摘要:【目的】探究表沒食子兒茶素沒食子酸酯(EGCG)對熱應(yīng)激誘導(dǎo)豬骨骼肌衛(wèi)星細(xì)胞凋亡的影響及其作用機(jī)制,為緩解豬熱應(yīng)激反應(yīng)和促進(jìn)豬肌肉生長提供理論參考?!痉椒ā?1.5℃處理2 d構(gòu)建豬骨骼肌衛(wèi)星細(xì)胞熱應(yīng)激模型,使用CCK-8法檢測熱應(yīng)激和EGCG對細(xì)胞生長水平的影響,利用Hoechst 33258染色和流式細(xì)胞儀檢測熱應(yīng)激和EGCG對細(xì)胞凋亡水平的影響,采用實時熒光定量PCR檢測Bcl-2、BAX、Caspase-3、Caspase-9和Cytc基因相對表達(dá)量,探究EGCG對熱應(yīng)激細(xì)胞凋亡相關(guān)基因表達(dá)的影響,并通過Western blotting檢測Bcl-2和BAX蛋白相對表達(dá)量及Bax/Bcl-2比值,探究EGCG對熱應(yīng)激細(xì)胞凋亡相關(guān)蛋白表達(dá)的影響。【結(jié)果】41.5℃處理2 d極顯著降低豬骨骼肌衛(wèi)星細(xì)胞生長水平(Plt;0.01,下同)并極顯著提高細(xì)胞凋亡率;熱應(yīng)激能顯著提高Caspase-3和Cytc基因及BAX蛋白的相對表達(dá)量(Plt;0.05,下同),極顯著提高BAX和Caspase-9基因的相對表達(dá)量,極顯著降低Bcl-2基因的相對表達(dá)量,顯著降低Bcl-2蛋白的相對表達(dá)量。EGCG能緩解熱應(yīng)激誘導(dǎo)的豬骨骼肌衛(wèi)星細(xì)胞生長水平下降和凋亡水平升高,并降低促凋亡相關(guān)基因BAX、Caspase-3、Caspase-9和Cytc及BAX蛋白的相對表達(dá)量,提高抗凋亡基因Bcl-2和蛋白Bcl-2的相對表達(dá)量?!窘Y(jié)論】EGCG能緩解熱應(yīng)激誘導(dǎo)的豬骨骼肌衛(wèi)星細(xì)胞生長水平下降,并通過調(diào)控Bcl-2、BAX、Caspase-3、Cas-pase-9和Cytc等抗/促凋亡相關(guān)基因及其蛋白的相對表達(dá)量來緩解熱應(yīng)激引起的細(xì)胞凋亡。
關(guān)鍵詞:豬;EGCG;熱應(yīng)激;骨骼?。恍l(wèi)星細(xì)胞;細(xì)胞凋亡
中圖分類號:S828.1文獻(xiàn)標(biāo)志碼:A文章編號:2095-1191(2024)10-3190-09
Protective effects of EGCG on heat stress-induced apoptosis in porcine skeletal muscle satellite cells
YANG Bao1,WANG Qian1,LIYin1,JIANG Qin-yang1,2,HUANG Yan-na1,2*
(1College of Animal Science and Technology,Guangxi University,Nanning,Guangxi 530004,China;2Guangxi KeyLaboratory of Animal Breeding,Disease Control and Prevention,Nanning,Guangxi 530004,China)
Abstract:【Objective】This study aimed to investigate the effects and mechanisms of epigallocatechingallate(EGCG)on apoptosis of porcine skeletal muscle satellite cells induced by heat stress,providing theoretical reference for alleviating heat stress responses and promoting muscle growth in pigs.【Method】A heat stress model of porcine skeletal musclesate-llite cells was established by treating cells at 41.5°C for 2 d.The effects of heat stress and EGCG on cell growth level were assessed using the CCK-8 assay.Hoechst 33258 staining and flow cytometry were used to detect effects of heat stress and EGCG on cell apoptosis levels.Followed by real-time fluorescence quantitative PCR to measure the relative expression levels of Bcl-2,BAX,Caspase-3,Caspase-9 and Cytc genes,exploring the effects of EGCG on apoptosis related gene expression under heat stress.Western blotting was performed to detect the relative expression levels of Bcl-2 and BAX proteins and the BAX/Bcl-2 ratio,investigating the effects of EGCG on apoptosis related protein expression under heat stress.【Result】Treatment at 41.5°C for 2 d extremely significantly decreased cell growth level(Plt;0.01,the same below)and extremely significantly increased apoptosis rate.Heat stress significantly increased the relative expression of Caspase-3 and Cytc genes and BAX protein(Plt;0.05,the same below)and extremely significantly elevated the relative expression of BAX and Caspase-9 genes,while extremely significantly reduced the relative expression of Bcl-2 gene andsignificantly reduced the relative expression of Bcl-2 protein.EGCG alleviated the decrease in cell growth level and the in-crease in apoptosis level of porcine skeletal muscle satellite cells induced by heat stress,reduced the relative expression of pro-apoptotic genes(BAX,Caspase-3,Caspase-9 and Cytc)and BAX protein,and increased the relative expression of the anti-apoptotic gene Bcl-2 and Bcl-2 protein.【Conclusion】EGCG mitigates the decline in growth level of porcine skele-tal muscle satellite cells induced by heat stress,and alleviates apoptosis by regulating the relative expression of anti-and pro-apoptotic genes and proteins,including Bcl-2,BAX,Caspase-3,Caspase-9 and Cytc.
