[摘要]"自身免疫病是由于機(jī)體免疫耐受功能失調(diào),引起機(jī)體對(duì)自身抗原產(chǎn)生免疫應(yīng)答,造成組織器官損傷或功能障礙的疾病。DNA損傷及其介導(dǎo)的免疫應(yīng)答信號(hào)通路在多種自身免疫病中受到關(guān)注。當(dāng)DNA損傷過多或修復(fù)能力不足時(shí),異常的DNA分子可能被錯(cuò)誤地識(shí)別為外源性抗原,進(jìn)而激活自身免疫炎癥反應(yīng)。本文就DNA損傷及其下游的免疫應(yīng)答信號(hào)通路與自身免疫病的相關(guān)研究進(jìn)行綜述,闡述DNA損傷引發(fā)免疫反應(yīng)的機(jī)制,為自身免疫病新的治療靶點(diǎn)提供思路。
[關(guān)鍵詞]"DNA損傷;cGAS-STING通路;Ⅰ型干擾素;炎癥;自身免疫病
[中圖分類號(hào)]"R593.2""""""[文獻(xiàn)標(biāo)識(shí)碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.34.025
自身免疫病是以免疫紊亂為特征的一類疾病,表現(xiàn)為T細(xì)胞和B細(xì)胞對(duì)宿主正常成分的異常免疫反應(yīng),產(chǎn)生多種自身抗體并造成多組織損傷。這類疾病擁有多種臨床癥狀和病理表現(xiàn),可能累及全身多個(gè)系統(tǒng)和器官。在嚴(yán)重情況下,自身免疫病可導(dǎo)致急性器官衰竭與功能急劇下降,甚至危及生命。該疾病臨床表現(xiàn)多樣,從威脅生命的急性器官衰竭到易被忽視的細(xì)微檢測(cè)指標(biāo)異常,給自身免疫病臨床診斷和治療帶來巨大挑戰(zhàn)[1]。由于暴露于內(nèi)源性或外源性的有害因素,人類基因組在遺傳物質(zhì)傳遞過程中每天發(fā)生成千上萬的DNA損傷。DNA損傷未經(jīng)及時(shí)正確修復(fù),可導(dǎo)致累積受損的核DNA泄露到細(xì)胞質(zhì)中,觸發(fā)細(xì)胞內(nèi)免疫反應(yīng),引發(fā)炎癥,甚至導(dǎo)致自身免疫病的發(fā)生[2]。近年來,多項(xiàng)研究發(fā)現(xiàn)自身免疫病中存在DNA損傷累積與其介導(dǎo)的免疫應(yīng)答信號(hào)通路激活,二者在自身免疫病研究中的分子機(jī)制和功能逐漸被認(rèn)知。本文以自身免疫病中DNA損傷引起的免疫應(yīng)答機(jī)制為切入點(diǎn),探討其在自身免疫病發(fā)生發(fā)展過程中的作用,為相關(guān)疾病開發(fā)新的治療靶點(diǎn)奠定理論基礎(chǔ)。
1""胞質(zhì)內(nèi)DNA來源
1.1""細(xì)胞核DNA損傷與應(yīng)答
及時(shí)正確的DNA損傷修復(fù)對(duì)保護(hù)基因組完整性至關(guān)重要。在基因組傳遞過程中,多種內(nèi)在或外在因素(氧化應(yīng)激、復(fù)制壓力、化療、放療等)都可能對(duì)細(xì)胞造成不同形式的DNA損傷,包括堿基氧化、單鏈斷裂、雙鏈斷裂、端??s短等。為克服各種類型的DNA損傷,細(xì)胞將啟動(dòng)DNA損傷應(yīng)答,通過感知、識(shí)別特定的信號(hào),經(jīng)信號(hào)轉(zhuǎn)導(dǎo)后招募效應(yīng)分子,進(jìn)而修復(fù)受損的DNA[3]。細(xì)胞以不同方式修復(fù)不同形式的受損DNA,包括同源重組、非同源末端連接、堿基切除修復(fù)、核苷酸切除修復(fù)和錯(cuò)配修復(fù)等。一般來講,雙鏈斷裂通過同源重組或非同源末端連接修復(fù),單鏈斷裂或單個(gè)堿基損傷通過堿基切除修復(fù),紫外線引起的光二聚體通過核苷酸切除修復(fù)[4]。若細(xì)胞內(nèi)受損傷的DNA無法得到及時(shí)有效的修復(fù),DNA損傷累積達(dá)一定程度時(shí),細(xì)胞將啟動(dòng)細(xì)胞周期停滯或細(xì)胞凋亡等反應(yīng),使基因組的穩(wěn)定性得以維持[5]。
1.2""線粒體損傷
