[摘要] 目的 探討鼠李糖乳桿菌(LGG)與嗜酸乳桿菌(LA)聯(lián)合干預(yù)抑制動(dòng)脈粥樣硬化的潛在機(jī)制。
方法選用C57BL/6J小鼠與APOE-/-小鼠為實(shí)驗(yàn)對象,益生菌灌胃干預(yù)喂養(yǎng)小鼠。將小鼠分為空白對照組、實(shí)驗(yàn)對照組、LGG組、LA組和混合物組,各11只。采用冷凍切片及油紅O染色觀察主動(dòng)脈粥樣斑塊情況。通過試劑盒檢測各組小鼠血清中總膽固醇(TC)、高密度脂蛋白(HDL)和低密度脂蛋白(LDL)含量。采用實(shí)時(shí)熒光定量PCR(RT-qPCR)檢測主動(dòng)脈炎癥因子和肝臟膽固醇轉(zhuǎn)運(yùn)相關(guān)基因的表達(dá)水平。
結(jié)果 LGG與LA在體外具有良好的耐酸性和耐膽鹽能力。體內(nèi)實(shí)驗(yàn)結(jié)果顯示,5組小鼠的動(dòng)脈粥樣斑塊面積和腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-6(IL-6)、膽固醇轉(zhuǎn)運(yùn)相關(guān)基因(CYP7A1、ABCA1和ABCG8)表達(dá)比較差異有統(tǒng)計(jì)學(xué)意義(F=18.04~86.45,Plt;0.001)。兩兩比較結(jié)果顯示,與LGG組、LA組相比較,混合物組小鼠的主動(dòng)脈斑塊面積較少(t LSD=2.642、4.307,Plt;0.05),TNF-α和IL-6表達(dá)水平降低(t LSD=3.918~5.53 Plt;0.05),CYP7A1、ABCA1和ABCG8表達(dá)水平增高(t LSD=5.271~6.598,Plt;0.05)。
結(jié)論 益生菌聯(lián)合干預(yù)可以抑制動(dòng)脈粥樣硬化的發(fā)生發(fā)展,可能是通過抑制炎癥反應(yīng)或是促進(jìn)膽固醇代謝等機(jī)制發(fā)揮作用。
[關(guān)鍵詞] 鼠李糖乳桿菌;嗜酸乳桿菌;動(dòng)脈粥樣硬化;炎癥;膽固醇
[中圖分類號(hào)] R378.992;R543.5
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2024)06-0818-07
doi:10.11712/jms.2096-5532.2024.60.207
[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] https://link.cnki.net/urlid/37.1517.R.20250113.1932.005;2025-01-14 13:00:05
Effect of combined probiotics intervention on atherosclerosis and its possible mechanism
LI Xin, GAO Huijuan, ZHANG Lei, LI Peifeng
(Institude for Translational Medicine, Qingdao University, Qingdao 26602 "China)
[Abstract] Objective To investigate the potential mechanism of combined intervention with Lactobacillus rhamnosus GG(LGG) and Lactobacillus acidophilus (LA) inhibiting atherosclerosis.
Methods "C57BL/6J mice and APOE-/- mice were selected for experiment, and the mice were fed with probiotics by gavage. The mice were divided into blank control group, experimental control group, LGG group, LA group, and mixed group. Frozen section and oil red O staining were used to observe atherosclerotic plaque in the aorta; kits were used to measure the content of total cholesterol, high-density lipoprotein, and low-density lipoprotein in serum; RT-qPCR was used to measure the expression levels of inflammatory factors in the aorta and cholesterol transport-related genes in the liver.
Results "Both LGG and LA showed good acid resistance and bile salt tolerance in vitro. The results of in vivo experiment showed that there were significant differences between the five groups in the area of atherosclerotic plaque and the expression levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and the cholesterol transport-related molecules CYP7A "ABCA "and ABCG8 (F=18.04-86.45,Plt;0.001). Comparison between two groups showed that compared with the LGG group and the LA group, the mixed group had a significantly smaller area of aortic plaque(t LSD=2.64 4.307,Plt;0.05), significantly lower expression levels of TNF-α and IL-6 (t LSD=3.918-5.53 Plt;0.05), and significantly higher expression levels of CYP7A "ABCA "and ABCG8 (t LSD=5.271-6.598,Plt;0.05).