Key words:pig;EGCG;heat stress;skeletal muscle;satellite cells;apoptosis
Foundation items:National Natural Science Foundation of China(32360839,31760672);Guangxi Natural Science Foundation(2022GXNSFAA035525)
0引言
【研究意義】豬生長發(fā)育的最佳溫度為16~22℃(Huynh et al.,2005),大規(guī)模集約化養(yǎng)殖易造成環(huán)境溫度升高,致使豬群產(chǎn)生熱應(yīng)激反應(yīng),進(jìn)而降低其生產(chǎn)性能和繁殖性能。熱應(yīng)激會導(dǎo)致豬的采食量、生長速度和繁殖率下降(Pearce et al.,2013;Morales et al.,2014),并影響其肌肉生長速度(Locke and Celotti,2014),而豬的肌肉生長速度由骨骼肌細(xì)胞決定(Gao et al.,2015)。因此,探究熱應(yīng)激對豬骨骼肌細(xì)胞生長和凋亡的影響及其緩解機(jī)制,對緩解豬熱應(yīng)激反應(yīng)及促進(jìn)豬肌肉生長具有重要意義?!厩叭搜芯窟M(jìn)展】持續(xù)的高溫環(huán)境會影響育肥豬的肉品質(zhì),導(dǎo)致pH、滴水損失和肌內(nèi)脂肪含量等指標(biāo)顯著下降(楊培歌,2014),究其原因是高溫環(huán)境引起育肥豬產(chǎn)生了熱應(yīng)激反應(yīng),并導(dǎo)致蛋白合成降低、脂肪沉積增加及活性氧積累(Ma etal.,2010;Pearce et al.,2011;王澤平等,2022;Bejaouiet al.,2023);環(huán)境溫度升高還會導(dǎo)致豬的日增重降低(馬現(xiàn)永等,2015)。骨骼肌衛(wèi)星細(xì)胞能通過細(xì)胞增殖和分化為骨骼肌纖維的形成提供物質(zhì)基礎(chǔ),因此其增殖和分化能力對豬的瘦肉產(chǎn)量和生長效率至關(guān)重要(Ren et al.,2024)。研究表明,高溫環(huán)境能引起骨骼肌衛(wèi)星細(xì)胞內(nèi)活性氧積累,進(jìn)而激活細(xì)胞內(nèi)氧化應(yīng)激和凋亡相關(guān)信號通路(Ganesan et al.,2017)。表沒食子兒茶素沒食子酸酯(Epigallocatechin-3-gallate,EGCG)是一種天然多酚類物質(zhì),具有抗病毒(Ohno et al.,2013)、抗氧化(Shanmugametal.,2016)、抗菌(Lee et al.,2017)、抗炎(Song et al.,2019)及抗癌(Maleki Dana et al.,2022)等功能,已廣泛用于保健產(chǎn)品開發(fā)和醫(yī)藥領(lǐng)域研究。Othman等(2017)研究發(fā)現(xiàn),EGCG能通過調(diào)節(jié)線粒體途徑中抗/促凋亡信號蛋白平衡來降低心肌組織細(xì)胞凋亡水平,進(jìn)而預(yù)防心肌受損;Zhao等(2021)研究表明,EGCG通過Keap1/Nrf2信號通路提高肉雞的抗氧化能力,而緩解熱應(yīng)激對雞肉品質(zhì)的影響;Zhou等(2022)研究發(fā)現(xiàn),EGCG能通過抑制氧化應(yīng)激而緩解排卵后豬卵母細(xì)胞的衰老和凋亡水平(Zhou et al.,2022);Raoofi等(2023)研究證實,小鼠日糧中補(bǔ)充EGCG可顯著降低經(jīng)慢性陰囊熱誘導(dǎo)的小鼠睪丸組織中細(xì)胞凋亡水平,進(jìn)而緩解熱應(yīng)激引起的睪丸功能障礙?!颈狙芯壳腥朦c】至今,有關(guān)豬熱應(yīng)激的研究已有較多報道(Morales et al.,2014;馬現(xiàn)永等,2015;崔艷軍,2016),但鮮見探究EGCG對熱應(yīng)激豬骨骼肌衛(wèi)星細(xì)胞保護(hù)作用的研究報道。因此探究EGCG對熱應(yīng)激誘導(dǎo)豬骨骼肌衛(wèi)星細(xì)胞凋亡的保護(hù)作用對開發(fā)緩解熱應(yīng)激的功能性飼料添加劑具有重要意義?!緮M解決的關(guān)鍵問題】構(gòu)建豬骨骼肌衛(wèi)星細(xì)胞熱應(yīng)激模型,探究EGCG對熱應(yīng)激誘導(dǎo)的豬骨骼肌衛(wèi)星細(xì)胞凋亡的影響及其作用機(jī)制,為實際生產(chǎn)中緩解豬熱應(yīng)激反應(yīng)和促進(jìn)豬肌肉生長提供理論參考。
1材料與方法
1.1試驗材料
