[摘要] 鐵死亡是一種不同于凋亡、壞死的細(xì)胞程序性死亡,與許多生物過(guò)程有關(guān)。一些研究發(fā)現(xiàn),鐵死亡能協(xié)同化療、放療、免疫治療等,增強(qiáng)對(duì)乳腺癌的療效,誘導(dǎo)鐵死亡可能成為腫瘤治療的新靶點(diǎn)。本文對(duì)鐵死亡的發(fā)生途徑及其在乳腺癌治療中的研究進(jìn)行了綜述。
[關(guān)鍵詞] 鐵死亡;乳腺腫瘤;脂質(zhì)過(guò)氧化作用;綜述
[中圖分類號(hào)] R737.9
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2024)06-0937-04
doi:10.11712/jms.2096-5532.2024.60.204
[開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] https://link.cnki.net/urlid/37.1517.R.20250113.1932.002;2025-01-14 12:03:25
Research advances in ferroptosis in the treatment of breast cancer
LIU Zeyu, LIU Jiannan, SUN Ping
(Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China)
[Abstract] Ferroptosis is a type of programmed cell death different from apoptosis and necrosis and is associated with many biological processes. Several studies have shownthat ferroptosis can synergize with chemotherapy, radiotherapy, and immunotherapy to enhance the efficacy of treatment for breast cancer, and induction of ferroptosis may become a new target in tumor therapy. This article reviewsthe pathways of ferroptosis and related studies in the treatment of breast cancer.
[Key words] ferroptosis; breast neoplasms; lipid peroxidation; review
鐵參與細(xì)胞生長(zhǎng)和增殖的許多過(guò)程,鐵死亡是一種以鐵依賴性的脂質(zhì)過(guò)氧化為主要特征的細(xì)胞程序性死亡。腫瘤細(xì)胞中常出現(xiàn)鐵代謝異常和細(xì)胞內(nèi)鐵含量的增高,其對(duì)鐵死亡的作用更加敏感。乳腺癌是女性最常見(jiàn)的惡性腫瘤,嚴(yán)重影響女性健康,提高乳腺癌療效的方法仍有待研究。一些研究表明,鐵死亡可以增強(qiáng)化療藥物對(duì)乳腺癌的細(xì)胞毒性以及放療敏感性,并能協(xié)同免疫治療提高療效。誘導(dǎo)鐵死亡在乳腺癌治療中存在巨大潛力,有待進(jìn)一步探索。本文主要對(duì)鐵死亡的發(fā)生途徑及其在乳腺癌治療中的研究進(jìn)行綜述。
1 鐵死亡的發(fā)生途徑
