[摘要] 異常妊娠與胎盤功能失調(diào)密切相關(guān),通過(guò)胎盤代謝組學(xué)分析,可以了解異常妊娠的特有代謝紊亂和病理機(jī)制。本文對(duì)胎盤代謝組學(xué)在各類異常妊娠中的應(yīng)用成果進(jìn)行綜述,并對(duì)其現(xiàn)狀及前景進(jìn)行討論。
[關(guān)鍵詞] 胎盤;代謝組學(xué);妊娠并發(fā)癥;新生兒;綜述
[中圖分類號(hào)] R714.56;R722.1
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2024)06-0941-04
doi:10.11712/jms.2096-5532.2024.60.195
[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] https://link.cnki.net/urlid/37.1517.R.20250107.1910.005;2025-01-08 13:52:56
The application of placental metabolomics in abnormal pregnancies
ZHANG Fanzhen, LIU Qiang, ZHANG Haixia
(School of Clinical Medicine, Weifang Medical University, Weifang 26105 "China)
[Abstract] Abnormal pregnancies are closely associated with placental dysfunction, and placental metabolomics can help to understand the unique metabolic disruptions and pathological mechanisms in abnormal pregnancies. This article reviews the application of placental metabolomics in various types of abnormal pregnancies and discusses its current status and future prospects.
[Key words] placenta; metabolomics; pregnancy complications; infant, newborn; review
受到基因和環(huán)境的共同影響,我國(guó)異常妊娠的發(fā)生率超過(guò)5%[1]。代謝組學(xué)通過(guò)核磁共振、色譜質(zhì)譜聯(lián)用等手段,對(duì)內(nèi)環(huán)境中所有小分子代謝物進(jìn)行綜合分析,反映基因和環(huán)境對(duì)生物體的影響,是異常妊娠機(jī)制研究的有力工具[2-5]。胎盤作為母胎之間的樞紐,對(duì)維持正常妊娠及胎兒發(fā)育具有重要意義,多種妊娠并發(fā)癥都與胎盤功能異常有關(guān)[6-8]。胎盤的代謝分析是異常妊娠研究過(guò)程中的重要環(huán)節(jié)[9]。本文對(duì)異常妊娠胎盤的代謝組學(xué)研究成果進(jìn)行分類總結(jié),并對(duì)其現(xiàn)狀及前景展開討論。
1 子癇前期(PE)