線粒體DNA(mitochondrial"DNA,mtDNA)是細(xì)胞中除細(xì)胞核DNA外另一組重要的遺傳物質(zhì),編碼多種線粒體內(nèi)部能量代謝相關(guān)的基因。mtDNA的損傷可能由多種原因引起,包括氧化應(yīng)激、紫外線輻射、藥物、炎癥反應(yīng)及自由基等。當(dāng)mtDNA損傷發(fā)生時(shí),可導(dǎo)致線粒體功能障礙,影響細(xì)胞的能量產(chǎn)生和其他線粒體相關(guān)的生理過程[6]。受損的mtDNA可從線粒體逃逸至細(xì)胞質(zhì),通過激活DNA傳感器環(huán)鳥苷酸-腺苷酸合酶(cyclic"guanosine"monophosphate-adenosine"monophosphate"synthase,cGAS)和受體[核苷酸結(jié)合結(jié)構(gòu)域富含亮氨酸重復(fù)序列和含熱蛋白結(jié)構(gòu)域受體3(nucleotide-binding"domain"leucine-rich"repeat"and"pyrin"domain-containing"receptor"3,NLRP3)、黑色素瘤缺乏因子2炎癥小體(absent"in"melanoma"2"inflammasome,AIM2)或Toll樣受體9(Toll-like"receptor"9,TLR9)]介導(dǎo)的免疫信號(hào)通路引起炎癥,進(jìn)而引發(fā)線粒體病、神經(jīng)退行性疾病、癌癥及自身免疫病等多種病理生理過程[7-8]。目前,研究人員正在探索如何保護(hù)mtDNA免受損傷,并尋找能夠修復(fù)mtDNA損傷的方法,這對(duì)治療線粒體相關(guān)疾病可能具有重要意義[7]。
1.3""微核形成
微核是當(dāng)有絲分裂錯(cuò)誤或DNA損傷導(dǎo)致染色體滯后或染色體斷裂時(shí)從細(xì)胞核中分離出來的一種孤立的核結(jié)構(gòu)。正常細(xì)胞核的核膜破裂后可在幾分鐘內(nèi)修復(fù),而微核的核膜破裂幾乎總是不可逆的[9]。微核的破裂導(dǎo)致其內(nèi)容物DNA釋放到細(xì)胞質(zhì)中,這些DNA被認(rèn)為是胞質(zhì)DNA的主要來源,可激活cGAS-干擾素基因刺激因子(stimulator"of"interferon"gene,STING)通路。然而,不同基因毒性應(yīng)激源誘導(dǎo)的微核在結(jié)合或激活cGAS方面表現(xiàn)出很大的異質(zhì)性,微核誘導(dǎo)的cGAS-STING軸下游的信號(hào)反應(yīng)產(chǎn)生不同效應(yīng),包括自身免疫、自身炎癥或細(xì)胞死亡[10]。
2""cGAS-STING通路及其介導(dǎo)的先天免疫反應(yīng)
DNA損傷后,除直接進(jìn)行損傷修復(fù)外,細(xì)胞內(nèi)還會(huì)觸發(fā)一系列復(fù)雜的生理反應(yīng),包括免疫信號(hào)轉(zhuǎn)導(dǎo)、系統(tǒng)性炎癥、衰老甚至細(xì)胞程序性死亡等。其中,先天免疫作為人體免疫的第一道防線,在處理DNA損傷的過程中發(fā)揮核心作用。深入了解DNA損傷引起的免疫應(yīng)答的復(fù)雜效應(yīng)可加深對(duì)各種疾病病因的理解。
cGAS-STING途徑是細(xì)胞感知胞質(zhì)DNA并啟動(dòng)先天免疫反應(yīng)的關(guān)鍵機(jī)制。胞質(zhì)DNA的主要來源包括細(xì)胞核和線粒體內(nèi)DNA異常泄漏,以及細(xì)胞外微環(huán)境中病原體感染后釋放的DNA。當(dāng)細(xì)胞核或線粒體發(fā)生DNA損傷后,DNA可從核或線粒體中釋放到細(xì)胞質(zhì)中[11-13]。cGAS是一種DNA傳感器,可識(shí)別細(xì)胞質(zhì)內(nèi)雙鏈DNA(double"strand,dsDNA)并與之結(jié)合。結(jié)合dsDNA后,cGAS二聚體在dsDNA上組裝,導(dǎo)致cGAS別構(gòu)激活并合成第二信使環(huán)鳥苷酸-腺苷酸(cyclic"guanosine"monophosphate-"adenosine"monophosphate,cGAMP)。