[摘要] 目的 探討TMEM16A/anoctamin 1(ANO1)抑制劑T16Ainh-A01(A01)對內皮素-1(ET-1)誘導的血管平滑肌細胞(VSMCs)增殖的影響及機制。
方法 采用組織貼塊法進行大鼠胸主動脈VSMCs的原代培養(yǎng)。將細胞分為4組:對照組(無藥物處理)、ET-1組(用1 nmol/L ET-1處理)、ET-1+A01組(同時加入1 nmol/L ET-1和20 μmol/L A01)、A01組(用20 μmol/L A01處理)。通過檢測增殖細胞核抗原(PCNA)表達觀察細胞增殖,通過檢測α-平滑肌肌動蛋白(α-SMA)和骨橋蛋白(OPN)表達觀察細胞表型轉換。
結果 與對照組比較,ET-1組PCNA蛋白表達升高(F=25.190,Plt;0.01),α-SMA蛋白表達下降(F=19.91 Plt;0.01),OPN蛋白表達升高(F=9.795,Plt;0.05);與ET-1組比較,ET-1+A01組PCNA蛋白表達下降(F=11.47 Plt;0.01),α-SMA蛋白表達升高(F=12.818,Plt;0.01),OPN蛋白表達下降(F=11.01 Plt;0.01);與對照組比較,A01組上述蛋白表達均無明顯變化。
結論 A01對ET-1誘導的VSMCs增殖有明顯的抑制作用,該作用可能和A01促進細胞表型從合成型轉為收縮型有關。
[關鍵詞] anoctamin-1蛋白;ANO1抑制劑;內皮縮血管肽1;血管;肌細胞,平滑??;細胞增殖;表型
[中圖分類號] R329.25
[文獻標志碼] A
[文章編號] 2096-5532(2024)06-0831-04
doi:10.11712/jms.2096-5532.2024.60.145
[開放科學(資源服務)標識碼(OSID)]
[網(wǎng)絡出版] https://link.cnki.net/urlid/37.1517.R.20241028.1048.002;2024-10-29 10:19:29
Effect of A01 on endothelin-1-induced proliferation of vascular smooth muscle cells and its mechanism
ZHANG Wenxiu, ZHAO Hui, HAN Xiaohua
(Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 26607 "China)
[Abstract] Objective To investigate the effect of TMEM16A/anoctamin 1 (ANO1) inhibitor T16Ainh-A01 (A01) on endothelin-1 (ET-1)-induced proliferation of vascular smooth muscle cells (VSMCs) and its mechanism.
Methods "The primary culture of VSMCs from the rat thoracic aorta was conducted using the tissue patch method. The cells were divided into four groups: control group (without drug treatment), ET-1 group (treated with 1 nmol/L of ET-1), ET-1+A01 group (treated with 1 nmol/L of ET-1 and 20 μmol/L of A01), and A01 group (treated with 20 μmol/L of A01). The expression level of proliferating cell nuclear antigen (PCNA) was measured to evaluate cell proliferation, and the levels of α-smooth muscle actin (α-SMA) and osteopontin (OPN) were measured to evaluate the phenotypic transformation of cells.
Results "Compared with the control group, the ET-1 group had significantly increased PCNA protein expression (F=25.190,Plt;0.01), significantly reduced α-SMA protein expression (F=19.91 Plt;0.01), significantly increased OPN protein expression (F=9.795,Plt;0.05). Compared with the ET-1 group, the ET-1+A01 group had significantly reduced PCNA protein expression (F=11.47 Plt;0.01), significantly increased α-SMA protein expression (F=12.818,Plt;0.01), and significantly reduced OPN protein expression (F=11.01 Plt;0.01). Compared with the control group, the A01 group had no significant changes in any of the above protein expressions.
Conclusion A01 exerts a significant inhibitory effect on ET-1-induced proliferation of VSMCs, and this effect may be associated with its promotion of cell phenotypic transformation from synthetic to contractile.
