謝產(chǎn)物介導(dǎo)了禽沙門(mén)氏菌性腸炎的發(fā)生與發(fā)展,因此,通過(guò)干預(yù)花生四烯酸的代謝途徑有助于防治禽沙門(mén)氏菌性腸炎。
4結(jié)論
鼠傷寒沙門(mén)氏菌感染能引起文昌雞機(jī)體代謝紊亂,尤其是盲腸內(nèi)容物中的花生四烯酸及其代謝產(chǎn)物或許是介導(dǎo)禽沙門(mén)氏菌性腸炎的關(guān)鍵物質(zhì),可作為解析沙門(mén)氏菌致病機(jī)制的切入點(diǎn)。
參考文獻(xiàn)(References):
程佳瑩,肖夢(mèng)詩(shī),任昕淼,于穎,付曉丹,牟海津.2023.基于轉(zhuǎn)錄組學(xué)分析腸道菌群發(fā)酵褐藻膠寡糖對(duì)沙門(mén)氏菌的作用機(jī)制[J].河南農(nóng)業(yè)科學(xué),52(6):139-149.[Cheng J Y,Xiao M S,Ren X M,Yu Y,F(xiàn)u X D,Mou H J.2023.Mechanism of alginate oligosaccharides fermented with gut microbiota inoculum against Salmonella enterica by transcriptomic analysis[J].Journal of Henan Agricultural Sciences,52(6):139-149.]doi:10.15933/j.cnki.1004-3268.2023.06.015.
崔宏曉.2022.沙門(mén)氏菌外膜囊泡對(duì)雞單核吞噬細(xì)胞免疫激活的作用研究[D].楊凌:西北農(nóng)林科技大學(xué).[Cui H X.2022.Immune activation of Salmonella outer membrane vesicles on chicken mononuclear phagocytes[D].Yang-ling:Northwest Aamp;F University.]doi:10.27409/d.cnki.gxbnu.2022.000088.
李惠龍.2020.腸炎沙門(mén)氏菌感染后不同時(shí)間點(diǎn)雞盲腸組織轉(zhuǎn)錄組分析[D].泰安:山東農(nóng)業(yè)大學(xué).[Li H L.2020.Temporal transcriptome following Salmonella enteritidis infection in chicken cecum[D].Tai?an:Shandong Agricul‐tural University.]doi:10.27277/d.cnki.gsdnu.2020.000536.
李萍,蘇佳麗,杜欣軍,王碩.2022.大豆豆粕及赤小豆膳食補(bǔ)充對(duì)鼠傷寒沙門(mén)氏菌侵染小鼠腸道炎癥的影響[J].天津科技大學(xué)學(xué)報(bào),37(3):12-20.[Li P,Su J L,Du X J,WangS.2022.Effects of dietary supplementation of soybean and red bean on intestinal inflammation in mice infected with Salmonella enterica serotype Typhimurium[J].Journal of Tianjing University of Scienceamp;Technology,37(3):12-20.]doi:10.13364/j.issn.1672-6510.20210302.
殷斌,雋昌寧,秦雨,鐘誠(chéng),趙增成,黃中利,沈濤,周慧爽,鄭乾坤,林樹(shù)乾.2023.基于系統(tǒng)生物學(xué)分析探究熱應(yīng)激誘導(dǎo)雞腸道損傷的作用機(jī)制[J].南方農(nóng)業(yè)學(xué)報(bào),54(4):969-981.[Yin B,Juan C N,Qin Y,Zhong C,Zhao Z C,Huang Z L,Shen T,Zhou H S,Zheng Q K,Lin S Q.2023.Exploring the mechanism of heat stress-induced intestinal injury in chickens based on systems biology analysis[J].Journal of Southern Agriculture,54(4):969-981.]doi:10.3969/j.issn.2095-1191.2023.04.001.
袁曉慧,薛寒,張?jiān)圃?,潘志明,焦新?2020.腸道菌群代謝產(chǎn)物在鼠傷寒沙門(mén)菌感染中的作用研究進(jìn)展[J].中國(guó)微生態(tài)學(xué)雜志,32(8):966-970.[Yuan X H,Xue H,Zhang Y Z,Pan Z M,Jiao X A.2020.The role of gut microbiota metabolites in Salmonella enterica serovar Typhimurium infection:Research progress[J].Chinese Journal of Microe-cology,32(8):966-970.]doi:10.13381/j.cnki.cjm.20200 8021.