cGAMP與位于內(nèi)質(zhì)網(wǎng)的跨膜蛋白STING結(jié)合,引起STING構(gòu)象改變,暴露于TANK結(jié)合激酶1(TANK-binding"kinase"1,TBK1)和干擾素調(diào)節(jié)因子3(interferon"regulatory"factor"3,IRF3)的結(jié)合位點(diǎn)。TBK1介導(dǎo)IRF3的磷酸化使IRF3二聚化并易位到細(xì)胞核,誘導(dǎo)Ⅰ型干擾素(type"Ⅰ"interferon,IFN-Ⅰ)、干擾素刺激基因(interferon"stimulated"gene,ISG)、多種炎癥介質(zhì)、促凋亡基因和趨化因子的基因表達(dá)。STING還參與核因子κB(nuclear"factor-κB,NF-κB)轉(zhuǎn)錄因子的激活,誘導(dǎo)促炎細(xì)胞因子和趨化因子表達(dá)[14-15]。完成信號(hào)轉(zhuǎn)導(dǎo)的STING經(jīng)磷酸化和泛素化等后續(xù)修飾,其活性被抑制,防止過度激活自然免疫反應(yīng)[16]。
3""DNA損傷與其介導(dǎo)的免疫應(yīng)答在常見自身免疫病中的機(jī)制與應(yīng)用研究
3.1""系統(tǒng)性紅斑狼瘡
cGAS-STING途徑通過上述機(jī)制激活的免疫反應(yīng)是抗病毒免疫和腫瘤免疫中的關(guān)鍵環(huán)節(jié)。然而,異常激活或調(diào)控不當(dāng)?shù)腸GAS-STING途徑可通過調(diào)節(jié)免疫反應(yīng)和炎癥過程在自身免疫病發(fā)生發(fā)展中發(fā)揮重要驅(qū)動(dòng)作用[17-19]。系統(tǒng)性紅斑狼瘡(systemic"lupus"erythematosus,SLE)是一種常見的以體液免疫應(yīng)答為主的系統(tǒng)性自身免疫病,多發(fā)于育齡期女性[20]。研究發(fā)現(xiàn)cGAS-STING信號(hào)通路識(shí)別胞質(zhì)內(nèi)游離dsDNA并激活先天免疫反應(yīng),在SLE的發(fā)病機(jī)制和疾病進(jìn)展中起至關(guān)重要的作用[17,21]。一個(gè)存在多名SLE患者的家族被發(fā)現(xiàn)其線粒體拓?fù)洚悩?gòu)酶TOP1MT發(fā)生P193L突變。TOP1MT的功能缺失導(dǎo)致mtDNA釋放到細(xì)胞質(zhì)中,通過cGAS-STING介導(dǎo)的天然免疫系統(tǒng)激活,增加自身免疫疾病易感性[22]。多項(xiàng)研究表明靶向cGAS-STING信號(hào)通路可作為SLE治療的潛在有效策略[13,23]。41例患者中約有15%的患者血清中cGAMP水平升高,這是cGAS激活的經(jīng)典指征[24]。此外,Kato等[17]發(fā)現(xiàn)SLE患者IFN-Ⅰ活性增強(qiáng),SLE患者血清刺激細(xì)胞內(nèi)STING誘導(dǎo)IFN-Ⅰ產(chǎn)生增多可解釋cGAS-STING通路促進(jìn)IFN-Ⅰ生物活性與ISG誘導(dǎo)活性引起SLE發(fā)病。隨著研究不斷深入,多個(gè)團(tuán)隊(duì)在靶向cGAS的酶活性抑制劑研究中取得新進(jìn)展。近期,研究團(tuán)隊(duì)在現(xiàn)有抑制劑基礎(chǔ)上改進(jìn)合成新型化合物,該化合物直接與cGAS相互作用,顯著抑制dsDNA誘導(dǎo)的下游STING/TBK1/IRF3信號(hào)磷酸化和下游ISG表達(dá)。腹腔注射該化合物造成急性炎癥小鼠血清腫瘤壞死因子(tumor"necrosis"factor,TNF)、白細(xì)胞介素(interleukin,IL)-6、IL-12水平顯著下降,顯示出良好的抗炎效果,具有治療炎癥和自身免疫病的潛在效果[25]。首個(gè)cGAS-STING通路抑制劑VENT-03已進(jìn)入Ⅰ期臨床試驗(yàn),該小分子抑制劑以cGAS酶為靶點(diǎn),通過抑制SLE中過度活躍的炎癥反應(yīng),開辟全新的SLE治療途徑[26]。