Conclusion Combined intervention with the two probiotics can inhibit the development and progression of atherosclerosis, possibly by suppressing inflammatory response or promoting cholesterol metabolism.
[Key words] Lactobacillus rhamnosus; Lactobacillus acidophilus; atherosclerosis; inflammation; cholesterol
2021年《中國心血管疾病健康與疾病報(bào)告》中指出,心血管疾病是中國居民主要疾病死亡中的首位死因[1]。動(dòng)脈粥樣硬化是心血管疾病中的主要病理過程[2-5]。乳桿菌有益于人體健康,在增強(qiáng)免疫力、促進(jìn)消化吸收、預(yù)防治療腹瀉等方面發(fā)揮作用[6-11]。鼠李糖乳桿菌(LGG)與嗜酸乳桿菌(LA)屬于乳桿菌屬,是公認(rèn)的益生菌菌株,在維持菌群平衡、促進(jìn)胃腸道健康、抑制有害菌增殖方面發(fā)揮作用[12]。有研究結(jié)果顯示,LGG與LA具有抑制動(dòng)脈粥樣硬化的作用[13-15]。本研究經(jīng)過文獻(xiàn)調(diào)研篩選了兩株益生菌LGG與LA,探討其聯(lián)合干預(yù)對動(dòng)脈粥
樣硬化的影響是否優(yōu)于單獨(dú)菌株干預(yù),以期為臨床動(dòng)脈粥樣硬化的預(yù)防和治療提供更多的策略。
1 材料與方法
1.1 菌株鑒定與培養(yǎng)
實(shí)驗(yàn)菌株LGG購于北納生物科技有限公司(編號(hào)為BNCC 134266),LA購于廣東省微生物菌種保藏中心(編號(hào)為GDMCC 1.208)。
1.1.1 革蘭染色、測序 將購買的菌株活化,通過革蘭染色、送樣測序(16s rRNA v3-v4區(qū))等方式鑒定菌株。
1.1.2 菌株培養(yǎng)與灌胃菌液配制 菌株均在37 ℃恒溫厭氧箱中培養(yǎng)。4 ℃條件下,以8 000" r/min離心5 min收集3代菌株,用無菌磷酸鹽緩沖溶液(PBS)重懸洗滌2次,采用平板計(jì)數(shù)法獲得菌體濃度為25×1011 CFU /L的灌胃菌懸液。
1.1.3 菌株耐酸性質(zhì)檢測 人胃的pH值一般在2.5~3.0之間,食物經(jīng)過胃消化時(shí)間為1~2 h[16-17],因此實(shí)驗(yàn)中設(shè)置pH為1.0、2.0、3.0共3個(gè)梯度,耐酸性培養(yǎng)時(shí)間設(shè)置為3 h。收集3代菌株將其接種到pH為1.0、2.0、3.0的培養(yǎng)液中,培養(yǎng)3 h后進(jìn)行平板稀釋涂布,36~48 h后計(jì)數(shù)。每組重復(fù)3次。
1.1.4 菌株耐膽鹽性質(zhì)檢測 菌株是否耐膽鹽判斷標(biāo)準(zhǔn)是其在3 g/L膽鹽濃度條件下的存活率[18],食物經(jīng)腸道消化時(shí)間為2~3 h,因此設(shè)置培養(yǎng)時(shí)間為4 h。收集3代菌株,分別接種到膽鹽濃度為2、3、4 g/L的培養(yǎng)液中,培養(yǎng)4 h后進(jìn)行平板稀釋涂布,36~48 h后計(jì)數(shù)。每組重復(fù)3次。
1.2 動(dòng)物模型與分組
實(shí)驗(yàn)選用8周齡的55只雄性APOE基因敲除(APOE-/-)小鼠與11只雄性C57BL/6J小鼠,小鼠購自唯尚立德生物科技有限公司。所有小鼠被隨機(jī)分為空白對照組(C57BL/6J小鼠,A組)、實(shí)驗(yàn)對照組(APOE-/-小鼠,B組)、LGG組(APOE-/-小鼠,C組)、LA組(APOE-/-小鼠,D組)和混合物組(APOE-/-小鼠,E組),每組11只。5組小鼠的初始平均體質(zhì)量為21 g左右。小鼠飼養(yǎng)在25 ℃、嚴(yán)格12 h光/暗循環(huán)的條件下。C57BL/6J小鼠喂養(yǎng)普通生長繁殖飼料,APOE-/-小鼠喂養(yǎng)含質(zhì)量分?jǐn)?shù)0.150 0脂肪和0.002 5膽固醇的高脂肪高膽固醇飼料。