張春善,蔣燕俠,王博,王汝都,申紅星.2009.銅、維生素A及互作效應(yīng)對(duì)肉仔雞腸壁組織結(jié)構(gòu)、腸道微生物和血清生長(zhǎng)激素的影響[J].中國(guó)農(nóng)業(yè)科學(xué),42(4):1485-1493.[Zhang C S,Jiang Y X,Wang B,Wang R D,Shen H X.2009.Influence of various dietary copper and vitamin Alevels on intestinal wall structure,cecal gut flora and GHin serum in broilers[J].Scientia Agricultura Sinica,42(4):1485-1493.]doi:10.3864/j.issn.0578-1752.2009.04.046.
張璐.2021.雞源沙門(mén)氏菌血清型、耐藥性及分子流行病學(xué)研究[D].北京:中國(guó)獸醫(yī)藥品監(jiān)察所.[Zhang L.2021.Study on serotypes,antimicrobial resistance and molecular epidemiology of Salmonella spp.from chicken[D].Bei‐jing:China Institute of Veterinary Drug Control.]doi:10.27645/d.cnki.gzsys.2021.000004.
張珍,施開(kāi)創(chuàng),王孝德,黎宗強(qiáng),尹彥文,屈素潔,陸文俊.2019.2015—2017年廣西雞源沙門(mén)氏菌耐藥性與致病性的相關(guān)性分析[J].南方農(nóng)業(yè)學(xué)報(bào),50(10):2350-2358.[Zhang Z,Shi K C,Wang X D,Li Z Q,Yin Y W,Qu S J,Lu W J.2019.Correlation between antimicrobial resis‐tance and pathogenicity of Salmonella from chicken in Guangxi during 2015-2017[J].Journal of Southern Agri‐culture,50(10):2350-2358.]doi:10.3969/j.issn.2095-1191.2019.10.28.
Abdelrazig S,Safo L,Rance G A,F(xiàn)ay M W,Theodosiou E,Topham P D,Kim D H,F(xiàn)ernández-CastanéA.2020.Meta‐boliccharacterisation of Magnetospirillumgryphiswal-dense MSR-1 using LC-MS-based metabolite profiling[J].RSC Advances,10(54):32548-32560.doi:10.1039/d0ra 05326k.
Ajuebor M N,Singh A,Wallace J L.2000.Cyclooxygenase-2-derived prostaglandin D2 is an early anti-inflammatory signal in experimental colitis[J].American Journal of Physiology-Gastrointestinal and Liver Physiology,279(1):G238-G244.doi:10.1152/ajpgi.2000.279.1.G238.
Antunes L C M,Arena E T,Menendez A,Han J,F(xiàn)erreira R B R,Buckner M M C,Loli?P,Madilao L L,Bohlmann J,Borchers C H,Brett Finlay B.2011.Impact of Salmonella infection on host hormone metabolism revealed by metabo‐lomics[J].Infection and Immunity,79(4):1759-1769.doi:10.1128/iai.01373-10.
Aoki T,Narumiya S.2017.Prostaglandin E2-EP2 signaling as a node of chronic inflammation in the colon tumor microen‐vironment[J].Inflammation and Regeneration,37:4.doi:10.1186/s41232-017-0036-7.
Berghof T V L,Matthijs M G R,Arts J A J,Bovenhuis H,Dwars R M,van der Poel J J,Visker M H P W,Parmentier H K.2019.Selective breeding for high natural antibody level increases resistance to avian pathogenic Escherichia coli(APEC)in chickens[J].Developmentalamp;Compara‐tive Immunology,93:45-57.doi:10.1016/j.dci.2018.12.007.
Bjerrum L,Engberg R M,Leser T D,Jensen B B,F(xiàn)inster K,Pedersen K.2006.Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques[J].Poultry Science,85(7):1151-1164.doi:10.1093/ps/85.7.1151.
Cariou N,Christensen H,Salandre O,Albaric O,Bisgaard M,Malher X.2013.Genital form of pasteurellosis inbreeding turkeys infected during artificial insemination and isolation of an unusual strain of Pasteurella multocida[J].Avian Diseases,57(3):693-697.doi:10.1637/10471-121812-Case.1.
Ermis E,Nargis T,Webster K,Tersey S A,Anderson R M,Mirmira R G.2024.Leukotriene B4 receptor 2 governs macrophage migration during tissue inflammation[J].Jour‐nal of Biological Chemistry,300(1):105561.doi:10.1016/j.jbc.2023.105561.