PE影響全球約3%~7%的妊娠,具有較大的臨床危害[10]。此方向的研究以小樣本病例對(duì)照研究為主,通常使用的檢測(cè)樣本為分娩后的胎盤或外植體。還有一些研究結(jié)合了基因組學(xué)、轉(zhuǎn)錄組學(xué)等方法來(lái)分析PE機(jī)制。DUNN等[11]在低氧條件培養(yǎng)的6組PE胎盤及正常胎盤絨毛外植體中,發(fā)現(xiàn)了包括谷氨酸、谷氨酰胺和白三烯在內(nèi)的47種代謝物與PE密切相關(guān)。該研究還發(fā)現(xiàn),PE胎盤與正常胎盤的代謝物,在不同氧含量下培養(yǎng)時(shí)的差異并不相同,低氧培養(yǎng)時(shí)差異比較小。低氧培養(yǎng)的正常胎盤與常氧培養(yǎng)的PE胎盤代謝相似,可能是低氧時(shí)非糖物質(zhì)利用增加所致[12]。AUSTDAL等[13]在19個(gè)PE胎盤的代謝組學(xué)研究中發(fā)現(xiàn),PE胎盤的磷脂合成增加,膽汁酸合成、?;撬岽x、尿素循環(huán)和蛋白質(zhì)合成減少,重度和非重度PE胎盤的代謝譜有顯著差異,但胎兒生長(zhǎng)受限(FGR)胎盤與正常體質(zhì)量新生兒胎盤無(wú)明顯差異。胎盤代謝物水平與母體血清中胎盤應(yīng)激標(biāo)志物含量相關(guān)。KAWASAKI等[14]對(duì)7個(gè)重度早發(fā)性PE胎盤、3個(gè)重度晚發(fā)性PE胎盤和10個(gè)正常胎盤進(jìn)行代謝組學(xué)分析(PE在確診后使用硫酸鎂治療),發(fā)現(xiàn)早發(fā)性PE胎盤的谷胱甘肽代謝通路顯著上調(diào),但該通路在PE胎盤公開數(shù)據(jù)集中顯著下調(diào)。永生化滋養(yǎng)層細(xì)胞試驗(yàn)結(jié)果表明,硫酸鎂在早發(fā)性PE胎盤滋養(yǎng)層中抑制過(guò)氧化氫誘導(dǎo)活性氧產(chǎn)生,并在氧化應(yīng)激時(shí)促進(jìn)谷胱甘肽生成,從而導(dǎo)致該現(xiàn)象。ZHANG等[15]發(fā)現(xiàn),PE胎盤的甘油磷脂和谷胱甘肽代謝發(fā)生紊亂,生物膜結(jié)構(gòu)和線粒體功能可能受到影響。FENG等[16]對(duì)重度PE胎盤進(jìn)行了轉(zhuǎn)錄和代謝組學(xué)檢測(cè),隨后使用公開數(shù)據(jù)集驗(yàn)證,發(fā)現(xiàn)PE胎盤中多種代謝物和基因存在異常,影響到以類固醇激素生物合成為代表的多條通路。
2 FGR
因無(wú)法準(zhǔn)確檢測(cè)胎兒的生長(zhǎng)潛能,F(xiàn)GR或?qū)m內(nèi)生長(zhǎng)受限(IUGR)常以小于胎齡兒(SGA)的形式出現(xiàn)[17-18]。此方向的研究以小樣本研究為主,有些研究結(jié)合了多種樣本進(jìn)行代謝分析,提出SGA可能與胎兒肝功能障礙、PE等有共同機(jī)制。HORGAN等[19]將9個(gè)SGA胎盤和8個(gè)正常胎盤外植體在低氧、常氧和高氧中培養(yǎng),檢測(cè)到兩組共574種代謝物在多種氧濃度下存在差異。SGA胎盤中49%的代謝物在低氧和常氧時(shí)具有相同代謝特征,表明SGA胎盤已部分適應(yīng)體內(nèi)低氧條件。BAHADO-SINGH等[20]發(fā)現(xiàn),F(xiàn)GR胎盤有179種代謝物下調(diào),其中3-羥基丁酸、甘氨酸和PCaaC42:0對(duì)FGR的敏感性和特異性均較高。富集分析顯示,尿素代謝、氨循環(huán)、卟啉代謝等多種代謝通路發(fā)生紊亂。FGR新生兒與肝功能障礙新生兒表現(xiàn)相似。后續(xù)的靶向代謝組學(xué)分析發(fā)現(xiàn),25種代謝物可較好區(qū)分IUGR和對(duì)照組。代謝物功能分析提示脂質(zhì)和線粒體代謝受到急劇損害,多種脂質(zhì)和能量代謝通路異常,IUGR胎盤對(duì)肌酸-磷酸肌酸系統(tǒng)的依賴性增加,這可能對(duì)胎兒的代謝有持久影響[21]。KARAER等[22]研究發(fā)現(xiàn),F(xiàn)GR胎盤乳酸、谷氨酰胺、膽堿等物質(zhì)水平上調(diào)。YANG等[23]發(fā)現(xiàn),脂肪酸在FGR胎盤中累積,在胎兒血液中減少,這可能與亞油酸代謝異常有關(guān),并可能受到PLA2G2A、CYP2J2和PLA2G4C基因的調(diào)控。TROISI等[24]發(fā)現(xiàn),SGA胎盤和低出生體質(zhì)量?jī)禾ケP的天冬酰胺、甘油磷酸膽堿和乳酸等物質(zhì)含量升高,而牛磺酸、乙醇胺、β-羥基丁酸和甘氨酸含量較低,這些代謝物與低氧、氨基酸攝取和炎癥等機(jī)制有關(guān),提示FGR可能與PE存在部分共同發(fā)病機(jī)制。