適應(yīng)性飼養(yǎng)1周后,每天上午開始灌胃實(shí)驗(yàn)。A組與B組小鼠灌胃無菌PBS,C組灌胃LGG,D組灌胃LA,E組灌胃LGG與LA,均灌胃200 μL。連續(xù)灌胃12周,處死小鼠。采用摘眼球取血,并將血清分離保存。同時(shí)收集并保存主動(dòng)脈、肝臟、腸等組織待測。
1.3 主動(dòng)脈動(dòng)脈粥樣硬化病理學(xué)分析
主動(dòng)脈固定在40 g/L多聚甲醛中,6~8 h后,轉(zhuǎn)移到150 g/L的蔗糖溶液里,處理過夜。轉(zhuǎn)移到300 g/L的蔗糖溶液里,處理過夜。進(jìn)行OCT包埋,主動(dòng)脈根部橫截面冷凍切片。主動(dòng)脈主體直接進(jìn)行油紅O染色,主動(dòng)脈根部橫截面冷凍切片后采用油紅O染液進(jìn)行染色,顯微鏡下觀察拍照并使用Image J軟件對結(jié)果進(jìn)行量化分析。
1.4 小鼠血清血脂含量檢測
小鼠眼球取血,按照檢測試劑盒說明書對小鼠血清總膽固醇(TC)、高密度脂蛋白(HDL)和低密度脂蛋白(LDL)水平進(jìn)行檢測。
1.5 RT-qPCR檢測主動(dòng)脈炎癥因子與肝臟膽固醇轉(zhuǎn)運(yùn)分子的表達(dá)水平
利用TRIzol試劑按照說明書分別提取主動(dòng)脈與肝臟RNA。以GAPDH作為內(nèi)參照。按照試劑盒說明進(jìn)行反轉(zhuǎn)錄和RT-qPCR。PCR所用引物及其序列見表1。
1.6 統(tǒng)計(jì)學(xué)方法
利用GraphPad prism統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)分析。計(jì)量資料使用±s表示,多組比較采用單因素方差分析(one-way ANOVA檢驗(yàn))進(jìn)行,采用LSD法進(jìn)行組間兩兩比較。以Plt;0.05為差異具有統(tǒng)計(jì)學(xué)意義。
2 結(jié)" 果
2.1 菌株鑒定
革蘭染色結(jié)果顯示,這兩種菌株均被染為紫色,為革蘭陽性菌,且呈短棒狀,符合乳桿菌的形態(tài)結(jié)構(gòu)(圖1a、c)。使用DNASTAR軟件將得到的測序結(jié)果序列與標(biāo)準(zhǔn)菌株序列、對照序列進(jìn)行同源性比對,結(jié)果顯示,LGG菌株與LGG標(biāo)準(zhǔn)序列幾乎完全重合,LA菌株與LA標(biāo)準(zhǔn)序列幾乎完全重合,確定LGG和LA菌株(圖1b、d)。
2.2 菌株耐酸性檢測
酸性條件pH=1.0時(shí),LGG與LA菌株的存活率為0;酸性條件pH=2.0時(shí),LGG的存活率為(78.10±2.98)%,LA的存活率為(92.80±3.22)%;酸性條件pH=3.0時(shí),LGG的存活率為(50.77±0.45)%,LA的存活率為(43.67±4.86)%。見圖2a、b。
2.3 菌株耐膽鹽性檢測
在膽鹽濃度為2 g/L時(shí),LGG菌株存活率為(94.63±0.87)%,LA菌株的存活率為(77.30±3.33)%;在膽鹽濃度為3 g/L時(shí),LGG的存活率為(60.63±2.42)%,LA的存活率為(64.03±2.54)%;在膽鹽濃度為4 g/L時(shí),LGG的存活率為(43.57±0.91)%,LA的存活率為(37.23±1.68)%。見圖3a、b。
2.4 菌株聯(lián)合干預(yù)對動(dòng)脈粥樣硬化影響
根據(jù)前期文獻(xiàn)結(jié)果[1 19-20],確定給藥途徑為灌胃給藥,給藥劑量為5×108CFU。實(shí)驗(yàn)過程中對小鼠體質(zhì)量進(jìn)行記錄,結(jié)果顯示,20周齡的5組小鼠體質(zhì)量差異有統(tǒng)計(jì)學(xué)意義(F=11.7 Plt;0.05)。兩兩比較結(jié)果顯示,A組小鼠體質(zhì)量低于實(shí)驗(yàn)組各組小鼠(t LSD=3.370 ~ 6.379,Plt;0.05),各實(shí)驗(yàn)組APOE-/-小鼠之間體質(zhì)量并無差異(Pgt;0.05)。