鐵可以參與Fenton反應(yīng)而產(chǎn)生自由基和催化活性氧(ROS),細(xì)胞膜極易受到自由基和ROS的影響發(fā)生過(guò)氧化[1-2]。細(xì)胞膜脂質(zhì)過(guò)氧化生成磷脂氫過(guò)氧化物(PLOOH),它可以導(dǎo)致細(xì)胞膜的不穩(wěn)定性和通透性增高,進(jìn)而導(dǎo)致細(xì)胞損傷和死亡[3]。鐵死亡的發(fā)生主要涉及以下3條途徑。
1.1 谷胱甘肽過(guò)氧化物酶4(GPX4)調(diào)節(jié)途徑
GPX4可以利用谷胱甘肽(GSH)還原PLOOH,減少PLOOH在細(xì)胞膜的積聚,GPX4的失活會(huì)導(dǎo)致PLOOH積累,影響細(xì)胞膜的不穩(wěn)定性和通透性,促進(jìn)鐵死亡發(fā)生[4-5]。system xc-是細(xì)胞表面的胱氨酸/谷氨酸反向轉(zhuǎn)運(yùn)蛋白,它由SLC7A11和SLC3A2二聚體組成,SLC7A11是system xc-發(fā)揮其功能的主要亞基,可以將胱氨酸轉(zhuǎn)運(yùn)入細(xì)胞內(nèi)合成GSH[6]。鐵死亡誘導(dǎo)劑erastin和柳氮磺吡啶可通過(guò)抑制system xc-轉(zhuǎn)運(yùn)胱氨酸導(dǎo)致GSH耗竭[7],GSH依賴性GPX4失活,進(jìn)而導(dǎo)致細(xì)胞死亡。
1.2 鐵代謝途徑
鐵死亡的細(xì)胞中鐵含量上升,不穩(wěn)定鐵池的數(shù)量增加[8]。細(xì)胞中的鐵可催化ROS產(chǎn)生,引發(fā)脂質(zhì)過(guò)氧化,生成大量PLOOH,最終導(dǎo)致細(xì)胞鐵死亡。不穩(wěn)定鐵池可通過(guò)Fenton反應(yīng)產(chǎn)生自由基,參與磷脂過(guò)氧化生成PLOOH,引起細(xì)胞鐵死亡[9]。
1.3 脂代謝途徑
鐵死亡細(xì)胞通過(guò)膜磷脂過(guò)氧化生成PLOOH,過(guò)氧化產(chǎn)物導(dǎo)致細(xì)胞膜的不穩(wěn)定性和通透性增高,最終導(dǎo)致細(xì)胞死亡[10-11]。多不飽和脂肪酸(PUFAs)在?;o酶A合成酶長(zhǎng)鏈家族成員4(ACSL4)的作用下與輔酶A(CoA)連接生成PUFA-CoA,PUFA-CoA可與膜磷脂發(fā)生反應(yīng),生成PUFA-PLs,PUFA-PLs極易發(fā)生過(guò)氧化[12]。此外,脂氧合酶和細(xì)胞色素P450可以催化PUFAs過(guò)氧化[13],促進(jìn)鐵死亡發(fā)生。
2 鐵死亡的特征
發(fā)生鐵死亡的細(xì)胞具有與其他細(xì)胞不同的形態(tài)學(xué)和生化特征。鐵死亡細(xì)胞通常存在細(xì)胞質(zhì)和細(xì)胞器的腫脹,線粒體萎縮畸形、嵴減少、膜濃縮、外膜破裂,細(xì)胞核不發(fā)生改變[14]。在生化特征上,發(fā)生鐵死亡的細(xì)胞中有更高水平的鐵、自由基和ROS,脂質(zhì)過(guò)氧化產(chǎn)物存在大量積聚[ 15]。
3 鐵死亡與腫瘤治療的關(guān)系
鐵對(duì)細(xì)胞增殖和生長(zhǎng)至關(guān)重要,腫瘤細(xì)胞對(duì)鐵的敏感性和依賴性更高,大多數(shù)腫瘤細(xì)胞都具有較高水平的鐵和ROS[ 16]。在快速增殖的腫瘤細(xì)胞中,鐵攝取及細(xì)胞內(nèi)鐵水平將明顯增加,其對(duì)鐵死亡更加敏感[2]。部分鐵死亡誘導(dǎo)劑具有抗腫瘤活性,如erastin和索拉非尼(SRF)[17]。此外,對(duì)常規(guī)化療藥物耐藥的腫瘤細(xì)胞更易發(fā)生鐵死亡[18-19]。因而,鐵死亡誘導(dǎo)劑作為抗腫瘤藥物有極其廣闊的前景[20-21]。
4 鐵死亡在乳腺癌治療中的應(yīng)用研究
4.1 鐵死亡增強(qiáng)化療藥物對(duì)乳腺癌作用