[Key words] anoctamin-1; ANO1 inhibitor; endothelin-1; blood vessels; myocytes, smooth muscle; cell proliferation; phenotype
血管平滑肌細胞(VSMCs)異常增殖和遷移在高血壓血管重構中發(fā)揮關鍵作用[1-2]。內皮素-1(ET-1)在VSMCs中表現(xiàn)出促有絲分裂、肥大反應的作用[3-4],還參與高血壓、心力衰竭和動脈粥樣硬化等多種心血管疾病的病理過程[5-8]。抑制ET-1誘導的VSMCs異常增殖和遷移,可以抑制上述病理進程[9]。anoctamin-1(ANO1或TMEM16A)是一種鈣激活氯通道,涉及腺上皮分泌、平滑肌收縮、心肌生物電和感覺信號轉導等多項功能[10-11],在VSMCs中廣泛表達[12],在自發(fā)性高血壓大鼠和肺動脈高壓大鼠中參與血管重構的發(fā)生[13-14]。本研究通過檢測增殖細胞核抗原(PCNA),進一步觀察ANO1特異性抑制劑T16Ainh-A01(A01)對ET-1誘導的細胞增殖的影響,通過檢測α-平滑肌肌動蛋白(α-SMA)和骨橋蛋白(OPN)探討A01可能的作用機制。
1 材料與方法
1.1 試劑與儀器
ET-1購自上海AbMole公司,A01購自Sigma公司,PCNA抗體由Cell Signaling Technology公司提供,α-SMA和OPN抗體購自Abcam公司,β-actin抗體由北京博奧森公司提供,DMEM高糖培養(yǎng)液購自Gibco公司,胎牛血清購自美國BI公司,BCA蛋白測定試劑盒由上海Thermo公司提供,RIPA裂解液購自上海碧云天生物科技研究所,其他試劑均為國產(chǎn)分析純。ET-1使用無菌水配成1 mmol/L的母液,A01用二甲基亞砜(DMSO)配成10~20 mmol/L的母液,使用前均用DMEM培養(yǎng)液稀釋到終濃度。實驗所用儀器包括CO 2培養(yǎng)箱、超凈工作臺、Eppendorf高速離心機、37 ℃恒溫孵育箱、多功能酶標儀以及Western顯影儀等。
1.2 VSMCs的原代培養(yǎng)
選用體質量70~100 g(大約3周齡)的Wistar大鼠,以400 mg/kg水合氯醛腹腔注射麻醉。用體積分數(shù)為0.75的乙醇浸泡消毒后,置于無菌超凈工作臺內。迅速分離胸主動脈,將動脈放入加DMEM培養(yǎng)液的玻璃皿中,去除血管外結締組織,沿中線剪開,用彎鑷子輕柔刮下內皮,用眼科剪將其剪成大小約1 mm3小塊,平鋪于50 mL培養(yǎng)瓶底部,加入含有體積分數(shù)0.20胎牛血清的DMEM高糖培養(yǎng)液4~5 mL,直立放入培養(yǎng)箱內,5~6 h后翻瓶,培養(yǎng)1周左右,在顯微鏡下可看到貼壁組織塊周圍有VSMCs爬出,細胞融合達到60%~70%時進行傳代,選擇第5~8代生長良好的細胞進行后續(xù)實驗。
1.3 實驗分組
將VSMCs分為對照組(A組,無藥物處理)、ET-1組(B組,用1 nmol/L ET-1處理)、ET-1+A01組(C組,同時加入1 nmol/L ET-1和20 μmol/L A01)、A01組(D組,用20 μmol/L A01處理),藥物處理24 h 后提取蛋白進行檢測。
1.4 Western blot檢測
藥物處理結束后用RIPA裂解液提取蛋白,用BCA試劑盒測定蛋白濃度。所有樣品上樣量均為20 μg,經(jīng)SDS-PAGE電泳后轉移至PVDF膜上。用含100 g/L脫脂奶粉的TBST封閉1 h后,分別加入抗PCNA(1∶2 000)、α-SMA(1∶30 000)、OPN(1∶1 000)和β-actin(1∶8 000)抗體等一抗,4 ℃搖床孵育過夜。以TBST洗膜3次后,加入HRP標記的二抗,室溫孵育1 h,ECL發(fā)光液顯影,用Image J軟件分析條帶的灰度值。實驗重復5次。
1.5 統(tǒng)計學分析
所得數(shù)據(jù)以±s表示,應用SPSS 22.0軟件采用2×2析因設計的方差分析進行統(tǒng)計學分析,Plt;0.05認為差異有統(tǒng)計學意義。
2 結" 果
2.1 A01對PCNA蛋白表達的影響