豬骨骼肌衛(wèi)星細(xì)胞購自上海基斯德喏生物科技有限公司。EGCG(純度≥98%)購自西安萬方生物科技有限公司;CCK-8試劑盒購自北京索萊寶科技有限公司;TRIzol、反轉(zhuǎn)錄試劑盒和實時熒光定量PCR試劑盒購自南京諾唯贊生物科技股份有限公司;ECL發(fā)光顯影液和Hoechst 33258染色液購自上海碧云天生物技術(shù)股份有限公司;細(xì)胞凋亡檢測試劑盒購自杭州科聯(lián)工程技術(shù)有限公司;PBS、DMEM高糖培養(yǎng)基和胎牛血清購自美國Gibco公司;BAX Rabbit pAb、Bcl-2 Rabbit pAb、β-Actin Rabbit pAb和HRP Goat Anti-Rabbit購自武漢愛博泰克生物科技有限公司。主要儀器設(shè)備:M200 PRO酶標(biāo)儀購自德國TECAN公司;倒置熒光顯微鏡購自日本Nikon公司;熒光定量PCR儀和ChemiDocTM MP成像系統(tǒng)購自美國Bio-Rad公司;流式細(xì)胞儀購自美國Ther-moFisher Scientific公司。
1.2試驗方法
1.2.1豬骨骼肌衛(wèi)星細(xì)胞培養(yǎng)豬骨骼肌衛(wèi)星細(xì)胞以1×105個/mL的密度接種在60 mm細(xì)胞培養(yǎng)皿中,補(bǔ)充含10%胎牛血清的細(xì)胞培養(yǎng)基,置于37.0℃、5%CO2培養(yǎng)箱中培養(yǎng)。待細(xì)胞匯合度達(dá)80%~90%時棄培養(yǎng)基,PBS清洗2次,加入1 mL胰蛋白酶消化,待細(xì)胞逐漸變圓后,棄胰蛋白酶,加入2 mL細(xì)胞培養(yǎng)基終止消化。將細(xì)胞吹打懸浮,1000 r/min離心5 min,棄上清液。加入適量細(xì)胞培養(yǎng)基并吹打混勻,接種于60mm細(xì)胞培養(yǎng)皿或6孔細(xì)胞培養(yǎng)板中,置于37.0℃、5%CO2培養(yǎng)箱中培養(yǎng)。
1.2.2豬骨骼肌衛(wèi)星細(xì)胞生長水平檢測試驗設(shè)37.0℃、37.0℃+EGCG、41.5℃和41.5℃+EGCG組。取生長狀態(tài)良好的豬骨骼肌衛(wèi)星細(xì)胞消化并調(diào)整密度至5×104個/mL,96孔細(xì)胞培養(yǎng)板每孔加入100.0μL細(xì)胞懸液,培養(yǎng)24 h后棄上清液,加入100.0μL含20μmol/L EGCG或不含EGCG的細(xì)胞培養(yǎng)基(20μmol/L為預(yù)試驗篩選所得的最適濃度),在37.0和41.5℃培養(yǎng)箱中分別培養(yǎng)1、2、3、4和5 d。根據(jù)CCK-8試劑盒說明測定豬骨骼肌衛(wèi)星細(xì)胞生長水平,每組設(shè)6個重復(fù)。
1.2.3 Hoechst 33258染色將豬骨骼肌衛(wèi)星細(xì)胞接種至24孔細(xì)胞培養(yǎng)板中,按照37.0℃、37.0℃+EGCG、41.5℃和41.5℃+EGCG分組處理2 d;去除細(xì)胞培養(yǎng)基,PBS洗滌1次;4%多聚甲醛固定20min,PBS洗滌3次,每次5 min;每孔加入250.0μL Hoechst 33258染色液,置于搖床上染色5min;染色結(jié)束后,PBS洗滌3次,每次5min;倒置顯微鏡下采集圖像。
1.2.4流式細(xì)胞儀檢測將豬骨骼肌衛(wèi)星細(xì)胞以5×104個/孔的密度接種于6孔細(xì)胞培養(yǎng)板中;41.5℃培養(yǎng)箱培養(yǎng)2 d后收集細(xì)胞;1×Binding Buffer重懸細(xì)胞,并根據(jù)細(xì)胞凋亡檢測試劑盒說明加入PI和Annexin-FITC;渦旋混勻,避光孵育5 min;經(jīng)流式細(xì)胞儀檢測,用FlowJo_V10進(jìn)行分析。
1.2.5 RNA提取與實時熒光定量PCR檢測使用TRIzol試劑提取豬骨骼肌衛(wèi)星細(xì)胞總RNA,再以反轉(zhuǎn)錄試劑盒反轉(zhuǎn)錄合成cDNA。引物委托南寧捷尼斯生物科技有限公司合成,擴(kuò)增引物序列見表1。實時熒光定量PCR反應(yīng)體系10.0μL:2×PerfectStart?Green qPCR SuperMix 5.0μL,上、下游引物各0.25μL,ddH2O 2.5μL,cDNA模板2.0μL。擴(kuò)增程序:95℃預(yù)變性30 s;95℃5 s,60℃30 s,進(jìn)行45個循環(huán)。以18S rRNA為內(nèi)參基因,采用2-ΔΔCt法計算目的基因相對表達(dá)量。