靶向鐵死亡通路可以增強(qiáng)乳腺癌對(duì)化療藥物敏感性,GPX4高表達(dá)的乳腺癌病人可以獲得更好的化療療效[22]。
蒽環(huán)類藥物阿霉素是乳腺癌化療的重要藥物。阿霉素能促使線粒體鐵積累,增加ROS產(chǎn)生,促進(jìn)鐵死亡的發(fā)生[23]。基于此,NIETO等[24]使用裝載有鐵及阿霉素的納米顆粒增加細(xì)胞內(nèi)鐵水平,協(xié)同誘導(dǎo)乳腺癌細(xì)胞鐵死亡,有效增強(qiáng)了化療藥物的療效,降低了乳腺癌細(xì)胞的生存率,并減少了阿霉素單獨(dú)使用的副作用。
4.2 精準(zhǔn)靶向治療誘導(dǎo)不同分型乳腺癌細(xì)胞鐵死亡
乳腺癌的治療已經(jīng)進(jìn)入了分子分型指導(dǎo)治療的精準(zhǔn)靶向治療時(shí)代,根據(jù)乳腺癌組織中雌激素受體(ER)、孕激素受體(PR)、人表皮生長(zhǎng)因子受體2(HER-2)的表達(dá)情況,乳腺癌可分為三陰性乳腺癌(TNBC)、HER-2陽(yáng)性型乳腺癌、Luminal 型乳腺癌。
4.2.1 TNBC TNBC占所有乳腺癌病例的10%~20%[25]。由于ER、PR、HER-2受體缺乏,TNBC不會(huì)對(duì)內(nèi)分泌治療或抗HER-2靶向治療產(chǎn)生反應(yīng)[26-27]。TNBC通常侵襲性較高、預(yù)后較差,易出現(xiàn)復(fù)發(fā)和轉(zhuǎn)移[28]。TNBC比其他類型乳腺癌更依賴于SLC7A11參與的谷氨酰胺代謝[29]。同時(shí),TNBC細(xì)胞中GSH和GPX4的表達(dá)水平也更低[30]。GSH和GPX4水平降低導(dǎo)致TNBC對(duì)促進(jìn)鐵死亡的藥物更加敏感,因而鐵死亡途徑在TNBC的治療中擁有巨大潛力。這些發(fā)現(xiàn)可能為T(mén)NBC的靶向治療提供新思路。
此外,鐵死亡誘導(dǎo)劑也可以協(xié)同放射治療,增強(qiáng)放射治療對(duì)TNBC的療效[31]。
4.2.2 HER-2陽(yáng)性型乳腺癌 研究表明,約10%~20%的乳腺癌過(guò)度表達(dá)HER- HER-2陽(yáng)性型乳腺癌惡性程度較高,病情進(jìn)展較為迅速[8,25]??笻ER-2靶向療法能夠顯著提高病人的生存率,降低復(fù)發(fā)和死亡的風(fēng)險(xiǎn)。目前的靶向療法包括單克隆抗體、抗體藥物偶聯(lián)物和小分子酪氨酸激酶抑制劑(如Lapatinib),在臨床應(yīng)用中常觀察到腫瘤對(duì)靶向藥物產(chǎn)生耐藥[32]。
溶酶體破壞劑Siramesine和Lapatinib可通過(guò)誘導(dǎo)乳腺癌細(xì)胞發(fā)生鐵死亡治療乳腺癌。Lapatinib單獨(dú)或聯(lián)合使用后,向細(xì)胞內(nèi)轉(zhuǎn)運(yùn)鐵的轉(zhuǎn)鐵蛋白表達(dá)增加,敲除轉(zhuǎn)鐵蛋白并用藥后ROS的產(chǎn)生和細(xì)胞死亡減少。Siramesine單獨(dú)或聯(lián)合使用后向細(xì)胞外轉(zhuǎn)運(yùn)鐵的鐵轉(zhuǎn)運(yùn)蛋白ferroportin-1表達(dá)降低,ferroportin-1降低會(huì)增加用藥后的細(xì)胞死亡率[33]。此外,Siramesine可誘導(dǎo)組織蛋白酶B從溶酶體釋放,組織蛋白酶B可消耗細(xì)胞內(nèi)的半胱氨酸[34]。Siramesine和Lapatinib可以增加細(xì)胞鐵水平,消耗細(xì)胞內(nèi)半胱氨酸,抑制GSH合成,促進(jìn)細(xì)胞鐵死亡,使用鐵死亡抑制劑ferrastatin-1與上述兩種藥物共同處理細(xì)胞可以成功抑制細(xì)胞死亡[33],進(jìn)一步證明其是通過(guò)鐵死亡途徑殺死乳腺癌細(xì)胞。