3 妊娠期糖尿?。℅DM)
GDM是孕期最常見的代謝紊亂之一[25],但其胎盤代謝組學(xué)研究較少。本文綜述的兩項(xiàng)研究發(fā)現(xiàn)脂質(zhì)異常與GDM密切相關(guān)。YANG等[26]研究表明,GDM胎盤的87種代謝物與對(duì)照組存在顯著差異。脂質(zhì)和類脂是最主要的差異代謝物,脂肪酸的生物合成可能受到影響。亞油酸和α-亞麻酸有預(yù)測(cè)和診斷GDM的潛能,1-硬脂?;?2-棕櫚酰基卵磷脂水平與新生兒體質(zhì)量呈負(fù)相關(guān),不同性別胎盤也存在代謝差異。JIANG等[27]發(fā)現(xiàn),GDM胎盤的甘油磷脂和甘油酯類出現(xiàn)異常,SHexCer(d50:1)、TAG(15:0/20:6/20:6)和PE(18:1e/21:2)含量與血糖水平呈正相關(guān),而PC(12:0/22:3)、PC(22:4e/18:5)和PE(18:1e/26:4)含量與血糖水平呈負(fù)相關(guān),這些物質(zhì)與血糖結(jié)合能較準(zhǔn)確地鑒別GDM。
4 母親肥胖
對(duì)肥胖孕婦胎盤的研究,通常采用隊(duì)列研究、病例對(duì)照研究等方式進(jìn)行,研究發(fā)現(xiàn)其能量代謝存在異常。FATTUONI等[28]發(fā)現(xiàn),肥胖孕婦和正常孕婦胎盤內(nèi)涉及抗氧化、核苷酸產(chǎn)生、脂質(zhì)合成和能量合成的代謝物存在差異,肥胖孕婦胎盤長(zhǎng)鏈多不飽和脂肪酸的生物放大效應(yīng)受到破壞,代謝向更高水平轉(zhuǎn)移。BUCHER等[29]發(fā)現(xiàn),肥胖孕婦胎盤中多種酰基肉堿含量下降,谷氨酰胺和谷氨酸等物質(zhì)含量升高,谷氨酰胺/谷氨酸比值降低,提示β氧化水平降低,可能引起新生兒的血脂異常和胰島素抵抗。不同性別胎兒的胎盤中能量和脂質(zhì)代謝調(diào)節(jié)因子的表達(dá)水平也不同。WATKINS等[30]使用13C標(biāo)記的二十二碳六烯酸(DHA)孵育胎盤外植體并用不同濃度葡萄糖處理,定量分析培養(yǎng)基內(nèi)含13C-DHA的脂類,發(fā)現(xiàn)14種含13C-DHA脂質(zhì)的水平隨孕婦體質(zhì)量指數(shù)(BMI)的升高而增加,葡萄糖濃度也影響DHA代謝,DHA參與的與新生兒出生體質(zhì)量有關(guān)的代謝通路有兩條異常。說(shuō)明孕婦BMI和血糖可通過(guò)改變DHA代謝影響胎兒生長(zhǎng)。
5 孕期環(huán)境有害因素/藥物暴露
孕期環(huán)境有害因素/藥物暴露相關(guān)研究通常采用隨機(jī)對(duì)照試驗(yàn)和隊(duì)列研究設(shè)計(jì),來(lái)分析暴露與子代不良結(jié)局的關(guān)系。有些研究使用了動(dòng)物模型。但在空氣污染相關(guān)領(lǐng)域尚有空白[ 31]。AL-KOUATLYl等[32]分析了使用蛋白酶抑制劑、非核苷類逆轉(zhuǎn)錄酶抑制劑和具有優(yōu)化骨架的整合酶抑制劑的艾滋病妊娠婦女的胎盤代謝組,發(fā)現(xiàn)使用非核苷逆轉(zhuǎn)錄酶抑制劑胎盤的氨基酸水平相對(duì)較低,提示藥物使用可能導(dǎo)致艾滋病母親的代謝異常;30種差異代謝物預(yù)測(cè)人類免疫缺陷病毒暴露的準(zhǔn)確率為72.5%。