各組小鼠的肝臟質(zhì)量、心臟質(zhì)量之間無明顯差異(Pgt;0.05)。見表2。灌胃12周后處死小鼠,選取主動(dòng)脈根部橫截面與主體內(nèi)膜面進(jìn)行油紅O染色,同時(shí)對主動(dòng)脈根部橫截面和主體內(nèi)膜面斑塊面積占比進(jìn)行測定。結(jié)果顯示,5組小鼠的主動(dòng)脈主體內(nèi)膜面與根部橫截面斑塊面積相比較差異有統(tǒng)計(jì)學(xué)意義(F=26.29、86.45,Plt;0.001)。A組小鼠的主動(dòng)脈未出現(xiàn)斑塊病變(圖4A、5A)。兩兩比較結(jié)果顯示,B組小鼠的主動(dòng)脈主體內(nèi)膜面(圖4B)和根部橫截面(圖5B)斑塊面積與A組小鼠相比明顯增大(t LSD=9.471、16.4 Plt;0.05)。益生菌干預(yù)后小鼠主動(dòng)脈主體內(nèi)膜面(圖4C~F)和根部橫截面(圖5C~E,圖6)斑塊積累情況得到明顯改善,斑塊面積都明顯減少。兩兩比較結(jié)果顯示,E組斑塊面積小于C組、D組(t LSD=2.642~4.307,Plt;0.05)。
2.5 益生菌干預(yù)對主動(dòng)脈炎癥因子的影響
5組小鼠腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-6(IL-6)表達(dá)水平比較差異有統(tǒng)計(jì)學(xué)意義(F=56.68、23.4 Plt;0.001)。兩兩比較結(jié)果顯示,與A組小鼠相比,B組小鼠的TNF-α與IL-6表達(dá)水平顯著升高(t LSD=13.310、7.746,Plt;0.01);采用益生菌聯(lián)合干預(yù)后,TNF-α、IL-6的表達(dá)水平顯著降低。兩兩比較結(jié)果顯示,E組的TNF-α與IL-6表達(dá)水平低于C組、D組(t LSD=3.918~5.53 Plt;0.05)。見圖7。
2.6 益生菌干預(yù)對膽固醇代謝的影響
5組小鼠的TC、HDL和LDL比較差異具有統(tǒng)計(jì)學(xué)意義(F=32.19~50.4 Plt;0.001)。兩兩比較結(jié)果顯示,APOE-/-小鼠的TC、HDL和LDL含量均高于A組小鼠(t LSD=8.529~12.540,Plt;0.001),但各組APOE-/-小鼠中各指標(biāo)含量并無明顯差異(Pgt;0.05)。見圖8。5組小鼠的膽固醇7α-羥化酶(CYP7A1)、ATP-結(jié)合盒轉(zhuǎn)運(yùn)子A1(ABCA1)和ATP-結(jié)合盒轉(zhuǎn)運(yùn)子G8(ABCG8)基因的表達(dá)水平比較差異具有統(tǒng)計(jì)學(xué)意義(F=7.975~37.120,Plt;0.01)。兩兩比較結(jié)果顯示,B組小鼠的CYP7A1、ABCA1和ABCG8基因的表達(dá)水平均低于A組(t LSD=3.185~3.62 Plt;0.05);E組的CYP7A1、ABCA1和ABCG8表達(dá)水平高于C組、D組(t LSD=5.271~6.598,Plt;0.05)。見圖9。
3 討" 論
近年來,心血管疾病死亡率呈上升趨勢,是亟待解決的問題。動(dòng)脈粥樣硬化是心血管疾病的主要病理過程,是解決心血管疾病的重要切入點(diǎn)。研究發(fā)現(xiàn),部分腸道菌群失調(diào)在很大程度上會(huì)促進(jìn)或者抑制動(dòng)脈粥樣硬化的產(chǎn)生[21]。因此,找出哪些腸道菌群可以對動(dòng)脈粥樣硬化產(chǎn)生影響十分重要。為了確定益生菌灌胃后是否會(huì)被胃酸和膽鹽在胃腸道中滅活,并影響益生菌在胃腸道中的定植,我們對LGG和LA進(jìn)行了耐酸性和耐膽鹽實(shí)驗(yàn),結(jié)果顯示兩株菌具有良好的耐酸性與耐膽鹽性。因此,我們進(jìn)行了后續(xù)的動(dòng)物實(shí)驗(yàn)。本研究發(fā)現(xiàn),益生菌株聯(lián)合干預(yù)組小鼠的主動(dòng)脈主體內(nèi)膜面與橫截面的斑塊面積明顯減小,且效果優(yōu)于單獨(dú)益生菌干預(yù)組,提示益生菌聯(lián)合干預(yù)可抑制動(dòng)脈粥樣斑塊的形成。