4.2.3 Luminal型乳腺癌 Luminal A型乳腺癌在乳腺癌中較為常見(jiàn),其預(yù)后較好,Luminal B型乳腺癌對(duì)比Luminal A型乳腺癌更易發(fā)生轉(zhuǎn)移且預(yù)后更差[15]。這兩種類型的乳腺癌均可以使用化療和內(nèi)分泌治療。此外,Luminal B型乳腺癌(HER-2陽(yáng)性)還可以使用抗HER-2靶向治療,且療效較好[35],但目前針對(duì)鐵死亡與Luminal型乳腺癌治療的研究較少。
4.3 鐵死亡增強(qiáng)乳腺癌對(duì)放療敏感性
鐵飽和乳鐵蛋白(Holo-Lf)能顯著增加TNBC細(xì)胞的鐵含量,促進(jìn)ROS生成,誘導(dǎo)細(xì)胞鐵死亡。而低Holo-Lf會(huì)上調(diào)SLC7A11的表達(dá),增加GSH的生成,抑制TNBC細(xì)胞的鐵死亡。Holo-Lf催化H 2O 2分解,能緩解TNBC腫瘤細(xì)胞的低氧微環(huán)境,促進(jìn)放射治療引起的ROS生成和DNA損傷。Holo-Lf與放射治療聯(lián)合使用后對(duì)TNBC細(xì)胞造成了更嚴(yán)重的DNA損傷,增強(qiáng)了放射治療對(duì)TNBC的療效,使TNBC細(xì)胞對(duì)放療敏感性增高[36]。此外,放射治療后的腫瘤細(xì)胞中共濟(jì)失調(diào)毛細(xì)血管擴(kuò)張突變基因的表達(dá)可以抑制SLC7A11的表達(dá)[37],電離輻射也可上調(diào)腫瘤細(xì)胞中鐵死亡所需酶ACSL4的表達(dá)[1 38],對(duì)鐵死亡產(chǎn)生促進(jìn)作用。
4.4 鐵死亡增強(qiáng)免疫治療療效
免疫療法在乳腺癌治療方面具有巨大的潛力,但由于腫瘤細(xì)胞常表現(xiàn)出低免疫原性,目前利用免疫療法治療乳腺癌的療效有待提高[39-40]。RSL-3是一種GPX4抑制劑,一種載有RSL-3的鐵死亡誘導(dǎo)納米顆??梢詥?dòng)腫瘤細(xì)胞的免疫原性細(xì)胞死亡,招募T淋巴細(xì)胞分泌干擾素γ,進(jìn)而抑制system xc-功能亞基SLC7A11A的表達(dá)[41],影響胱氨酸轉(zhuǎn)運(yùn),導(dǎo)致GSH合成減少,GSH依賴性GPX4抑制,誘使腫瘤細(xì)胞對(duì)RSL-3誘導(dǎo)的鐵死亡更敏感,與抗PD-L1抗體結(jié)合使用時(shí),能有效抑制小鼠乳腺癌模型中腫瘤細(xì)胞向其他部位的轉(zhuǎn)移,增強(qiáng)免疫治療的作用[42]。GPX4高表達(dá)者免疫治療預(yù)后通常較差[43],GPX4抑制劑和抗PD-1抗體聯(lián)合使用能產(chǎn)生更好的療效。
5 定向誘導(dǎo)鐵死亡新方法展望
5.1 與納米顆粒結(jié)合促進(jìn)乳腺癌細(xì)胞鐵死亡
納米顆??梢栽谌苊阁w中釋放鐵,提供誘導(dǎo)鐵死亡發(fā)生的條件。磁場(chǎng)可用于將鐵基納米顆粒集中于腫瘤部位,也可促進(jìn)細(xì)胞內(nèi)ROS的產(chǎn)生[3]。Ferumoxytol是一種用于腎功能不全病人補(bǔ)鐵的納米顆粒,對(duì)早期乳腺癌有一定的治療作用。腫瘤相關(guān)巨噬細(xì)胞M1亞型可以在腫瘤細(xì)胞中誘導(dǎo)鐵參與Fenton反應(yīng)[44],F(xiàn)erumoxytol可以誘導(dǎo)腫瘤相關(guān)巨噬細(xì)胞向M1亞型轉(zhuǎn)化,進(jìn)而導(dǎo)致腫瘤細(xì)胞的鐵死亡[45]。