1.2.6 Western blotting檢測收集細(xì)胞沉淀,PBS洗滌1次;1500r/min離心5min,棄上清液;加入RIPA裂解液,于冰上裂解30 min;4℃下12000 r/min離心10 min,收集上清液;加入5×Loading Buffer,充分混勻后95℃水浴10 min;-20℃保存?zhèn)溆?。?0.0μL蛋白樣品進(jìn)行10%SDS-PAGE檢測(100 V至溴酚藍(lán)染液到達(dá)分離膠底部)后,在200 mA下轉(zhuǎn)膜90min;5%脫脂牛奶室溫封閉2 h,加入一抗Bcl-2(兔抗,1∶1000稀釋)、BAX(兔抗,1∶1000稀釋)和β-Actin(兔抗,1∶2000稀釋),4℃下孵育12 h;TBST洗滌后加入二抗(羊抗兔,1∶10000稀釋),室溫下孵育50 min;加入適量ECL發(fā)光顯影液,在凝膠顯影儀下曝光觀察。以β-Actin為內(nèi)參,使用ImageJ對圖像中的條帶進(jìn)行灰度分析。
1.3統(tǒng)計分析
試驗數(shù)據(jù)通過正態(tài)分布和方差齊性檢驗后,采用SPSS 25.0進(jìn)行單因素方差分析(One-way ANOVA)。
2結(jié)果與分析
2.1熱應(yīng)激對豬骨骼肌衛(wèi)星細(xì)胞生長水平的影響
豬骨骼肌衛(wèi)星細(xì)胞經(jīng)37.0和41.5℃分別處理1、2、3、4和5 d后,通過CCK-8試劑盒檢測細(xì)胞生長水平。結(jié)果(圖1)顯示,與37.0℃組相比,41.5℃組豬骨骼肌衛(wèi)星細(xì)胞生長水平在第1 d時開始顯著下降(Plt;0.05,下同),第2、3、4和5 d時極顯著下降(Plt;0.01,下同),其中第4和5 d,37.0℃組和41.5℃組的豬骨骼肌衛(wèi)星細(xì)胞生長水平均趨于平緩。表明熱應(yīng)激對豬骨骼肌衛(wèi)星細(xì)胞生長水平呈時間依賴性抑制,且隨著細(xì)胞密度的升高,抑制作用逐漸趨于平緩。因此,選擇41.5℃處理2 d構(gòu)建豬骨骼肌衛(wèi)星細(xì)胞熱應(yīng)激模型。
2.2熱應(yīng)激對豬骨骼肌衛(wèi)星細(xì)胞凋亡的影響
Hoechst 33258是可穿透細(xì)胞膜的藍(lán)色熒光染料,染色后活細(xì)胞的細(xì)胞核呈彌散均勻熒光,而凋亡細(xì)胞的胞質(zhì)或細(xì)胞核呈濃染致密的塊狀熒光。Hoechst 33258染色結(jié)果(圖2)顯示,41.5℃組出現(xiàn)大量濃染致密的塊狀熒光,而37.0℃組僅出現(xiàn)少量濃染致密的塊狀熒光。流式細(xì)胞儀檢測結(jié)果(圖3)也顯示,41.5℃組的豬骨骼肌衛(wèi)星細(xì)胞凋亡率極顯著高于37.0℃組,約是37.0℃組的2.46倍。表明熱應(yīng)激誘導(dǎo)了豬骨骼肌衛(wèi)星細(xì)胞凋亡。
2.3熱應(yīng)激對豬骨骼肌衛(wèi)星細(xì)胞凋亡相關(guān)基因和蛋白相對表達(dá)量的影響
采用實時熒光定量PCR和Western blotting分別檢測豬骨骼肌衛(wèi)星細(xì)胞凋亡相關(guān)基因及其蛋白相對表達(dá)量,結(jié)果(圖4和圖5)顯示,與37.0℃組相比,41.5℃組Bcl-2基因相對表達(dá)量極顯著降低,Bcl-2蛋白相對表達(dá)量顯著降低;BAX基因相對表達(dá)量極顯著升高,BAX蛋白相對表達(dá)量顯著升高;Cas-pase-3和Cytc基因相對表達(dá)量顯著升高;Caspase-9基因相對表達(dá)量極顯著升高;BAX/Bcl-2比值顯著升高,進(jìn)一步證實熱應(yīng)激促進(jìn)了豬骨骼肌衛(wèi)星細(xì)胞凋亡。
2.4 EGCG對熱應(yīng)激豬骨骼肌衛(wèi)星細(xì)胞生長水平的影響
CCK-8試劑盒檢測結(jié)果(圖6)顯示,在第1~5 d,與37.0℃組相比,37.0℃+EGCG組豬骨骼肌衛(wèi)星細(xì)胞生長水平均無顯著變化(Pgt;0.05,下同);與41.5℃組相比,41.5℃+EGCG組豬骨骼肌衛(wèi)星細(xì)胞生長水平在第1 d時無顯著變化,第2、3、4和5 d時極顯著升高。表明EGCG能緩解熱應(yīng)激誘導(dǎo)的豬骨骼肌衛(wèi)星細(xì)胞生長水平下降。
2.5 EGCG對熱應(yīng)激豬骨骼肌衛(wèi)星細(xì)胞凋亡的影響
Hoechst 33258染色結(jié)果(圖7)顯示,與37.0℃組相比,37.0℃+EGCG組濃染致密的塊狀熒光數(shù)量無明顯變化;與41.5℃組相比,41.5℃+EGCG組濃染致密的塊狀熒光數(shù)量有所減少。流式細(xì)胞儀檢測結(jié)果(圖8)也顯示,與37.0℃組相比,37.0℃+EGCG組豬骨骼肌衛(wèi)星細(xì)胞凋亡率無顯著變化;與41.5℃組相比,41.5℃+EGCG組豬骨骼肌衛(wèi)星細(xì)胞凋亡率極顯著降低。表明EGCG能緩解熱應(yīng)激引起的豬骨骼肌衛(wèi)星細(xì)胞凋亡。
2.6 EGCG對熱應(yīng)激豬骨骼肌衛(wèi)星細(xì)胞凋亡相關(guān)基因和蛋白相對表達(dá)量的影響