除小分子抑制劑外,cGAS的環(huán)肽抑制劑也被篩選鑒定并在體外表現(xiàn)出對(duì)cGAS的較強(qiáng)抑制能力。這些環(huán)肽可特異性地結(jié)合到cGAS的DNA結(jié)合位點(diǎn),阻斷cGAS與dsDNA的結(jié)合,抑制Trex1基因敲除小鼠的原代巨噬細(xì)胞中IFN-Ⅰ和促炎細(xì)胞因子的過度表達(dá)及小鼠中的系統(tǒng)性炎癥反應(yīng)[27]。由于環(huán)肽的半衰期短與生物利用率有限,可能使其在到達(dá)作用部位時(shí)的濃度不足以達(dá)到預(yù)期療效。盡管可通過化學(xué)修飾增強(qiáng)環(huán)肽藥物的穩(wěn)定性和親和力,但這也可能增加藥物的復(fù)雜性和生產(chǎn)成本。
3.2""類風(fēng)濕關(guān)節(jié)炎
與SLE通常累及多個(gè)器官系統(tǒng)不同,類風(fēng)濕關(guān)節(jié)炎(rheumatoid"arthritis,RA)是一種主要由細(xì)胞免疫應(yīng)答介導(dǎo)的影響關(guān)節(jié)滑膜組織的自身免疫病,其特征是手、手腕、腳和膝蓋的對(duì)稱疼痛和腫脹[28]。在某些情況下,SLE和RA可能會(huì)同時(shí)存在或相互轉(zhuǎn)化,這種情況被稱為重疊綜合征。RA小鼠模型與RA患者的滑膜中均檢測(cè)出dsDNA積累,并伴有cGAS-STING通路的激活[29-30]。Gu等[31]發(fā)現(xiàn)DNA聚合酶β在活動(dòng)期RA患者和膠原誘導(dǎo)關(guān)節(jié)炎鼠中表達(dá)水平降低,DNA聚合酶β缺乏導(dǎo)致DNA損傷,增加細(xì)胞質(zhì)dsDNA水平,進(jìn)而激活cGAS/STING/"NF-κB信號(hào)通路,上調(diào)NLRP3、IL-1β、IL-18的表達(dá),加劇巨噬細(xì)胞焦亡,調(diào)控RA的發(fā)生發(fā)展。此外,胞質(zhì)內(nèi)mtDNA的增多也可通過激活cGAS-STING通路,促進(jìn)RA的發(fā)生發(fā)展。Li等[32]研究發(fā)現(xiàn),在RA小鼠T細(xì)胞內(nèi),DNA修復(fù)核酸酶MRE11A缺乏導(dǎo)致線粒體功能受損,線粒體呼吸功能降低、ATP產(chǎn)量減少、活性氧水平升高及mtDNA滲漏到細(xì)胞質(zhì)中,從而引發(fā)炎癥反應(yīng)。因此,DNA修復(fù)能力的降低可造成細(xì)胞內(nèi)代謝程序異常,進(jìn)而觸發(fā)或加劇免疫系統(tǒng)的異常反應(yīng),推動(dòng)自身免疫病的發(fā)生和發(fā)展。TNF可驅(qū)動(dòng)包括RA在內(nèi)的多種自身免疫病的發(fā)生發(fā)展。研究表明TNF可影響線粒體功能,促使mtDNA釋放,通過cGAS-STING通路誘導(dǎo)IFN-Ⅰ表達(dá)[33]。靶向cGAS-STING通路的抑制劑已被應(yīng)用于治療RA的臨床前研究。Willemsen等[33]發(fā)現(xiàn)膠原誘導(dǎo)關(guān)節(jié)炎小鼠cGAS的缺失可阻斷干擾素反應(yīng),減輕炎癥和關(guān)節(jié)腫脹。同樣,另一研究團(tuán)隊(duì)制備一種載有STING拮抗劑C-176的納米顆粒,關(guān)節(jié)內(nèi)注射該納米顆粒可通過抑制STING通路有效減少由dsDNA誘導(dǎo)的關(guān)節(jié)炎和膠原誘導(dǎo)的關(guān)節(jié)炎炎癥[30]。與環(huán)肽相比,納米顆粒藥物輸送效率高。但由于納米顆粒藥物在體內(nèi)的積累,可導(dǎo)致慢性炎癥反應(yīng),造成機(jī)體免疫系統(tǒng)障礙。因此,納米顆粒藥物長(zhǎng)期使用治療RA的安全性仍需進(jìn)一步觀察和研究。
3.3""多發(fā)性硬化癥