使用GPX4抑制劑(例如RSL-3)往往產(chǎn)生許多副作用[46]。因此,SONG等[42]將RSL-3封裝于納米顆粒內(nèi),向腫瘤細(xì)胞靶向遞送RSL-3。pH為中性時(shí)RSL-3穩(wěn)定封于納米顆粒內(nèi),經(jīng)細(xì)胞攝取后,納米顆粒在酸性的內(nèi)吞囊泡內(nèi)解離,釋放RSL-3抑制GPX 促進(jìn)鐵死亡發(fā)生,與抗PD-L1抗體結(jié)合使用有效抑制了小鼠乳腺癌模型中腫瘤細(xì)胞向其他部位轉(zhuǎn)移。
5.2 與脂質(zhì)體結(jié)合預(yù)靶向治療乳腺癌
ZHANG等[47]設(shè)計(jì)了一種基于脂質(zhì)體的預(yù)靶向系統(tǒng),使用單鏈DNA和靶向肽CREKA修飾。該系統(tǒng)包括第一脂質(zhì)體和第二脂質(zhì)體,前者裝載NIR-II成像探針和MRI成像造影劑用于成像,后者載有阿霉素和葡萄糖氧化酶用于腫瘤治療。CREKA使脂質(zhì)體識(shí)別腫瘤組織過(guò)表達(dá)的纖連蛋白,將第一脂質(zhì)體引導(dǎo)至轉(zhuǎn)移瘤邊緣,實(shí)現(xiàn)轉(zhuǎn)移性乳腺癌的精確成像。第二脂質(zhì)體通過(guò)單鏈DNA互補(bǔ)配對(duì)與腫瘤細(xì)胞外基質(zhì)中的第一脂質(zhì)體實(shí)現(xiàn)融合。第二脂質(zhì)體通過(guò)催化葡萄糖上調(diào)腫瘤組織中的H 2O 2水平,第一脂質(zhì)體與腫瘤組織中的H 2O 2發(fā)生Fenton反應(yīng),引發(fā)鐵死亡殺死腫瘤細(xì)胞。這種DNA介導(dǎo)的預(yù)靶向療法顯示出良好的效果。
6 結(jié)語(yǔ)
近年來(lái),鐵死亡已成為醫(yī)學(xué)界的研究熱點(diǎn),在許多疾病治療中都體現(xiàn)出了巨大的潛力。靶向鐵死亡途徑促進(jìn)乳腺癌細(xì)胞的死亡在腫瘤治療方案的設(shè)計(jì)中具有重要意義,能對(duì)TNBC產(chǎn)生良好的治療效果;可以增強(qiáng)化療的作用和對(duì)放療的敏感性,與免疫治療聯(lián)合應(yīng)用能夠增強(qiáng)療效。一些載體可以裝載相關(guān)藥物向腫瘤定向輸送,選擇性誘導(dǎo)鐵死亡以殺傷腫瘤細(xì)胞。同時(shí),也存在許多問(wèn)題未完全解決,如乳腺癌細(xì)胞鐵死亡執(zhí)行過(guò)程中全部而具體的分子機(jī)制還未完全闡明,在乳腺特定區(qū)域選擇性誘導(dǎo)或抑制鐵死亡的可臨床應(yīng)用的方案仍有待探索??傊?,針對(duì)鐵死亡途徑的乳腺癌治療新策略具有廣闊的研究前景和巨大的應(yīng)用潛力。
[參考文獻(xiàn)]
[1]SUN L L, LINGHU D L, HUNG M C. Ferroptosis: a pro-mising target for cancer immunotherapy[J]. American Journal of Cancer Research, 202 11(12):5856-5863.
[2]ZHANG C, LIU X Y, JIN S D, et al. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance[J]. Molecular Cancer, 202 "21(1):47.
[3]WANG S H, LUO J, ZHANG Z H, et al. Iron and magnetic: new research direction of the ferroptosis-based cancer therapy[J]. American Journal of Cancer Research, 2018,8(10):1933-1946.