HAN等[33]研究表明,苯甲酮-3暴露提高了小鼠自發(fā)性胚胎丟失的概率,并誘導(dǎo)了胎盤血栓形成、組織壞死和血小板聚集。PARENTI等[34]研究發(fā)現(xiàn),鄰苯二甲酸鹽代謝物濃度的增加與胎盤內(nèi)2-羥基丁酸、肉堿和N-乙酰神經(jīng)氨酸等物質(zhì)的濃度下降有關(guān),鄰苯二甲酸鹽暴露與家族性自閉癥譜系障礙風(fēng)險(xiǎn)較高隊(duì)列中的胎盤代謝組差異和男性后代的神經(jīng)發(fā)育異常相關(guān)。WANG等[35]收集電子垃圾拆解區(qū)及鄰近對(duì)照地區(qū)母嬰隊(duì)列的胎盤樣本,定量檢測(cè)27種多溴聯(lián)苯醚,發(fā)現(xiàn)電子垃圾拆解區(qū)胎盤中多溴聯(lián)苯醚水平顯著高于對(duì)照地區(qū),4種多溴聯(lián)苯醚暴露相關(guān)代謝物與新生兒頭圍減小顯著相關(guān),12種與新生兒1 min Apgar評(píng)分降低顯著相關(guān)。AGHAEI等[36]發(fā)現(xiàn),暴露于不同濃度聚苯乙烯微塑料小鼠的胎盤中,賴氨酸和葡萄糖的相對(duì)濃度隨著微塑料水平增加而降低,暴露后生物素代謝、賴氨酸降解和糖酵解/糖異生通路可能出現(xiàn)異常。
6 其他
胎盤代謝組學(xué)在胎兒神經(jīng)管畸形(NTDs)、自發(fā)性早產(chǎn)、母親高皮質(zhì)醇血癥和胎兒染色體異常等領(lǐng)域也有少量研究[37-40],顯示出較高應(yīng)用潛力。CHI等[37]對(duì)NTDs胎盤進(jìn)行代謝組學(xué)分析,并靶向檢測(cè)單碳代謝產(chǎn)物,在NTDs三種亞型(無(wú)腦兒、脊柱裂、無(wú)腦兒合并脊柱裂)中,分別篩選出29、16和56種差異代謝物,主要影響三大營(yíng)養(yǎng)物質(zhì)和核酸的代謝。NTDs胎盤中同型半胱氨酸、甲硫氨酸等12種單碳代謝產(chǎn)物存在明顯異常。無(wú)腦兒、無(wú)腦兒合并脊柱裂胎盤的氨基酸轉(zhuǎn)運(yùn)功能可能受到抑制,膽堿缺乏可能參與了這兩種亞型的發(fā)生。ELSHENAWY等[38]研究顯示,自發(fā)性早產(chǎn)(胎齡<36周)胎盤與胎齡≥38周的胎盤相比,?;鈮A等物質(zhì)水平顯著提高,而恒河猴驗(yàn)證試驗(yàn)中,妊娠中期胎盤與足月胎盤的?;鈮A水平無(wú)顯著差異,說(shuō)明自發(fā)性早產(chǎn)胎盤存在代謝異常。JOSEPH等[39]對(duì)妊娠晚期開始經(jīng)皮質(zhì)醇處理的母羊的早產(chǎn)胎盤進(jìn)行轉(zhuǎn)錄和代謝組學(xué)研究,發(fā)現(xiàn)胎盤中氨基酸代謝、降解或合成的變化與胎兒血清中纈氨酸、異亮氨酸、亮氨酸和甘氨酸的變化一致,甘油磷脂代謝、內(nèi)質(zhì)網(wǎng)應(yīng)激和抗氧化系統(tǒng)發(fā)生改變,胎盤功能變化可能導(dǎo)致了子代的代謝異常。MURGIA等[40]對(duì)孕11~14周的孕婦進(jìn)行經(jīng)腹絨毛取樣,絨毛的代謝組學(xué)分析提示,多元醇、肌醇和氧化應(yīng)激相關(guān)通路可能在胎兒染色體異常發(fā)生中起重要作用。
7 小結(jié)
胎盤代謝組學(xué)已成為深度研究異常妊娠的有力工具,其實(shí)驗(yàn)設(shè)計(jì)和數(shù)據(jù)分析方法日趨復(fù)雜,通過(guò)該方法已篩選出了多種異常妊娠特有的代謝物變化和異常代謝通路,為揭示異常妊娠的復(fù)雜機(jī)制提供了新的思路和理論基礎(chǔ),該法在母胎醫(yī)學(xué)中的應(yīng)用具有良好前景。