實時熒光定量PCR和Western blotting檢測結(jié)果(圖9和圖10)顯示,與37.0℃組相比,37.0℃+EGCG組Bcl-2、BAX、Caspase-3、Caspase-9、Cytc基因相對表達(dá)量無顯著變化;與41.5℃組相比,41.5℃+EGCG組Bcl-2基因及其蛋白相對表達(dá)量顯著升高,BAX、Caspase-3、Caspase-9、Cytc基因和BAX蛋白相對表達(dá)量顯著或極顯著降低,Bax/Bcl-2比值極顯著降低??梢?,EGCG能通過調(diào)控Bcl-2、BAX等凋亡相關(guān)基因和蛋白的表達(dá)來緩解熱應(yīng)激誘導(dǎo)的豬骨骼肌衛(wèi)星細(xì)胞凋亡。
3討論
機(jī)體在高溫環(huán)境下會產(chǎn)生熱應(yīng)激反應(yīng),而熱應(yīng)激會引起蛋白的異常折疊,并導(dǎo)致線粒體和細(xì)胞損傷,最終引起細(xì)胞內(nèi)氧化自由基水平升高及抗氧化防御系統(tǒng)失衡(Khajavi et al.,2003;李述方和王海榮,2023)。壞死和凋亡是細(xì)胞走向死亡的過程,也是維持生命穩(wěn)態(tài)的重要途徑,骨骼肌細(xì)胞凋亡在肌肉生長發(fā)育中發(fā)揮著重要的調(diào)節(jié)作用(Wang et al.,2015)。研究表明,高溫環(huán)境可直接引起育肥豬肝臟細(xì)胞凋亡(崔艷軍,2016);高溫環(huán)境還能引起小鼠骨骼肌中的活性氧積累和自由基水平升高,繼而激活氧化應(yīng)激及細(xì)胞凋亡相關(guān)信號通路(Ganesan et al.,2017)。細(xì)胞凋亡時細(xì)胞核濃縮,DNA降解形成凋亡小體,最后被溶酶體降解(Xu etal.,2019)。本研究通過Hoechst 33258染色和流式細(xì)胞儀檢測發(fā)現(xiàn),41.5℃處理2d后,豬骨骼肌衛(wèi)星細(xì)胞核內(nèi)出現(xiàn)大量濃染致密的塊狀熒光,處于凋亡期的細(xì)胞比例顯著升高,表明熱應(yīng)激能誘導(dǎo)豬骨骼肌衛(wèi)星細(xì)胞凋亡。
Bcl-2家族能通過線粒體途徑調(diào)控細(xì)胞凋亡,抗凋亡因子Bcl-2與促凋亡因子BAX相互結(jié)合形成二聚體而發(fā)揮抑制細(xì)胞凋亡的作用,BAX過表達(dá)則能對抗Bcl-2的抗凋亡作用(Oltvai et al.,1993)。因此,BAX/Bcl-2比值常用于反映細(xì)胞凋亡水平。線粒體損傷時釋放的Cytc能激活Caspase-3和Cas‐pase-9的表達(dá),并誘導(dǎo)細(xì)胞凋亡(Wang et al.,2014)。研究表明,熱應(yīng)激豬肌內(nèi)前體脂肪細(xì)胞Bcl-2/BAX相關(guān)的凋亡通路信號被激活而顯著提高細(xì)胞凋亡水平(謝紅月,2021);熱應(yīng)激還能通過上調(diào)BAX/Bcl-2比值及Caspase-3等基因的表達(dá)水平來誘導(dǎo)豬睪丸間質(zhì)細(xì)胞凋亡(何芝鳳等,2023)。本研究發(fā)現(xiàn),熱應(yīng)激提高了促凋亡相關(guān)基因BAX、Caspase-3、Caspase-9和Cytc及BAX蛋白的相對表達(dá)量,抑制了抗凋亡基因Bcl-2和蛋白Bcl-2的相對表達(dá)量,且BAX/Bcl-2比值也顯著升高,進(jìn)一步表明熱應(yīng)激能促進(jìn)豬骨骼肌衛(wèi)星細(xì)胞凋亡。
EGCG能通過促進(jìn)細(xì)胞間的連接互作而保護(hù)細(xì)胞(Sigler and Ruch,1993),且其結(jié)構(gòu)中含有酚羥基,具備較強(qiáng)的抗氧化能力,可清除細(xì)胞內(nèi)過量的自由基和活性氧,進(jìn)而緩解熱應(yīng)激造成的細(xì)胞氧化損傷(de Oliveira et al.,2016)。Xiang等(2017)研究發(fā)現(xiàn),EGCG能通過抑制內(nèi)質(zhì)網(wǎng)應(yīng)激來緩解高葡萄糖誘導(dǎo)的小鼠足細(xì)胞凋亡;Butt(2020)研究證實,添加EGCG能明顯改善熱應(yīng)激誘導(dǎo)的間充質(zhì)干細(xì)胞形態(tài)異常和活力下降,并顯著降低BAX基因表達(dá)水平和凋亡細(xì)胞數(shù)量;Raoofi等(2023)研究發(fā)現(xiàn),日糧中添加EGCG能有效保護(hù)小鼠睪丸組織免受慢性熱應(yīng)激的影響,降低睪丸組織細(xì)胞凋亡水平。線粒體是調(diào)控細(xì)胞凋亡的重要細(xì)胞器,線粒體膜電位下降能通過Bcl-2家族引起細(xì)胞凋亡(劉冬梅等,2014;Fu et al.,2019)。謝紅月(2021)研究表明,EGCG通過調(diào)節(jié)Bcl-2家族中Bcl-2和BAX的表達(dá)水平來緩解熱應(yīng)激引起的豬皮下前體脂肪細(xì)胞損傷。本研究發(fā)現(xiàn),EGCG能緩解熱應(yīng)激誘導(dǎo)的豬骨骼肌衛(wèi)星細(xì)胞生長水平下降及凋亡水平升高,并降低促凋亡相關(guān)基因BAX、Caspase-3、Caspase-9和Cytc的相對表達(dá)量,提高抗凋亡基因Bcl-2的相對表達(dá)量??梢奅GCG是通過調(diào)控相關(guān)抗/促凋亡基因的表達(dá)來緩解熱應(yīng)誘導(dǎo)的豬骨骼肌衛(wèi)星細(xì)胞凋亡。