Gutiérrez S,F(xiàn)ischer J,Ganesan R,Hos N J,Cildir G,Wolke M,Pessia A,F(xiàn)rommolt P,Desiderio V,Velagapudi V,Robin‐son N.2021.Salmonella typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macro‐phage defense[J].PLoS Pathogens,17(9):e1009943.doi:10.1371/journal.ppat.1009943.
Hu J P,Wang C K,Huang X Y,Yi S L,Pan S,Zhang Y T,Yuan G X,Cao Q F,Ye X S,Li H.2021.Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling[J].Cell Reports,36(12):109726.doi:10.1016/j.celrep.2021.109726.
Iizuka Y,Okuno T,Saeki K,Uozaki H,Okada S,Misaka T,Sato T,Toh H,F(xiàn)ukayama M,Takeda N,Kita Y,Shimizu T,Nakamura M,Yokomizo T.2010.Protective role of the leukotriene B4 receptor BLT2 in murine inflammatory coli‐tis[J].FASEB Journal,24(12):4678-4690.doi:10.1096/fj.10-165050.
Jiang G L,Nieves A,Im W B,Old D W,Dinh D T,Wheeler L.2007.The prevention of colitis by E prostanoid receptor 4 agonist through enhancement of epithelium survival and regeneration[J].The Journal of Pharmacology and Experi‐mental Therapeutics,320(1):22-28.doi:10.1124/jpet.106.111146.
Kabashima K,Saji T,Murata T,Nagamachi M,Matsuoka T,Segi E,Tsuboi K,Sugimoto Y,Kobayashi T,Miyachi Y,Ichikawa A,Narumiya S.2002.The prostaglandin receptor EP4 suppresses colitis,mucosal damage and CD4 cell acti‐vation in the gut[J].The Journal of Clinical Investigation,109(7):883-893.doi:10.1172/jci 14459.
Kawahara K,Hohjoh H,Inazumi T,Tsuchiya S,Sugimoto Y.2015.Prostaglandin E2-induced inflammation:Relevance of prostaglandin E receptors[J].Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids,1851(4):414-421.doi:10.1016/j.bbalip.2014.07.008.
Korbecki J,Bobiński R,Dutka M.2019.Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors[J].Inflammation Research,68(6):443-458.doi:10.1007/s00011-019-01231-1.
Lee M,Hosseindoust A,Oh S M,Ko H S,Cho E S,Sa S,Kim Y I,Choi J W,Kim J S.2021.Impact of an anti-Salmonella typhimurium Bacteriophage on intestinal microbiota and immunity status of laying hens[J].Journal of Animal Phy-siology and Animal Nutrition,105(5):952-959.doi:10.1111/jpn.13424.
Levy M,Blacher E,Elinav E.2017.Microbiome,metabolites and host immunity[J].Current Opinion in Microbiology,35:8-15.doi:10.1016/j.mib.2016.10.003.
Marouf S,Ibrahim H M,El-Naggar M S,Swelum A A,Alqhtani A H,El-Saadony M T,El-Tarabily K A,Salem H M.2022.Inactivated pentavalent vaccine against myco‐plasmosis and salmonellosis for chickens[J].Poultry Scien-ce,101(11):102139.doi:10.1016/j.psj.2022.102139.
Michael O S,Dibia C L,Soetan O A,Adeyanju O A,Oyewole A L,Badmus O O,Adetunji C O,Soladoye A O.2020.Sodium acetate prevents nicotine-induced cardiorenal dys‐metabolism through uric acid/creatine kinase-dependent pathway[J].Life Sciences,257:118127.doi:10.1016/j.lfs.2020.118127.
Monk J M,Turk H F,F(xiàn)an Y Y,Callaway E,Weeks B,Yang P Y,McMurray D N,Chapkin R S.2014.Antagonizing ara‐chidonic acid-derived eicosanoids reduces inflammatory Th17 and Th1 cell-mediated inflammation and colitis severity[J].Mediators of Inflammation,2014:917149.doi:10.1155/2014/917149.
Navarro-Reig M,Jaumot J,García-Reiriz A,Tauler R.2015.Evaluation of changes induced in rice metabolome by Cd and Cu exposure using LC-MS with XCMS and MCR-ALS data analysis strategies[J].Analytical and Bioanalyti‐cal Chemistry,407(29):8835-8847.doi:10.1007/s00216-015-9042-2.
Ogata H,Goto S,Sato K,F(xiàn)ujibuchi W,Bono H,Kanehisa M.1999.KEGG:Kyoto encyclopedia of genes and genomes[J].Nucleic Acids Research,27(1):29-34.doi:10.1093/nar/27.1.29.