但目前胎盤代謝組學(xué)缺乏孕早期的相關(guān)研究,大樣本、前瞻性研究也較少,多數(shù)研究為基于小樣本分娩后胎盤的初步探索研究,并鮮有驗(yàn)證試驗(yàn);與新生兒其他樣本聯(lián)系亦較少。同類研究的結(jié)果也不盡相同,這可能與取樣部位、樣本處理方式、研究設(shè)計(jì)及檢測(cè)方法有關(guān)。目前存在的檢測(cè)流程、質(zhì)控與數(shù)據(jù)分析標(biāo)準(zhǔn)、代謝產(chǎn)物鑒定方法等尚無(wú)統(tǒng)一標(biāo)準(zhǔn)[41-43],具有普適性的正常胎盤代謝數(shù)據(jù)庫(kù)仍未建立[44],各平臺(tái)檢測(cè)的成本普遍較高。這些不利條件限制了該方法在臨床的應(yīng)用。
未來(lái)胎盤代謝組學(xué)研究可采用大規(guī)模病例對(duì)照設(shè)計(jì),加強(qiáng)對(duì)孕早中期胎盤的研究,并建立統(tǒng)一的樣本采集、處理和代謝組學(xué)檢測(cè)標(biāo)準(zhǔn),聯(lián)系其他樣本或結(jié)合多組學(xué)技術(shù)對(duì)異常妊娠的發(fā)生、發(fā)展及預(yù)后進(jìn)行深度探索,進(jìn)一步提高母嬰健康服務(wù)水平。
[參考文獻(xiàn)]
[1]董杰,徐乾,王曉紅. 我國(guó)生殖及母胎醫(yī)學(xué)研究熱點(diǎn)情況:基于國(guó)家自然科學(xué)基金項(xiàng)目的科學(xué)文獻(xiàn)分析圖譜[J]. 生殖醫(yī)學(xué)雜志, 202 31(7):959-965.
[2]YE W R, LUO C, HUANG J, et al. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis[J]. BMJ, 202 377:e067946.
[3]NAGANA GOWDA G A, RAFTERY D. NMR-based metabolomics[J]. Advances in Experimental Medicine and Biology, 202 1280:19-37.
[4]DEBERARDINIS R J, KESHARI K R. Metabolic analysis as a driver for discovery, diagnosis, and therapy[J]. Cell, 202 185(15):2678-2689.
[5]KOEN N, PREEZ I D, LOOTS D U T. Metabolomics and personalized medicine[J]. Advances in Protein Chemistry and Structural Biology, 2016,102:53-78.
[6]陶祥,周先榮. 胎盤病理的臨床意義[J]. 中華婦產(chǎn)科雜志, 202 57(5):389-391.
[7]GARBOW J R, NEIL J J. Editorial on “ex vivo MRI of the normal human placenta: structural-functional interplay and the association with birth weight”[J]. Journal of Magnetic Resonance Imaging, 202 56(1):145-146.
[8]LUYTEN L J, SAENEN N D, JANSSEN B G, et al. Air pollution and the fetal origin of disease: a systematic review of the molecular signatures of air pollution exposure in human placenta[J]. Environmental Research, 2018,166:310-323.