多發(fā)性硬化癥(multiple"sclerosis,MS)與RA的發(fā)病機(jī)制均涉及T細(xì)胞介導(dǎo)的細(xì)胞免疫應(yīng)答。MS是一種主要由T細(xì)胞介導(dǎo)的免疫系統(tǒng)攻擊髓磷脂引起的炎癥和神經(jīng)損傷所致的自身免疫病[34]。研究表明不同類型T細(xì)胞內(nèi)DNA損傷通過不同方式促進(jìn)MS發(fā)生發(fā)展。調(diào)節(jié)性T細(xì)胞(regulatory"T"cell,Treg細(xì)胞)主要功能是抑制免疫反應(yīng),幫助自身組織避免遭受免疫系統(tǒng)的攻擊,防止自身免疫病和過度炎癥反應(yīng)的發(fā)生。與健康個(gè)體相比,大多數(shù)自身免疫病患者中Treg細(xì)胞數(shù)量或功能存在缺陷[35]。轉(zhuǎn)錄組分析發(fā)現(xiàn)自身免疫病患者(包括SLE、RA和MS)的Treg細(xì)胞表現(xiàn)出線粒體氧化應(yīng)激明顯升高和DNA損傷應(yīng)答激活。實(shí)驗(yàn)性自身免疫性腦炎(experimental"autoimmune"encephalomyelitis,EAE)小鼠模型中的Treg細(xì)胞內(nèi)DNA損傷累積;清除EAE小鼠Treg細(xì)胞中的線粒體活性氧可減少DNA損傷累積,防止Treg細(xì)胞死亡,同時(shí)減弱輔助性T細(xì)胞(helper"T"cell,Th)1和Th17自身免疫反應(yīng)[36]。研究表明在衰老的CD4+"T細(xì)胞中,DNA損傷或內(nèi)吞作用產(chǎn)生的游離DNA增多。作為DNA損傷修復(fù)通路的重要因子,KU復(fù)合體感知細(xì)胞質(zhì)DNA,促進(jìn)T細(xì)胞受體誘導(dǎo)的DNA依賴蛋白激酶催化亞基的募集和激酶ZAK的磷酸化,激活蛋白激酶B和哺乳動(dòng)物雷帕霉素靶蛋白通路,促進(jìn)CD4+"T細(xì)胞增殖和活化。這一過程可增強(qiáng)EAE小鼠的T細(xì)胞活化和病理表型[37]。T細(xì)胞內(nèi)DNA損傷是MS的重要驅(qū)動(dòng)因素之一,T細(xì)胞DNA損傷是否為MS治療的有效靶點(diǎn)仍待進(jìn)一步研究。
3.4""銀屑病
銀屑病是一種先天免疫相關(guān)慢性炎癥性皮膚病。銀屑病患者更易同時(shí)患有包括上述自身免疫病在內(nèi)的其他自身免疫病[38]。多項(xiàng)研究發(fā)現(xiàn)銀屑病患者皮膚組織內(nèi)DNA氧化損傷加重,銀屑病小鼠血循環(huán)中游離DNA水平升高,激活cGAS-STING信號(hào)通路可導(dǎo)致炎癥反應(yīng)增強(qiáng)[39-40]。機(jī)制研究表明cGAS-STING激活誘導(dǎo)銀屑病患者皮膚組織巨噬細(xì)胞和角質(zhì)形成細(xì)胞發(fā)生炎癥反應(yīng),介導(dǎo)免疫細(xì)胞釋放TNF-α或H2O2。產(chǎn)生的TNF-α、H2O2可進(jìn)一步抑制dsDNA誘導(dǎo)的STING蛋白降解,促進(jìn)炎癥反應(yīng)[39]。利用STING拮抗劑H-151可抑制cGAS-STING信號(hào)通路,在體內(nèi)表現(xiàn)出抗炎活性,減輕銀屑病癥狀[41-42]。
以上研究均表明DNA損傷累積及其下游cGAS-STING信號(hào)通路激活在自身免疫病的病理過程中扮演著重要角色,引發(fā)免疫異常和炎癥反應(yīng),進(jìn)而影響疾病的發(fā)生、發(fā)展和臨床表現(xiàn)。因此,這一通路可能成為治療自身免疫病的潛在靶點(diǎn)。隨著對(duì)cGAS-STING通路研究的不斷深入,有望看到更多針對(duì)該通路的高效、特異性抑制劑被開發(fā)出來。
4""結(jié)語與展望