析因設計的方差分析顯示,ET-1的主效應明顯(F=16.755,Plt;0.01),A01的主效應無統(tǒng)計學意義(F=3.187,Pgt;0.05),ET-1和A01之間有交互作用(F=9.028,Plt;0.01)。單獨效應分析顯示:與對照組比較,ET-1組PCNA蛋白表達明顯上調(F=25.190,Plt;0.01);與ET-1組比較,ET-1+A01組PCNA蛋白表達明顯下降(F=11.47 Plt;0.01);單獨使用A01對PCNA蛋白表達沒有明顯影響(F=0.74 Pgt;0.05)。提示單獨應用ET-1可明顯促進PCNA蛋白的表達,ET-1的作用可被A01所拮抗。見圖1、表1。
2.2 A01對α-SMA蛋白表達的影響
析因設計的方差分析顯示,ET-1的主效應明顯(F=10.306,Plt;0.01),A01主效應無統(tǒng)計學意義(F=3.85 Pgt;0.05),兩種藥物之間有交互作用(F=9.61 Plt;0.01)。單獨效應分析顯示:與對照組比較,ET-1組α-SMA蛋白表達明顯下降(F=19.91 Plt;0.01);與ET-1組比較,ET-1+A01組α-SMA蛋白表達明顯上調(F=12.818,Plt;0.01);單獨使用A01對α-SMA蛋白表達沒有明顯影響(F=0.647,Pgt;0.05)。提示單獨應用ET-1可使α-SMA蛋白水平升高,應用A01可阻斷ET-1的作用。見圖1、表1。
2.3 A01對OPN蛋白表達的影響
析因設計的方差分析顯示,ET-1和A01的主效應均無統(tǒng)計學意義(F=1.940、2.755,Pgt;0.05),兩種藥物之間有交互作用(F=9.20 Plt;0.01)。單獨效應分析顯示:與對照組比較,ET-1組OPN蛋白表達明顯上調(F=9.795,Plt;0.01);與ET-1組比較,ET-1+A01組OPN蛋白表達明顯下降(F=11.01 Plt;0.01);單獨使用A01對OPN蛋白表達沒有明顯影響(F=0.94 Pgt;0.05)。提示單獨應用ET-1可使OPN蛋白水平升高,應用A01可阻斷ET-1的作用。見圖1、表1。
3 討" 論
長期的高血壓可導致血管結構和功能的改變,又稱血管重構,血管重構和高血壓的發(fā)展及重要靶器官損傷密切相關[15-16]。VSMCs作為血管壁的主體細胞,其異常的增殖遷移在高血壓血管重構中發(fā)揮重要作用。體內多種因素,如血流動力學改變、血管活性物質(如血管緊張素Ⅱ、ET-1)、炎癥因子和生長因子(如成纖維細胞生長因子、表皮細胞生長因子等),均與VSMCs功能異常密切相關[17-20]。
ET-1是內皮細胞分泌的最重要的血管活性物質,具有很強的縮血管效應;ET-1也是一種有絲分裂原,在維持血管功能穩(wěn)態(tài)中具有重要作用[3]。通常認為,ET-1誘導VSMCs異常增殖遷移與其結合ET A受體后導致胞內鈣增加、AKT和ERK信號通路激活等有關[21-22]。
最近研究發(fā)現(xiàn),鈣激活氯通道ANO1也是參與VSMCs功能調控的重要調控因子[1 23-25]。ANO1激活可誘導VSMCs收縮,而抑制其功能性表達則通過舒張血管降低血壓[23-24]。在自發(fā)性高血壓大鼠中,VSMCs上ANO1功能性高表達促進高血壓形成[13]。此外,ANO1還可以作為一種細胞增殖調節(jié)因子參與VSMCs增殖,促進血管重構和降低血管彈性[26-28]。
我們的前期研究發(fā)現(xiàn),ET-1能夠明顯上調VSMCs的ANO1表達[15]。本研究利用ANO1特異性抑制劑A01進一步探討了ANO1高表達是否參與了ET-1誘導的VSMCs增殖。PCNA是DNA合成中重要的輔助因子,也是檢測細胞增殖最常用的指標。本研究PCNA檢測結果表明,A01可明顯抑制ET-1誘導的VSMCs增殖。
正常的VSMCs呈現(xiàn)出高度分化、低增殖能力的收縮表型,其作用是調節(jié)血管壁張力及維持組織血流量,其標志性蛋白主要為α-SMA和平滑肌22α等;合成型VSMCs呈低分化,可分泌大量細胞外基質,參與血管壁形成、損傷修復等,其標志性蛋白主要為OPN。VSMCs可由收縮型轉化為合成型,后者具有強大的增殖遷移能力從而促進血管重構的發(fā)生[29-30]。為進一步探討A01的作用機制,本實驗又檢測了SMA和OPN蛋白的表達。結果顯示,ET-1處理細胞24 h后,α-SMA表達降低而OPN表達升高,即ET-1能夠誘導VSMCs由收縮型轉化為合成型,促進細胞增殖,而應用A01可明顯阻斷上述變化。根據(jù)已有的研究文獻,我們推測A01對細胞表型的調控可能與它抑制PI3K/AKT和ERK信號通路有關[26-27]。
綜上所述,ANO1特異性抑制劑A01對ET-1誘導的VSMCs增殖有明顯的抑制作用,其作用可能與A01抑制ET-1誘導的細胞表型轉換有關,這為ET-1引發(fā)的高血壓、心力衰竭和動脈粥樣硬化等多種心血管疾病的治療提供了依據(jù)。