Ohradanova-Repic A,Machacek C,Charvet C,Lager F,Le Roux D,Platzer R,Leksa V,Mitulovic G,Burkard T R,Zlabinger G J,F(xiàn)ischer M B,F(xiàn)euillet V,Renault G,Blüml S,Benko M,Suchanek M,Huppa J B,Matsuyama T,Cavaco-Paulo A,Bismuth G,Stockinger H.2018.Extracel‐lular purine metabolism is the switchboard of immunosup‐pressive macrophages and a novel target to treat diseases with macrophage imbalances[J].Frontiers in Immuno-logy,9:852.doi:10.3389/fimmu.2018.00852.
Pang Z Q,Chong J,Li S Z,Xia J G.2020.MetaboAnalystR 3.0:Toward an optimized workflow for global metabolo‐mics[J].Metabolites,10(5):186.doi:10.3390/metabo 10 050186.
Postler T S,Ghosh S.2017.Understanding the holobiont:How microbial metabolites affect human health and shape the immune system[J].Cell Metabolism,26(1):110-130.doi:10.1016/j.cmet.2017.05.008.
Ramtahal M A,Amoako D G,Akebe A L K,Somboro A M,Bester L A,Essack S Y.2022.A public health insight into Salmonella in poultry in Africa:A review of the pastdecade:2010-2020[J].Microbial Drug Resistance,28(6):710-733.doi:10.1089/mdr.2021.0384.
Ren Y L,Shi X Y,Mu J,Liu S Y,Qian X,Pei W L,Ni S H,Zhang Z D,Li L,Zhang Z.2024.Chronic exposure to parabens promotes non-alcoholic fatty liver disease in asso‐ciation with the changes of the gut microbiota and lipid metabolism[J].Foodamp;Function,15(3):1562-1574.doi:10.1039/d3fo04347a.
Saad N J,Lynch V D,Antillón M,Yang C G,Crump J A,Pitzer V E.2018.Seasonal dynamics of typhoid and paratyphoid fever[J].Scientific Reports,8(1):6870.doi:10.1038/s41598-018-25234-w.
Schrimpe-Rutledge A C,Codreanu S G,Sherrod S D,McLean J A.2016.Untargeted metabolomics strategies-challenges and emerging directions[J].Journal of the American So-ciety for Mass Spectrometry,27(12):1897-1905.doi:10.1007/s 13361-016-1469-y.
Serino M.2018.Molecular paths linking metabolic diseases,gut microbiota dysbiosis and enterobacteria infections[J].Journal of Molecular Biology,430(5):581-590.doi:10.1016/j.jmb.2018.01.010.
Smith C A,Want E J,O’Maille G,Abagyan R,Siuzdak G.2006.XCMS:Processing mass spectrometry data for me-tabolite profiling using nonlinear peak alignment,matc-hing,and identification[J].Analytical Chemistry,78(3):779-787.doi:10.1021/ac051437y.
Sokol H,Pigneur B,Watterlot L,Lakhdari O,Bermúdez-Humarán L G,Gratadoux J J,Blugeon S,Bridonneau C,F(xiàn)uret J P,Corthier G,Grangette C,Vasquez N,Pochart P,Trugnan G,Thomas G,Blottière H M,DoréJ,Marteau P,Seksik P,Langella P.2008.Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients[J].Pro‐ceedings of the National Academy of Sciences of the United States of America,105(43):16731-16736.doi:10.1073/pnas.0804812105.
Sontag T J,Reardon C A,Getz G S.2010.ABC transporters:Lipid transport and inflammation[J].Current Opinion in Lipidology,21(2):159-160.doi:10.1097/MOL.0b013e32 83376910.
Stanley D,Hughes R J,Moore R J.2014.Microbiota of the chicken gastrointestinal tract:Influence on health,produc‐tivity and disease[J].Applied Microbiology and Biotech‐nology,98:4301-4310.doi:10.1007/s00253-014-5646-2.
Stenson W F.2014.The universe of arachidonic acid metabo‐lites in inflammatory bowel disease:Can we tell the goodfrom the bad?[J].Current Opinion inGastroenterology,30(4):347-351.doi:10.1097/mog.0000000000000075.
Sturm E M,Radnai B,Jandl K,Stan?i?A,Parzmair G P,H?genauer C,Kump P,Wenzl H,Petritsch W,Pieber T R,Schuligoi R,Marsche G,F(xiàn)erreirós N,Heinemann A,Schicho R.2014.Opposing roles of prostaglandin D2 receptors in ulcerative colitis[J].The Journal of Immuno-logy,193(2):827-839.doi:10.4049/jimmunol.1303484.