[4]BRIGELIUS-FLOH R, MAIORINO M. Glutathione peroxidases[J]. Biochimica et Biophysica Acta, 201 1830(5):3289-3303.
[5]DING Y H, CHEN X P, LIU C, et al. Identification of a small molecule as inducer of ferroptosis and apoptosis through"" ubiquitination of GPX4 in triple negative breast cancer cells[J]." Journal of Hematology amp; Oncology, 202 14(1):19.
[6]TANG D L, CHEN X, KANG R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Research, 202 31(2):107-125.
[7]MURPHY T H, MIYAMOTO M, SASTRE A, et al. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress[J]. Neuron, 1989, 2(6):1547-1558.
[8]FERRANDO-DEZ A, FELIP E, POUS A, et al. Targeted therapeutic options and future perspectives for HER2-positive breast cancer[J]. Cancers, 202 14(14):3305.
[9]WINTERBOURN C C. Toxicity of iron and hydrogen pero-xide: the Fenton reaction[J]. Toxicology Letters, 1995,82-83:969-974.
[10]DIXON S J, OLZMANN J A. The cell biology of ferroptosis[J]." Nature Reviews Molecular Cell Biology, 202 25(6):424-442.
[11]LIANG D G, MINIKES A M, JIANG X J. Ferroptosis at the intersection of lipid metabolism and cellular signaling[J]." Molecular Cell, 202 82(12):2215-2227.
[12]JIANG X J, STOCKWELL B R, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]." Nature Reviews Molecular Cell Biology, 202 22(4):266-282.
[13]PORTER N A, CALDWELL S E, MILLS K A. Mechanisms of free radical oxidation of unsaturated lipids[J]. Lipids, 1995,30(4):277-290.
[14]LIN L, ZHANG M X, ZHANG L, et al. Autophagy, pyroptosis, and ferroptosis: new regulatory mechanisms for atherosclerosis[J]. Frontiers in Cell and Developmental Biology, 202 9: 809955.
[15]LIN H Y, HO H W, CHANG Y H, et al. The evolving role of ferroptosis in breast cancer: translational implications pre-sent and future[J]. Cancers, 202 13(18):4576.
[16]FORCINITI S, GRECO L, GRIZZI F, et al. Iron metabolism in cancer progression[J]. International Journal of Molecular Sciences, 2020, 21(6):2257.
[17]MOU Y H, WANG J, WU J C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer[J]. Journal of Hematology amp; Oncology, 2019,12(1):34.
[18]HANGAUER M J, VISWANATHAN V S, RYAN M J, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition[J]. Nature, 2017,551(7679):247-250.
[19]XU Z, WANG X M, SUN W B, et al. RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer[J]." Redox Biology, 202 68:102952.
[20]LIANG C, ZHANG X L, YANG M S, et al. Recent progress in ferroptosis inducers for cancer therapy[J]." Advanced Mate-" rials, 2019,31(51):e1904197.
[21]CHEN X, KANG R, KROEMER G, et al. Broadening horizons: the role of ferroptosis in cancer[J]." Nature Reviews Clinical Oncology, 202 18(5):280-296.
[22]SHA R, XU Y Q, YUAN C W, et al. Predictive and prognostic impact of ferroptosis-related genes ACSL4 and GPX4 on breast cancer treated with neoadjuvant chemotherapy[J]." EBioMedicine, 202 71:103560.
[23]LI X J, LI W T, LI Z H, et al. Iron-chelated polydopamine decorated doxorubicin-loaded nanodevices for reactive oxygen species enhanced cancer combination therapy[J]. Frontiers in Pharmacology, 2019,10: 75.
[24]NIETO C, VEGA M A, MARTN DEL VALLE E M. Tailo-red-made polydopamine nanoparticles to induce ferroptosis in breast cancer cells in combination with chemotherapy[J]. International Journal of Molecular Sciences, 202 "22(6):3161.
[25]BURGUIN A, DIORIO C, DUROCHER F. Breast cancer treatments: updates and new challenges[J]. Journal of Perso-nalized Medicine, 202 11(8):808.