目前,自身免疫病的診斷和治療在臨床實(shí)踐中仍是巨大的挑戰(zhàn)。傳統(tǒng)的治療方法主要通過使用糖皮質(zhì)激素和廣譜免疫抑制劑來抑制免疫反應(yīng),其副作用是患者正常免疫功能隨著治療進(jìn)程而惡化。不同類型自身免疫病的免疫應(yīng)答細(xì)胞類型存在差異。如在SLE中,B細(xì)胞過度活化并產(chǎn)生大量自身抗體是疾病發(fā)生的關(guān)鍵。而T細(xì)胞在MS中則起到更為重要的作用,它們會(huì)攻擊特定的中樞神經(jīng)系統(tǒng)組織,導(dǎo)致神經(jīng)功能障礙。隨著免疫領(lǐng)域研究的進(jìn)展和生物技術(shù)的提升,新的免疫細(xì)胞治療方法逐漸被提出。盡管細(xì)胞療法在療效上展現(xiàn)出顯著優(yōu)勢(shì),但其臨床轉(zhuǎn)化仍需克服多方面的挑戰(zhàn),如技術(shù)成熟度、商業(yè)轉(zhuǎn)化、安全風(fēng)險(xiǎn)、成本問題及臨床轉(zhuǎn)化的復(fù)雜性等。因此,有必要更深入了解自身免疫病在分子水平上的發(fā)病機(jī)制,用以開發(fā)潛在的自身免疫病治療藥物。在自身免疫病中,DNA損傷及其引起的免疫應(yīng)答可過度激活,導(dǎo)致對(duì)自身組織的錯(cuò)誤攻擊。因此,針對(duì)DNA損傷及其免疫應(yīng)答的干預(yù)可能成為治療自身免疫病的新型有效靶點(diǎn)。但DNA損傷累積后,dsDNA介導(dǎo)的cGAS-STING通路激活破壞免疫系統(tǒng)的平衡和自我耐受的具體分子機(jī)制尚不明確。未來亟需進(jìn)行更多的基礎(chǔ)研究和臨床試驗(yàn)以闡明DNA損傷及下游cGAS-STING通路在自身免疫病的作用機(jī)制,開發(fā)以cGAS-STING通路為治療靶點(diǎn)的抑制劑,探索它們與其他治療方法的聯(lián)合應(yīng)用效果,從而為自身免疫病患者提供更加全面、有效的治療方案。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] PISETSKY"D"S."Pathogenesis"of"autoimmune"disease[J]."Nat"Rev"Nephrol,"2023,"19(8):"509–524.
[2] PEZONE"A,"OLIVIERI"F,"NAPOLI"M"V,"et"al."Inflammation"and"DNA"damage:"Cause,"effect"or"both[J]."Nat"Rev"Rheumatol,"2023,"19(4):"200–211.
[3] JACKSON"S"P,"BARTEK"J."The"DNA-damage"response"in"human"biology"and"disease[J]."Nature,"2009,"461(7267):"1071–1078.
[4] WU"L,"SOWERS"J"R,"ZHANG"Y,"et"al."Targeting""DNA"damage"response"in"cardiovascular"diseases:"From"pathophysiology"to"therapeutic"implications[J]."Cardiovasc"Res,"2023,"119(3):"691–709.
[5] GROELLY"F"J,"FAWKES"M,"DAGG"R"A,"et"al."Targeting"DNA"damage"response"pathways"in"cancer[J]."Nat"Rev"Cancer,"2023,"23(2):"78–94.
[6] CHEN"W,"ZHAO"H,"LI"Y."Mitochondrial"dynamics"in"health"and"disease:"Mechanisms"and"potential"targets[J]."Signal"Transduct"Target"Ther,"2023,"8(1):"333.
[7] HEILIG"R,"LEE"J,"TAIT"S"W"G."Mitochondrial"DNA"in"cell"death"and"inflammation[J]."Biochem"Soc"Trans,"2023,"51(1):"457–472.
[8] LI"W,"LI"Y,"ZHAO"J,"et"al."Release"of"damaged"mitochondrial"DNA:"A"novel"factor"in"stimulating"inflammatory"response[J]."Pathol"Res"Pract,"2024,"258:"155330.