[參考文獻]
[1]RIZZONI D, AGABITI-ROSEI E. Structural abnormalities of small resistance arteries in essential hypertension[J]. Internal and Emergency Medicine, 201 7(3):205-212.
[2]ZHANG F, GUO X Q, XIA Y P, et al. An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis[J]. Cellular and Molecular Life Sciences, 202 79(1):6.
[3]JANKOWICH M, CHOUDHARY G. Endothelin-1 levels and cardiovascular events[J]. Trends in Cardiovascular Medicine, 2020,30(1):1-8.
[4]CARBONE F, MONTECUCCO F, SAHEBKAR A. Editorial "commentary: promising findings on the role of endothelin-1 and related peptides in primary cardiovascular prevention[J]. Trends in Cardiovascular Medicine, 2020,30(1):9-10.
[5]LIU R Q, YUAN T Y, WANG R R, et al. Insights into endothelin receptors in pulmonary hypertension[J]. International Journal of Molecular Sciences, 202 24(12):10206.
[6]CAI Z Y, GONG Z, LI Z Q, et al. Vascular extracellular matrix remodeling and hypertension[J]. Antioxidants amp; Redox Signaling, 202 34(10):765-783.
[7]EROGLU E, KOCYIGIT I, LINDHOLM B. The endothelin system as target for therapeutic interventions in cardiovascular and renal disease[J]. Clinica Chimica Acta; International Journal of Clinical Chemistry, 2020,506:92-106.
[8]ZHAI M, GONG S Y, LUAN P P, et al. Extracellular traps from activated vascular smooth muscle cells drive the progression of atherosclerosis[J]. Nature Communications, 202 13(1):7500.
[9]MOORHOUSE R C, WEBB D J, KLUTH D C, et al. Endothelin antagonism and its role in the treatment of hypertension[J]. Current Hypertension Reports, 201 15(5):489-496.
[10]LIU Y N, LIU Z T, WANG K W. The Ca2+-activated chloride channel ANO1/TMEM16A: an emerging therapeutic target for epithelium-originated diseases?[J]. Acta Pharmaceutica Sinica B, 202 11(6):1412-1433.
[11]DULIN N O. Calcium-activated chloride channel ANO1/TMEM16A: regulation of expression and signaling[J]. Frontiers in Physiology, 2020,11:590262.