TNF-α與IL-6是炎癥反應(yīng)過程中釋放的細(xì)胞因子,是炎癥的經(jīng)典標(biāo)志物。TNF-α與IL-6的高表達(dá)均會(huì)促進(jìn)動(dòng)脈粥樣硬化的發(fā)生發(fā)展[22]。本研究結(jié)果顯示,實(shí)驗(yàn)對照組的TNF-α與IL-6表達(dá)水平比空白對照組顯著升高。益生菌干預(yù)后,這一情況得到抑制,且益生菌聯(lián)合干預(yù)的抑制效果更明顯。因此,我們推測益生菌可能通過抑制炎癥反應(yīng)來抑制動(dòng)脈粥樣硬化的發(fā)生發(fā)展。動(dòng)脈粥樣硬化的發(fā)生發(fā)展離不開脂質(zhì)成分的累積[23]。本研究結(jié)果顯示,APOE-/-小鼠血清中TC、HDL和LDL含量均顯著高于空白對照組小鼠,但各組APOE-/-小鼠之間并無明顯差異。推測這可能與菌株差異、灌胃時(shí)間較短或小鼠之間的個(gè)體差異相關(guān)。膽固醇代謝主要通過合成膽汁酸來實(shí)現(xiàn)[24],而CYP7A1是合成膽汁酸過程中的關(guān)鍵酶[25],ABCA1和ABCG8是促進(jìn)膽固醇排出的基因[26-27]。本研究結(jié)果顯示,對照組小鼠的CYP7A1、ABCA1和ABCG8基因的表達(dá)水平比空白對照組低,提示膽固醇代謝被抑制,膽固醇含量升高;經(jīng)益生菌干預(yù)后,CYP7A1、ABCA1和ABCG8基因的表達(dá)水平顯著升高,兩菌株聯(lián)合干預(yù)效果最明顯。由此可見,益生菌聯(lián)合干預(yù)可以顯著抑制動(dòng)脈粥樣硬化的發(fā)生發(fā)展,并可能通過抑制炎癥因子的表達(dá)以及增強(qiáng)膽固醇轉(zhuǎn)運(yùn)分子的表達(dá)而發(fā)揮抑制作用。
益生菌作為一種有益于人體健康的活菌,具有非常廣泛的應(yīng)用領(lǐng)域。在食品方面,在酸奶中添加保加利亞桿菌和乳酸菌能促進(jìn)消化吸收;在疾病治療方面,有治療腹瀉的雙歧桿菌,治療抑郁和焦慮的LGG等[28-30]。有研究顯示,腸道菌群與動(dòng)脈粥樣硬化、2型糖尿病、結(jié)直腸癌等都有一定的關(guān)系[31-34],但在疾病的治療方面尚無相關(guān)應(yīng)用。因此,益生菌干預(yù)防治疾病需要繼續(xù)探索和研究,這些成果為相關(guān)保健品的開發(fā)和臨床應(yīng)用提供了理論參考和支持,具有很大的市場應(yīng)用潛力。
[參考文獻(xiàn)]
[1]馬麗媛,王增武,樊靜,等.《中國心血管健康與疾病報(bào)告2021》要點(diǎn)解讀[J].中國全科醫(yī)學(xué),202 25(27):3331-3346.
[2]LIU H H, CHEN X, HU X M, et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity[J]. Microbiome, 2019,7(1):68.
[3]ZHU Y H, XIAN X M, WANG Z Z, et al. Research progress on the relationship between atherosclerosis and inflammation[J]. Biomolecules, 2018,8(3):80.
[4]GEOVANINI G R, LIBBY P. Atherosclerosis and inflammation: overview and updates[J]. Clinical Science, 2018,132(12):1243-1252.
[5]THIM T, HAGENSEN M K, BENTZON J F, et al. From vulnerable plaque to atherothrombosis[J]. Journal of Internal Medicine, 2008,263(5):506-516.
[6]ROWLAND I, GIBSON G, HEINKEN A, et al. Gut micro-