[26]LEON-FERRE R A, GOETZ M P. Advances insystemic the-rapies for triplenegative breast cancer[J]." BMJ: British Medical Journal, 202 381:e071674.
[27]LI Y, ZHANG H J, MERKHER Y, et al. Recent advances intherapeutic strategies for triple-negative breast cancer[J]." Journal of Hematology amp; Oncology, 202 15(1):121.
[28]WON K A, SPRUCK C. Triple-negative breast cancer therapy: current and future perspectives (Review)[J]. International Journal of Oncology, 2020,57(6):1245-1261.
[29]TIMMERMAN L A, HOLTON T, YUNEVA M, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target[J]. Cancer Cell, 201 "24(4):450-465.
[30]VERMA N, VINIK Y, SAROHA A, et al. Synthetic lethal combination targeting BET uncovered intrinsic susceptibility of TNBC to ferroptosis[J]. Science Advances, 2020,6(34):eaba8968.
[31]ZENG L J, DING S S, CAO Y H, et al. A MOF-based potent ferroptosis inducer for enhanced radiotherapy of triple negative breast cancer[J]." ACS Nano, 202 17(14):13195-13210.
[32]WU X F, YANG H J, YU X F, et al. Drug-resistant HER2-positive breast cancer: molecular mechanisms and overcoming strategies[J]. Frontiers in Pharmacology, 202 13: 1012552.
[33]MA S, HENSON E S, CHEN Y, et al. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells[J]. Cell Death amp; Disease, 2016,7(7):e2307.
[34]XU T, DING W, JI X Y, et al. Molecular mechanisms of ferroptosis and its role in cancer therapy[J]. Journal of Cellular and Molecular Medicine, 2019, 23(8):4900-4912.
[35]GOUTSOULIAK K, VEERARAGHAVAN J, SETHUNATH V, et al. Towards personalized treatment for early stage HER2-positive breast cancer[J]. Nature Reviews Clinical Oncology, 2020,17(4):233-250.
[36]ZHANG Z, LU M L, CHEN C L, et al. Holo-lactoferrin: the link between ferroptosis and radiotherapy in triple-negative breast cancer[J]. Theranostics, 202 11(7):3167-3182.
[37]LANG X T, GREEN M D, WANG W M, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11[J]. Cancer Discovery, 2019,9(12):1673-1685.
[38]LEI G, ZHANG Y L, KOPPULA P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression[J]. Cell Research, 2020,30(2):146-162.
[39]ZHANG Y Y, ZHANG Z M. The historyand advances incancer immunotherapy: understandingthe characteristics of tumor-infiltrating immune cells and their therapeutic implications[J]." Cellular amp; Molecular Immunology, 2020,17(8):807-821.
[40]KEENANT E, TOLANEY S M. Roleof immunotherapy intriple-negative breast cancer[J]." Journal of the National Comprehensive Cancer Network, 2020,18(4):479-489.
[41]YAN H F, ZOU T, TUO Q Z, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduction and Targeted Therapy, 202 6(1):49.
[42]SONG R D, LI T L, YE J Y, et al. Acidity-activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer[J]. Advanced Materials, 202 33(31):e2101155.
[43]YANG F, XIAO Y, DING J H, et al. Ferroptosis heteroge-
neity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy[J]. Cell Metabolism, 202 35(1):84-100.e8.
[44]SINDRILARU A, PETERS T, WIESCHALKA S, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice[J]. The Journal of Clinical Investigation, 201 121(3):985-997.
[45]ZANGANEH S, HUTTER G, SPITLER R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues[J]. Nature Nanotechnology, 2016,11(11):986-994.
[46]UBELLACKER J M, TASDOGAN A, RAMESH V, et al. Lymph protects metastasizing melanoma cells from ferroptosis[J]. Nature, 2020,585(7823):113-118.
[47]ZHANG N N, SHU G F, QIAO E Q, et al. DNA-functiona-
lized liposomes in vivo fusion for NIR-Ⅱ/MRI guided pretargeted ferroptosis therapy of metastatic breast cancer[J]. ACS Applied Materials amp; Interfaces, 202 14(18):20603-20615.
(本文編輯 劉寧)