[9]BOWMAN C E, ARANY Z, WOLFGANG M J. Regulation of maternal-fetal metabolic communication[J]." Cellular and Molecular Life Sciences, 202 78(4):1455-1486.
[10]KELLY R S, CROTEAU-CHONKA D C, DAHLIN A, et al. Integration of metabolomic and transcriptomic networks inpregnant women reveals biological pathways and predictive signatures associated with preeclampsia[J]." Metabolomics, 2017,13(1):7.
[11]DUNN W B, BROWN M, WORTON S A, et al. Changes in the metabolic footprint of placental explant-conditioned culture medium identifies metabolic disturbances related to hypoxia and pre-eclampsia[J]. Placenta, 2009,30(11):974-980.
[12]HEAZELL A E, BROWN M, WORTON S A, et al. Review: the effects of oxygen on normal and pre-eclamptic placental tissue: insights from metabolomics[J]. Placenta, 201 32(Suppl 2):S119-S124.
[13]AUSTDAL M, THOMSEN L C, TANGERS L H, et al. Metabolic profiles of placenta in preeclampsia using HR-MAS MRS metabolomics[J]. Placenta, 2015,36(12):1455-1462.
[14]KAWASAKI K, KONDOH E, CHIGUSA Y, et al. Metabolomic profiles of placenta in preeclampsia[J]. Hypertension, 2019,73(3):671-679.
[15]ZHANG L Z, BI S L, LIANG Y Y, et al. Integrated metabolomic and lipidomic analysis in the placenta of preeclampsia[J]. Frontiers in Physiology, 202 13:807583-807583.
[16]FENG Y, LIANX L, GUO K M, et al. A comprehensive ana-lysis of metabolomics and transcriptomics to reveal major me-tabolic pathways and potential biomarkers of human preeclampsia placenta[J]." Frontiers in Genetics, 202 13:1010657.
[17]SACCHI C, MARINO C, NOSARTI C, et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta-analysis[J]." JAMA Pediatrics, 2020,174(8):772-781.
[18]OLGA L, SOVIO U, WONG H, et al. Association between antenatal diagnosis of latefetal growth restriction and educational outcomes inmid-childhood: a UK prospective cohort study with long-term data linkage study[J]." PLoS Medicine, 202 20(4):e1004225.
[19]HORGAN R P, BROADHURST D I, DUNN W B, et al. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies[J]. Placenta, 2010,31(10):893-901.
[20]BAHADO-SINGH R O, TURKOGLU O, YILMAZ A, et al. Metabolomic identification of placental alterations in fetal growth restriction[J]. The Journal of Maternal-Fetal amp; Neonatal Medicine, 202 35(3):447-456.
[21]CHAO DE LA BARCA J M, CHABRUN F, LEFEBVRE T, et al. A metabolomic profiling of intra-uterine growth restriction in placenta and cord blood points to an impairment of lipid and energetic metabolism[J]. Biomedicines, 202 10(6):1411.
[22]KARAER A, MUMCU A, ARDA D Z S, et al. Metabolo- nbsp;mics analysis of placental tissue obtained from patients with fe-tal growth restriction[J]. The Journal of Obstetrics and Gy-" naecology Research, 202 48(4):920-929.
[23]YANG Z M, LUO X F, HUANG B, et al. Altered distribution of fatty acid exerting lipid metabolism and transport at the maternal-fetal interface in fetal growth restriction[J]. Placenta, 202 139:159-171.
[24]TROISI J, SYMES S J K, LOMBARDI M, et al. Placental metabolomics of fetal growth restriction[J]. Metabolites, 202 13(2):235.
[25]YU J, REN J, REN Y L, et al. Using metabolomics and proteomics to identify the potential urine biomarkers for predictionand diagnosis of gestational diabetes[J]." EBioMedicine, 202 101:105008.
[26]YANG Y Q, PAN Z P, GUO F, et al. Placental metabolic profiling in gestational diabetes mellitus: an important role of fatty acids[J]. Journal of Clinical Laboratory Analysis, 202 35(12):e24096.