Sun L L,Xie C,Wang G,Wu Y,Wu Q,Wang X M,Liu J,Deng YY,Xia J L,Chen B,Zhang S Y,Yun C Y,Lian G,Zhang X J,Zhang H,Bisson W H,Shi J M,Gao X X,Ge P P,Liu C H,Krausz K W,Nichols R G,Cai J W,Rimal B,Patterson A D,Wang X,Gonzalez F J,Jiang C T.2018.Gut microbiota and intestinal FXR mediate the clinicalbenefits of metformin[J].Nature Medicine,24(12):1919-1929.doi:10.1038/s41591-018-0222-4.
Thévenot E A,Roux A,Xu Y,Ezan E,Junot C.2015.Analysis of the human adult urinary metabolome variations with age,body mass index,and gender by implementing a com‐prehensive workflow for univariate and OPLS statistical analyses[J].Journal of Proteome Research,14(8):3322-3335.doi:10.1021/acs.jproteome.5b00354.
Turroni S,F(xiàn)iori J,Rampelli S,Schnorr S L,Consolandi C,Ba-rone M,Biagi E,F(xiàn)anelli F,Mezzullo M,Crittenden A N,Henry A G,Brigidi P,Candela M.2016.Fecal metabo‐lome of the Hadza hunter-gatherers:A host-microbiome integrative view[J].Scientific Reports,6:32826.doi:10.1038/srep32826.
Wang X L,Niu L L,Wang Y X,Zhan S Y,Wang L J,Dai D H,Cao J X,Guo J Z,Li L,Zhang H P,Zhong T.2023.Com‐bining 16S rRNA sequencing and metabolomics data to decipher the interactions between gut microbiota,hostimmunity,and metabolites in diarrheic young small rumi‐nants[J].International Journal of Molecular Sciences,24(14):11423.doi:10.3390/ijms241411423.
Want E J,Masson P,Michopoulos F,Wilson I D,Theodoridis G,Plumb R S,Shockcor J,Loftus N,Holmes E,Nicholson J K.2013.Global metabolic profiling of animal and human tissues via UPLC-MS[J].Nature Protocols,8(1):17-32.doi:10.1038/nprot.2012.135.
Xia W R,Khan I,Li X A,Huang G X,Yu Z L,Leong W K,Han R X,Ho L T,Wendy Hsiao W L.2020.Adaptogenic flower buds exert cancer preventive effects by enhancing the SCFA-producers,strengthening the epithelial tight junction complex and immune responses[J].Pharmaco‐logical Research,159:104809.doi:10.1016/j.phrs.2020.104809.
Yokomizo T,Nakamura M,Shimizu T.2018.Leukotriene receptors as potential therapeutic targets[J].Journal of Clinical Investigation,128(7):2691-2701.doi:10.1172/jci97946.
Zelena E,Dunn W B,Broadhurst D,F(xiàn)rancis-McIntyre S,Car‐roll K M,Begley P,O'Hagan S,Knowles J D,Halsall A,Consortium H,Wilson I D,Kell D B.2009.Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum[J].Analytical Chemistry,81(4):1357-1364.doi:10.1021/ac8019366.
Zhang Y R,Liu Y X,Sun J,Zhang W,Guo Z,Ma Q.2023.Ara‐chidonic acid metabolism in health and disease[J].Med-Comm,4(5):e363.doi:10.1002/mco2.363.
Zhou J F,Lai W M,Yang W J,Pan J P,Shen H,Cai YY,Yang C X,Ma N J,Zhang Y,Zhang R,Xie X,Dong Z J,Gao Y,Du C S.2018.BLT1 in dendritic cells promotes Th1/Th17 differentiation and its deficiency ameliorates TNBS-induced colitis[J].Cellularamp;Molecular Immunology,15(12):1047-1056.doi:10.1038/s41423-018-0030-2.
Zhu J X,Liu W B,Bian Z,Ma Y M,Kang Z X,Jin J H,Li X Y,Ge S Y,Hao Y L,Zhang H X,Xie Y H.2023.Lactoba-cillus plantarum Zhang-LL inhibits colitis-related tumori‐genesis by regulating arachidonic acid metabolism and CD22-mediated B-cell receptor regulation[J].Nutrients,15(21):4512.doi:10.3390/nu 15214512.
(責(zé)任編輯蘭宗寶)