4結(jié)論
EGCG能緩解熱應(yīng)激誘導(dǎo)的豬骨骼肌衛(wèi)星細(xì)胞生長水平下降,并通過調(diào)控Bcl-2、BAX、Caspase-3、Caspase-9和Cytc等抗/促凋亡相關(guān)基因及其蛋白的相對表達(dá)量來緩解熱應(yīng)激引起的細(xì)胞凋亡。
參考文獻(xiàn)(References):
崔艷軍.2016.熱應(yīng)激和氧化應(yīng)激對肥育豬骨骼肌代謝的影響及硫辛酸的調(diào)控作用[D].北京:中國農(nóng)業(yè)科學(xué)院.[Cui Y J.2016.Effects of heat stress and oxidative stress on metabolism of skeletal muscle and protection of lipoic acid in finishing pigs[D].Beijing:Chinese Academy of Agricultural Sciences Dissertation.]
何芝鳳,李芳芳,胡傳活,趙歡歡,趙文婧,黃明光.2023.茶多酚對高溫下豬睪丸間質(zhì)細(xì)胞損傷及睪酮分泌異常的緩解作用[J].畜牧與獸醫(yī),55(11):59-64.[He Z F,Li F F,Hu C H,Zhao H H,Zhao W J,Huang M G.2023.Allevia-ting effects of tea polyphenols on damage and abnormal testosterone secretion of Leydig cells in boar under high temperature[J].Animal Husbandryamp;Veterinary Medi‐cine,55(11):59-64.]
李述方,王海榮.2023.熱應(yīng)激對綿羊機(jī)體氧化損傷及免疫功能的影響[J].江蘇農(nóng)業(yè)學(xué)報,39(7):1606-1612.[Li S F,Wang H R.2023.Effects of heat stress on oxidative dama-ge and immune function in sheep[J].Jiangsu Journal of Agricultural Sciences,39(7):1606-1612.]doi:10.3969/j.issn.1000-4440.2023.07.017.
劉冬梅,張晶,王曉非.2014.表沒食子兒茶素沒食子酸酯(EGCG)對ConA所致肝損傷小鼠Bcl-2/Bax表達(dá)的影響[J].熱帶醫(yī)學(xué)雜志,14(6):745-747.[Liu D M,Zhang J,Wang X F.2014.Effect of epigallocatechin gallate(EGCG)on the expression of Bcl-2/Bax in mouse withliver injury[J].Journal of Tropical Medicine,14(6):745-747.]
馬現(xiàn)永,蔣宗勇,師子彪,鄭春田,王麗,胡友軍,楊雪芬,高開國.2015.熱應(yīng)激對豬生產(chǎn)性能、肉品質(zhì)的影響及作用機(jī)制研究進(jìn)展[C]//中國畜牧獸醫(yī)學(xué)會.中國豬業(yè)科技大會暨中國畜牧獸醫(yī)學(xué)會2015年學(xué)術(shù)年會論文集:327.[Ma X Y,Jiang Z Y,Shi Z B,Zhen C T,Wang L,Hu Y J,Yang X F,Gao K G.2015.Research progress on effects of heat stress on performance and meat quality of pigs and its mechanism[C]//Chinese Association of Animal Science and Veterinary Medicine.China Pig Industry Science and Technology Conference and China Animal Husbandry and Veterinary Society 2015 Academic Annual Meeting:327.]