[9] HATCH"E"M,"FISCHER"A"H,"DEERINCK"T"J,"et"al."Catastrophic"nuclear"envelope"collapse"in"cancer"cell"micronuclei[J]."Cell,"2013,"154(1):"47–60.
[10] GUO"X,"HINTZSCHE"H,"XU"W,"et"al."Interplay"of"cGAS"with"micronuclei:"Regulation"and"diseases[J]."Mutat"Res"Rev"Mutat"Res,"2022,"790:"108440.
[11] GULEN"M"F,"SAMSON"N,"KELLER"A,"et"al."cGAS-STING"drives"ageing-related"inflammation"and"neurodegeneration[J]."Nature,"2023,"620(7973):"374–380.
[12] LIU"Y,"PU"F."Updated"roles"of"cGAS-STING"signaling"in"autoimmune"diseases[J]."Front"Immunol,"2023,"14:"1254915.
[13] DECOUT"A,"KATZ"J"D,"VENKATRAMAN"S,"et"al."The"cGAS-STING"pathway"as"a"therapeutic"target"in"inflammatory"diseases[J]."Nat"Rev"Immunol,"2021,"21(9):"548–569.
[14] CHEN"C,"XU"P."Cellular"functions"of"cGAS-STING"signaling[J]."Trends"in"Cell"Biology,"2023,"33(8):"630–648.
[15] DVORKIN"S,"CAMBIER"S,"VOLKMAN"H"E,"et"al."New"frontiers"in"the"cGAS-STING"intracellular"DNA-"sensing"pathway[J]."Immunity,"2024,"57(4):"718–730.
[16] KONNO"H,"KONNO"K,"BARBER"G"N."Cyclic"dinucleotides"trigger"ULK1"(ATG1)"phosphorylation"of"STING"to"prevent"sustained"innate"immune"signaling[J]."Cell,"2013,"155(3):"688–698.
[17] KATO"Y,"PARK"J,"TAKAMATSU"H,"et"al."Apoptosis-"derived"membrane"vesicles"drivenbsp;the"cGAS-STING"pathway"and"enhance"type"Ⅰ"IFN"production"in"systemic"lupus"erythematosus[J]."Ann"Rheum"Dis,"2018,"77(10):"1507–1515.
[18] HU"Y,"CHEN"B,"YANG"F,"et"al."Emerging"role"of""""the"cGAS-STING"signaling"pathway"in"autoimmune"diseases:"Biologic"function,"mechanisms"and"clinical"prospection[J]."Autoimmun"Rev,"2022,"21(9):"103155.
[19] LI"R,"LIN"W,"KUANG"Y,"et"al."cGAS/STING"signaling"in"the"regulation"of"rheumatoid"synovial"aggression[J]."Ann"Transl"Med,"2022,"10(8):"431.
[20] LAZAR"S,"KAHLENBERG"J"M."Systemic"lupus"erythematosus:"New"diagnostic"and"therapeutic"approaches[J]."Annu"Rev"Med,"2023,"74:"339–352.
[21] DING"L,"DONG"G,"ZHANG"D,"et"al."The"regional"function"of"cGAS/STING"signal"in"multiple"organs:"One"of"culprit"behind"systemic"lupus"erythematosus?[J]."Med"Hypotheses,"2015,"85(6):"846–849.
[22] AL"KHATIB"I,"DENG"J,"LEI"Y,"et"al."Activation"of"the"cGAS-STING"innate"immune"response"in"cells"with"deficient"mitochondrial"topoisomerase"TOP1MT[J]."Hum"Mol"Genet,"2023,"32(15):"2422–2440.
[23] HAGIWARA"A"M,"MOORE"R"E,"WALLACE"D"J,"et"al."Regulation"of"cGAS-STING"pathway"-"Implications"for"systemic"lupus"erythematosus[J]."Rheumatol"Immunol"Res,"2021,"2(3):"173–184.
[24] AN"J,"DURCAN"L,"KARR"R"M,"et"al."Expression"of"cyclic"GMP-AMP"synthase"in"patients"with"systemic"lupus"erythematosus[J]."Arthritis"Rheumatol,"2017,"69(4):"800–807.
[25] TAN"J,"WU"B,"CHEN"T,"et"al."Synthesis"and"pharmacological"evaluation"of"tetrahydro-γ-carboline"derivatives"as"potent"anti-inflammatory"agents"targeting"cyclic"GMP-AMP"synthase[J]."J"Med"Chem,"2021,"64(11):"7667–7690.
[26] MULLARD"A."Biotechs"step"on"cGAS"for"autoimmune"diseases[J]."Nat"Rev"Drug"Discov,"2023,"22(12):"939–941.