biota functions: metabolism of nutrients and other food components[J]. European Journal of Nutrition, 2018,57(1):1-24.
[7]PISITHKUL T, SCHROEDER J W, TRUJILLO E A, et al. Metabolic remodeling during biofilm development of Bacillus subtilis[J]. mBio, 2019,10(3):e00623-e00619.
[8]AVALL-JSKELINEN S, PALVA A. Lactobacillus surface layers and their applications[J]. FEMS Microbiology Reviews, 2005,29(3):511-529.
[9]ADAK A, KHAN M R. An insight into gut microbiota and its functionalities[J]. Cellular and Molecular Life Sciences, 2019,76(3):473-493.
[10]MINJ J, CHANDRA P, Paul C, et al. Bio-functional properties of probiotic Lactobacillus: current applications and research perspectives[J]. Critical Reviews in Food Science and Nutrition, 202 61(13):2207-2224.
[11]SIVAMARUTHI B S, SUGANTHY N, KESIKA P, et al. The role of microbiome, dietary supplements, and probiotics in autism spectrum disorder[J]. International Journal of Environmental Research and Public Health, 2020,17(8):2647.
[12]NI Y, YANG X, ZHENG L, et al. Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota[J]. Molecular Nutrition amp; Food Research, 2019,63(22):1900603.
[13]CHEN L H, LIU W E, LI Y M, et al. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process[J]. International Immunopharmacology, 201 17(1):108-115.
[14]HUANG Y, WANG J, QUAN G, et al. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice[J]. Applied and environmental microbiology, 201 80(24):7496-7504.
[15]ETTINGER G, BURTON J P, GLOOR G B, et al. Lactobacillus rhamnosus GR-1 attenuates induction of hypertrophy in cardiomyocytes but not through secreted protein MSP-1 (p75)[J]. PLoS One, 2017,12(1):e0168622.
[16]RIMBARA E, SUZUKI M, MATSUI H, et al. Isolation and characterization of Helicobacter suis from human stomach[J]. Proceedings of the National Academy of Sciences, 202 118(13):e2026337118.