[27]JIANG D M, HE J, HUA S Y, et al. A comparative lipidomic study of the human placenta from women with or without gestational diabetes mellitus[J]. Molecular Omics, 202 18(6):545-554.
[28]FATTUONI C, MAND C, PALMAS F, et al. Preliminary metabolomics analysis of placenta in maternal obesity[J]. Placenta, 2018,61:89-95.
[29]BUCHER M, MONTANIEL K R C, MYATT L, et al. Dyslipidemia, insulin resistance, and impairment of placental metabolism in the offspring of obese mothers[J]. Journal of Developmental Origins of Health and Disease, 202 12(5):738-747.
[30]WATKINS O C, SELVAM P, APPUKUTTAN PILLAI R, et al. Placental 13C-DHA metabolism and relationship with maternal BMI, glycemia and birthweight[J]. Molecular Medicine, 202 27(1):84.
[31]TAOS M, YANG M J, PANB, et al. Maternal exposure toambient PM2.5 perturbs the metabolic homeostasis of maternal serumand placenta inmice[J]." Environmental Research, 202 216(Pt 3):114648.
[32]AL-KOUATLY H B, SCOTT R K, MAKHAMREH M M, et al. Metabolomics in placental tissue from women living with HIV[J]. AIDS Research and Human Retroviruses, 202 38(3):198-207.
[33]HAN X M, LU T, HU Y H, et al. A metabolomic study on the effect of prenatal exposure to Benzophenone-3 on sponta-
neous fetal loss in mice[J]. Ecotoxicology and Environmental Safety, 202 233:113347.
[34]PARENTI M, SCHMIDT R J, OZONOFF S, et al. Maternal serum and placental metabolomes in association with prenatal phthalate exposure and neurodevelopmental outcomes in the MARBLES cohort[J]. Metabolites, 202 12(9):829.
[35]WANG Y F, WANG Q H, ZHOU L N, et al. Metabolomics insights into the prenatal exposure effects of polybrominated diphenyl ethers on neonatal birth outcomes[J]. The Science of the Total Environment, 202 836:155601.
[36]AGHAEI Z, MERCER G V, SCHNEIDER C M, et al. Maternal exposure to polystyrene microplastics alters placental metabolism in mice[J]. Metabolomics: Official Journal of the Metabolomic Society, 202 19(1):1.
[37]CHI Y, PEI L J, CHEN G, et al. Metabonomic profiling of human placentas reveals different metabolic patterns among subtypes of neural tube defects[J]. Journal of Proteome Research, 201 13(2):934-945.
[38]ELSHENAWY S, PINNEY S E, STUART T, et al. The metabolomic signature of the placenta in spontaneous preterm birth[J]. International Journal of Molecular Sciences, 2020, 21(3):1043.
[39]JOSEPH S, WALEJKO J M, ZHANG S C, et al. Maternal hypercortisolemia alters placental metabolism: a multiomics view[J]. American Journal of Physiology Endocrinology and Metabolism, 2020,319(5):E950-E960.
[40]MURGIA F, IUCULANO A, PEDDES C, et al. Metabolic fingerprinting of chorionic villous samples in normal pregnancy and chromosomal disorders[J]. Prenatal Diagnosis, 2019,39(10):848-858.
[41]AL-SALHI R, MONFORT C, BONVALLOT N, et al. Analytical strategies toprofilethe internal chemical exposome and the metabolome of human placenta[J]." Analytica Chimica Acta, 202 1219:339983.
[42]STRAUGHEN J K, SITARIK A R, JONES A D, et al. Comparison of methanol fixation versus cryopreservation of the placenta for metabolomics analysis[J]." Scientific Reports, 202 13(1):4063.
[43]ANWARDEEN N R, DIBOUN I, MOKRAB Y, et al. Statistical methods and resources for biomarker discovery using metabolomics[J]. BMC Bioinformatics, 202 24(1):250.
[44]HARTVIGSSON O, BARMAN M, RABE H, et al. Associations of the placental metabolome with immune maturation up to one year of age in the Swedish NICE-cohort[J]. Metabolomics, 202 20(2):28.
(本文編輯 劉寧)