王澤平,沈婕,趙為民,付言峰,李碧俠,任守文,程金花,李輝.2022.熱應(yīng)激對豬顆粒細(xì)胞蛋白質(zhì)表達(dá)譜的影響[J].江蘇農(nóng)業(yè)學(xué)報,38(6):1569-1577.[Wang Z P,Shen J,Zhao W M,F(xiàn)u Y F,Li B X,Ren S W,Cheng J H,Li H.2022.Effects of heat stress on protein expression profilesin porcine granulosa cells[J].Jiangsu Journal of Agricul‐tural Sciences,38(6):1569-1577.]doi:10.3969/j.issn.1000-4440.2022.06.015.
謝紅月.2021.熱應(yīng)激對豬皮下和肌內(nèi)前體脂肪細(xì)胞脂肪沉積、脂肪代謝和細(xì)胞凋亡的影響及EGCG調(diào)控機(jī)制[D].南寧:廣西大學(xué).[Xie H Y.2021.Effects of heat stress on lipid deposition,lipid metabolism and apoptosis of por-cine subcutaneous and intramuscular preadipocytes and EGCG regulation mechanism[D].Nanning:Guangxi Uni-versity.]
楊培歌.2014.熱應(yīng)激對肥育豬肌肉品質(zhì)及其代謝物的影響[D].北京:中國農(nóng)業(yè)科學(xué)院.[Yang P G.2014.Effects of heat stress on meat quality and muscle metabolites of fat-tening pigs[D].Beijing:Chinese Academy of Agricultural Sciences.]
Bejaoui B,Sdiri C,Ben Souf I,Belhadj Slimen I,Ben Larbi M,Koumba S,Martin P,M’Hamdi N.2023.Physicochemical properties,antioxidant markers,and meat quality as affected by heat stress:A review[J].Molecules,28(8):3332.doi:10.3390/molecules28083332.
Butt H,Mehmood A,Ejaz A,Humayun S,Riazuddin S.2020.Epigallocatechin-3-gallate protects Wharton’s jelly derived mesenchymal stem cells against in vitro heat stress[J].European Journal of Pharmacology,872:172958.doi:10.1016/j.ejphar.2020.172958.
de Oliveira M R,Nabavi S F,Daglia M,Rastrelli L,Nabavi S M.2016.Epigallocatechin gallate and mitochondria—A story of life and death[J].Pharmacological Research,104:70-85.doi:10.1016/j.phrs.2015.12.027.
Fu Y R,Jin Y C,Zhao Y,Shan A S,F(xiàn)ang H T,Shen J L,Zhou C H,Yu H,Zhou Y F,Wang X,Wang J M,Li R H,Wang R,Zhang J.2019.Zearalenone induces apoptosis in bovine mammary epithelial cells by activating endoplasmic reticu-lum stress[J].Journal of Dairy Science,102(11):10543-10553.doi:10.3168/jds.2018-16216.
Ganesan S,Summers C M,Pearce S C,Gabler N K,ValentineR J,Baumgard L H,Rhoads R P,Selsby J T.2017.Short-term heat stress causes altered intracellular signaling in oxi-dative skeletal muscle[J].Journal of Animal Science,95(6):2438-2451.doi:10.2527/jas.2016.1233.
Gao C Q,Zhao Y L,Li H C,Sui W G,Yan H C,Wang X Q.2015.Heat stress inhibits proliferation,promotes growth,and induces apoptosis in cultured Lantang swine skeletalmuscle satellite cells[J].Journal of Zhejiang University.SCIENCE.B,16(6):549-559.doi:10.1631/jzus.B1400339.
Huynh T TT,Aarnink A J A,Gerrits W J J,Heetkamp M J W,Canh T T,Spoolder H A M,Kemp B,Verstegen M W A.2005.Thermal behaviour of growing pigs in response to high temperature and humidity[J].Applied Animal Beha-viour Science,91(1-2):1-16.doi:10.1016/j.applanim.2004.10.020.
Khajavi M,Rahimi S,Hassan Z M,Kamali M A,Mousavi T.2003.Effect of feed restriction early in life on humoral and cellular immunity of two commercial broiler strains underheat stress conditions[J].British Poultry Science,44(3):490-497.doi:10.1080/000071660310001598328.
Lee S,Al Razqan G S,Kwon D H.2017.Antibacterial acti-vity of epigallocatechin-3-gallate(EGCG)and its syner-gism withβ-lactam antibiotics sensitizing carbapenem-associated multidrug resistant clinical isolates of Acineto-bacter baumannii[J].Phytomedicine:International Jour-nal of Phytotherapy and Phytopharmacology,24:49-55.doi:10.1016/j.phymed.2016.11.007.
Locke M,Celotti C.2014.The effect of heat stress on skeletal muscle contractile properties[J].Cell Stressamp;Chapero-nes,19(4):519-527.doi:10.1007/s 12192-013-0478-z.
Ma X Y,Jiang Z Y,Lin Y C,Zheng C T,Zhou G L.2010.Dietary supplementation with carnosine improves antioxi-dant capacity and meat quality of finishing pigs[J].Jour-nal of Animal Physiology and Animal Nutrition,94(6):e286-e295.doi:10.1111/j.1439-0396.2010.01009.x.
Maleki Dana P,Sadoughi F,Asemi Z,Yousefi B.2022.The role of polyphenols in overcoming cancer drug resistance:A comprehensive review[J].Cellularamp;Molecular Biology Letters,27(1):1.doi:10.1186/s 11658-021-00301-9.