[17]SCHICK P, SAGER M, WEGNER F, et al. Application of the GastroDuo as an in vitro dissolution tool to simulate the gastric emptying of the postprandial stomach[J]. Molecular Pharmaceutics, 2019,16(11):4651-4660.
[18]KOH E, HWANG I Y, LEE H L, et al. Engineering probio-
tics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism[J]. Nature Communications, 202 13(1):3834.
[19]YOSHIDA N, EMOTO T, YAMASHITA T, et al. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis[J]. Circulation, 2018,138(22):2486-2498.
[20]HONG Y F, KIM H, KIM H S, et al. Lactobacillus acidophilus K301 inhibits atherogenesis via induction of 24 (S), 25-epoxycholesterol-mediated ABCA1 and ABCG1 production and cholesterol efflux in macrophages[J]. PLoS One, 2016,11(4):e0154302.
[21]JIE Z Y, XIA H H, ZHONG S L, et al. The gut microbiome in atherosclerotic cardiovascular disease[J]. Nature Communications, 2017,8(1):845.
[22]PALMEFORS H, DUTTAROY S, RUNDQVIST B, et al. The effect of physical activity or exercise on key biomarkers in atherosclerosis: a systematic review[J]. Atherosclerosis, 201 "235(1):150-161.
[23]CARR S S, HOOPER A J, SULLIVAN D R, et al. Non-HDL-cholesterol and apolipoprotein B compared with LDL-cholesterol in atherosclerotic cardiovascular disease risk assessment[J]. Pathology, 2019,51(2):148-154.
[24]陳國良,劉立偉,謝爽,等.高密度脂蛋白膽固醇代謝及其對冠心病影響的研究進(jìn)展[J].心血管病學(xué)進(jìn)展,2010,31(3):360-363.
[25]PULLINGER C R, ENG C, SALEN G, et al. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype[J]. The Journal of Clinical Investigation, 200 110(1):109-117.
[26]PL SCH T, KOK T, BLOKS V W, et al. Increased hepatobiliary and fecal cholesterol excretion upon activation of the li-
ver X receptor is independent of ABCA1[J]. The Journal of Biological Chemistry, 200 277(37):33870-33877.
[27]REPA J J, BERGE K E, POMAJZL C, et al. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta[J]. The Journal of Biological Chemistry, 200 277(21):18793-18800.
[28]MOLUDI J, KHEDMATGOZAR H, NACHVAK S M, et al. The effects of co-administration of probiotics and prebiotics on chronic inflammation, and depression symptoms in patients with coronary artery diseases: a randomized clinical trial[J]. Nutritional Neuroscience, 202 25(8):1659-1668.
[29]SMITH T J, RIGASSIO-RADLER D, DENMARK R, et al. Effect of Lactobacillus rhamnosus LGG and Bifidobacterium animalis ssp. lactis BB-12 on health-related quality of life in college students affected by upper respiratory infections[J]." The British Journal of Nutrition, 201 109(11):1999-2007.
[30]GAGNON E, MITCHELL P L, MANIKPURAGE H D, et al. Impact of the gut microbiota and associated metabolites on cardiometabolic traits, chronic diseases and human longevity: a Mendelian randomization study[J]. Journal of Translational Medicine, 202 21(1):60.
[31]HORIE M, MIURA T, HIRAKATA S, et al. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice[J]." Experimental Animals, 2017,66(4):405-416.
[32]MA Q T, LI Y Q, LI P F, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora[J]." Biomedecine amp; Pharmacotherapie, 2019,117:109138.
[33]SI H F, YANG Q, HU H, et al. Colorectal cancer occurrence and treatment based on changes in intestinal flora[J]." Seminars in Cancer Biology, 202 70:3-10.
[34]ZHOU X Y, CHEN C X, ZHONG Y N, et al. Effect and mechanism of vitamin D on the development of colorectal can-cer based on intestinal flora disorder[J]." Journal of Gastroente-rology and Hepatology, 2020,35(6):1023-1031.
(本文編輯 牛兆山)