[27] WANG"X,"WANG"Y,"CAO"A,"et"al."Development"of"cyclopeptide"inhibitors"of"cGAS"targeting"protein-DNA"interaction"and"phase"separation[J]."Nat"Commun,"2023,"14(1):"6132.
[28] DI"MATTEO"A,"BATHON"J"M,"EMERY"P."Rheumatoid"arthritis[J]."Lancet,"2023,"402(10416):"2019–2033.
[29] WANG"J,"LI"R,"LIN"H,"et"al."Accumulation"of"cytosolic"dsDNA"contributes"to"fibroblast-like"synoviocytes-"mediated"rheumatoid"arthritis"synovial"inflammation[J]."Int"Immunopharmacol,"2019,"76:"105791.
[30] SHEN"H,"JIN"L,"ZHENG"Q,"et"al."Synergistically"targeting"synovium"STING"pathway"for"rheumatoid"arthritis"treatment[J]."Bioact"Mater,"2023,"24:"37–53.
[31] GU"L,"SUN"Y,"WU"T,"et"al."A"novel"mechanism"for"macrophage"pyroptosis"in"rheumatoid"arthritis"induced"by"Pol"b"deficiency[J]."Cell"Death"Dis,"2022,"13(7):"583.
[32] LI"Y,"SHEN"Y,"JIN"K,"et"al."The"DNA"repair"nuclease"MRE11A"functions"as"a"mitochondrial"protector"and"prevents"T"cell"pyroptosis"and"tissue"inflammation[J]."Cell"Metab,"2019,"30(3):"477–492.
[33] WILLEMSEN"J,"NEUHOFF"M"T,"HOYLER"T,"et"al."TNF"leads"to"mtDNA"release"and"cGAS/STING-depen-"dent"interferon"responses"that"support"inflammatory"arthritis[J]."Cell"Rep,"2021,"37(6):"109977.
[34] HAKI"M,"AL-BIATI"H"A,"AL-TAMEEMI"Z"S,"et"al."Review"of"multiple"sclerosis:"Epidemiology,"etiology,"pathophysiology,"and"treatment[J]."Medicine"(Baltimore),"2024,"103(8):"e37297.
[35] DOMINGUEZ-VILLAR"M,"HAFLER"D"A."Regulatory"T"cells"in"autoimmune"disease[J]."Nat"Immunol,"2018,"19(7):"665–673.
[36] ALISSAFI"T,"KALAFATI"L,"LAZARI"M,"et"al."Mitochondrial"oxidative"damage"underlies"regulatory"T"cell"defects"in"autoimmunity[J]."Cell"Metab,"2020,"32(4):"591–604.e7.
[37] WANG"Y,"FU"Z,"LI"X,"et"al."Cytoplasmic"DNA"sensing"by"KU"complex"in"aged"CD4+"T"cell"potentiates"T"cell"activation"and"aging-related"autoimmune"inflammation[J]."Immunity,"2021,"54(4):"632–647.
[38] SCH?N"M"P,"WILSMANN-THEIS"D."Current"develop-"ments"and"perspectives"in"psoriasis[J]."J"Dtsch"Dermatol"Ges,"2023,"21(4):"363–372.
[39] YU"Y,"XUE"X,"TANG"W,"et"al."Cytosolic"DNA?mediated"STING-dependent"inflammation"contributes"to"the"pro-"gression"of"psoriasis[J]."J"Invest"Dermatol,"2022,"142(3"Pt"B):"898–906.
[40] BASAVARAJ"K"H,"VASU"DEVARAJU"P,"RAO"K"S."Studies"on"serum"8-hydroxy"guanosine"(8-OHdG)"as"reliable"biomarker"for"psoriasis[J]."J"Eur"Acad"Dermatol"Venereol,"2013,"27(5):"655–657.
[41] PAN"Y,"YOU"Y,"SUN"L,"et"al."The"STING"antagonist"H-151"ameliorates"psoriasis"via"suppression"of"STING/"NF-κB-mediated"inflammation[J]."Br"J"Pharmacol,"2021,"178(24):"4907–4922.
[42] XIAOHONG"L,"ZHENTING"Z,"YUNJIE"Y,"et"al."Activation"of"the"STING-IRF3"pathway"involved"in"psoriasis"with"diabetes"mellitus[J]."J"Cell"Mol"Med,"2022,"26(8):"2139–2151.
(收稿日期:2024–09–11)
(修回日期:2024–11–18)