Morales A,Grageola F,García H,Arce N,Araiza B,Yá?ez J,Cervantes M.2014.Performance,serum amino acid con-centrations and expression of selected genes in pair-fed growing pigs exposed to high ambient temperatures[J].Journal of Animal Physiology and Animal Nutrition,98(5):928-935.doi:10.1111/jpn.12161.
Ohno A,Kataoka S,Ishii Y,Terasaki T,Kiso M,Okubo M,Yamaguchi K,Tateda K.2013.Evaluation of Camellia sinensis catechins as a swine antimicrobial feed additive that does not cause antibiotic resistance[J].Microbes and Environments,28(1):81-86.doi:10.1264/jsme2.me12137.
Oltvai Z N,Milliman C L,Korsmeyer S J.1993.Bcl-2 heterodi-merizes in vivo with a conserved homolog,Bax,that acce-lerates programmed cell death[J].Cell,74(4):609-619.doi:10.1016/0092-8674(93)90509-o.
Othman A I,Elkomy M M,El-Missiry M A,Dardor M.2017.Epigallocatechin-3-gallate prevents cardiac apoptosis by modulating the intrinsic apoptotic pathway in isoproterenol-induced myocardial infarction[J].European Journal of Pharmacology,794:27-36.doi:10.1016/j.ejphar.2016.11.014.
Pearce S C,Gabler N K,Ross J W,Escobar J,Patience J F,Rhoads R P,Baumgard L H.2013.The effects of heatstress and plane of nutrition on metabolism in growing pigs[J].Journal of Animal Science,91(5):2108-2118.doi:10.2527/jas.2012-5738.
Pearce S C,Upah N C,Harris A,Gabler N K,Ross J W,Rhoads R P,Baumgard L H.2011.Effects of heat stress on energetic metabolism in growing pigs[J].Federation of American Societies for Experimental Biology,25(S1):1052.5.doi:10.1096/fasebj.25.1.
Raoofi A,Omraninava M,Javan R,Maghsodi D,Rustamzadeh A,Nasiry D,Ghaemi A.2023.Protective effects of epigal-locatechin gallate in the mice induced by chronic scrotal hyperthermia[J].Tissueamp;Cell,84:102165.doi:10.1016/j.tice.2023.102165.
Ren Z Y,Zhang S Y,Shi L Y,Zhou A,Lin X,Zhang J,Zhu X S,Huang L,Li K.2024.Integrated ATAC-seq and RNA-seq analysis of in vitro cultured skeletal muscle satellite cells to understand changes in cell proliferation[J].Cells,13(12):1031.doi:10.3390/cells 13121031.
Shanmugam T,Selvaraj M,Poomalai S.2016.Epigallocatechin gallate potentially abrogates fluoride induced lung oxida-tive stress,inflammation via Nrf2/Keap1 signaling path-way in rats:An in-vivo and in-silico study[J].International Immunopharmacology,39:128-139.doi:10.1016/j.intimp.2016.07.022.
Sigler K,Ruch R J.1993.Enhancement of gap junctional inter-cellular communication in tumor promoter-treated cells by components of green tea[J].Cancer Letters,69(1):15-19.doi:10.1016/0304-3835(93)90026-6.
Song J,Lei X,Luo J X,Everaert N,Zhao G P,Wen J,Yang Y.2019.The effect of epigallocatechin-3-gallate on small intestinal morphology,antioxidant capacity and anti-inflammatory effect in heat-stressed broilers[J].Journal of Animal Physiology and Animal Nutrition,103(4):1030-1038.doi:10.1111/jpn.13062.
Wang L I,Liu F D,Luo Y,Zhu L Q,Li G H.2015.Effect of acute heat stress on adrenocorticotropic hormone,cortisol,interleukin-2,interleukin-12 and apoptosis gene expression in rats[J].Biomedical Reports,3(3):425-429.doi:10.3892/br.2015.445.
Wang Y J,Zheng W L,Bian X J,Yuan Y,Gu J H,Liu X Z,Liu Z P,Bian J C.2014.Zearalenone induces apoptosis and cytoprotective autophagy in primary Leydig cells[J].Toxi-cology Letters,226(2):182-191.doi:10.1016/j.toxlet.2014.02.003.
Xiang C H,Xiao X Y,Jiang B,Zhou M K,Zhang Y D,Li H,Hu Z.2017.Epigallocatechin-3-gallate protects from high glucose induced podocyte apoptosis via suppressing endo-plasmic reticulum stress[J].Molecular Medicine Reports,16(5):6142-6147.doi:10.3892/mmr.2017.7388.
Xu X B,Lai Y Y,Hua Z C.2019.Apoptosis and apoptotic body:Disease message and therapeutic target potentials[J].Bioscience Reports,39(1):BSR20180992.doi:10.1042/BSR20180992.
Zhao F,Wang X C,Li Y,Chen X Y,Geng Z Y,Zhang C.2021.Effects of dietary supplementation with epigallocatechin gallate on meat quality and muscle antioxidant capacity of broilers subjected to acute heat stress[J].Animals,11(11):3296.doi:10.3390/ani 11113296.
Zhou D J,Sun M H,Jiang W J,Li X H,Lee S H,Heo G,Niu Y J,Ock S A,Cui X S.2022.Epigallocatechin-3-gallate pro-tects porcine oocytes against post-ovulatory aging through inhibition of oxidative stress[J].Aging,14(21):8633-8644.doi:10.18632/aging.204368.
(責(zé)任編輯蘭宗寶)