[12]ZENG J W, CHEN B Y, LV X F, et al. Transmembrane member 16A participates in hydrogen peroxide-induced apoptosis by facilitating mitochondria-dependent pathway in vascular smooth muscle cells[J]. British Journal of Pharmacology, 2018,175(18):3669-3684.
[13]WANG B X, LI C L, HUAI R T, et al. Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated Cl- channel, contributes to spontaneous hypertension[J]. Journal of Mole-
cular and Cellular Cardiology, 2015,82:22-32.
[14]XIE J Y, LIU W Y, LV W J, et al. Transmembrane protein 16A/anoctamin 1 inhibitor T16A inh-A01 reversed monocrota-
line-induced rat pulmonary arterial hypertension[J]. Pulmonary Circulation, 2020,10(4):2045894020946670.
[15]GAO Q N, XU L, CAI J. New drug targets for hypertension: a literature review[J]. Biochimica et Biophysica Acta Molecular Basis of Disease, 202 1867(3):166037.
[16]BROWN I A M, DIEDERICH L, GOOD M E, et al. Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018,38(9):1969-1985.
[17]LAMB F S, CHOI H, MILLER M R, et al. TNFα and reactive oxygen signaling in vascular smooth muscle cells in hypertension and atherosclerosis[J]. American Journal of Hypertension, 2020,33(10):902-913.
[18]HUMPHREY J D. Mechanisms of vascular remodeling in hypertension[J]. American Journal of Hypertension, 202 34(5):432-441.
[19]SHI J, YANG Y, CHENG A Y, et al. Metabolism of vascular smooth muscle cells in vascular diseases[J]. American Journal of Physiology Heart and Circulatory Physiology, 2020,319(3):H613-H631.
[20]BASATEMUR G L, JRGENSEN H F, CLARKE M C H, et al. Vascular smooth muscle cells in atherosclerosis[J]. Nature Reviews Cardiology, 2019,16(12):727-744.
[21]TIAN X Y, ZHANG Q Y, HUANG Y Q, et al. Endothelin-1 downregulates sulfur dioxide/aspartate aminotransferase pathway via reactive oxygen species to promote the proliferation and migration of vascular smooth muscle cells[J]. Oxidative Medicine and Cellular Longevity, 2020,2020:9367673.
[22]HEINZE C, SENIUK A, SOKOLOV M V, et al. Disruption of vascular Ca2+-activated chloride currents lowers blood pressure[J]. The Journal of Clinical Investigation, 201 124(2):675-686.
[23]OH U, JUNG J. Cellular functions of TMEM16/anoctamin[J]. Pflugers Archiv: European Journal of Physiology, 2016,468(3):443-453.
[24]JACKSON W F. Calcium-dependent ion channels and the regulation of arteriolar myogenic tone[J]. Frontiers in Physiology, 202 12:770450.
[25]SUZUKI T, YASUMOTO M, SUZUKI Y, et al. TMEM16A Ca2+-activated Cl- channel regulates the proliferation and migration of brain capillary endothelial cells[J]. Molecular Pharmacology, 2020,98(1):61-71.
[26]JI Q S, GUO S, WANG X Z, et al. Recent advances in TMEM16A: structure, function, and disease[J]. Journal of Cellular Physiology, 2019,234(6):7856-7873.
[27]ZHANG X, ZHANG G H, ZHAO Z J, et al. Cepharanthine, a novel selective ANO1 inhibitor with potential for lung adenocarcinoma therapy[J]. Biochimica et Biophysica Acta Molecular Cell Research, 202 1868(12):119132.
[28]GUO S S, ZHANG L N, LI N. ANO1: more than just cal-
cium-activated chloride channel in cancer[J]. Frontiers in Oncology, 202 12:922838.
[29]CLMENT M, CHAPPELL J, RAFFORT J, et al. Vascular smooth muscle cell plasticity and autophagy in dissecting aortic aneurysms[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019,39(6):1149-1159.
[30]CAO G M, XUAN X Z, HU J, et al. How vascular smooth muscle cell phenotype switching contributes to vascular disease[J]. Cell Communication and Signaling, 202 20(1):180.
(本文編輯 馬偉平)