【摘要】 特應(yīng)性皮炎(AD)是一種常見的慢性炎癥性皮膚病,表現(xiàn)為皮膚干燥、反復(fù)發(fā)作的瘙癢和濕疹樣皮損,明顯降低患者的生活質(zhì)量。近年來,AD的患病率在中國顯著增加。研究表明,多種空氣污染物可通過氧化應(yīng)激等多種機制損害皮膚屏障,增加AD的患病風(fēng)險。飲食、過敏原等多種暴露因素也通過不同機制對AD的發(fā)生和進(jìn)展產(chǎn)生顯著影響。此外,心理因素如焦慮、壓力等也可通過神經(jīng)內(nèi)分泌調(diào)節(jié)加重AD病情。肥胖與AD密切相關(guān),尤其是兒童和青少年中。AD影響因素和機制的多樣性提示需綜合考慮多因素的初級預(yù)防策略。
【關(guān)鍵詞】 特應(yīng)性皮炎;影響因素;初級預(yù)防;環(huán)境;暴露;機制
New advances of influencing factors and primary prevention in atopic dermatitis
XIAN Mo1,2, HU Qiurong1,2, WANG Wanjun1,2, CHEN Ruchong1,2, LI Jing1,2
(1. Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510160, China;2. State Key Laboratory of Respiratory Disease/National Clinical Research Center for Respiratory Disease/National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510160, China)
Corresponding author: LI Jing, E-mail: lijing@gird.cn
【Abstract】 Atopic dermatitis (AD) is a common chronic inflammatory skin disease characterized by dry skin, recurrent itching, and eczema-like lesions, which can significantly reduce the quality of life. In recent years, the global prevalence of AD has been increasing, with a particularly marked rise in China. Research has shown that air pollutants can damage the skin barrier through mechanisms like oxidative stress, thereby increasing the risk of AD. Various exposure factors, including diet and allergens, also significantly influence the onset and progression of AD through different mechanisms. Furthermore, psychological factors such as anxiety and stress can exacerbate AD through neuroendocrine regulation. Obesity is closely associated with AD, particularly among children and adolescents. Given the diversity of factors and mechanisms influencing AD, a comprehensive approach to primary prevention that considers multiple factors is warranted.
【Key words】 Atopic dermatitis; Influencing factors; Primary prevention;Environment; Exposure; Mechanism
特應(yīng)性皮炎(atopic dermatitis, AD)又稱“特應(yīng)性濕疹”,是一種常見的慢性、炎癥性全身性皮膚病[1]。AD臨床表現(xiàn)為皮膚干燥、難治性瘙癢和濕疹樣皮損,且反復(fù)發(fā)作,治愈率低,嚴(yán)重影響患者的生活質(zhì)量[2]。近年來,AD的全球患病率呈上升趨勢,其終生患病率遠(yuǎn)超過20%[3]。在歐洲,兒童AD的患病率為15%~20%,且在5%~10%的成年人中持續(xù)存在[4]。在加拿大總?cè)丝谥蠥D的患病率為3.5%[5]。而在中國,兒童AD的患病率從2002年的3.07%增加到2014年的12.94%,且城市的患病率遠(yuǎn)高于農(nóng)村地區(qū)[6-7]。根據(jù)第二次國際調(diào)查(AWARE 1)報告,中國內(nèi)地(30.4%)和香港(22.9%)的成人AD患病率位居世界前列[8]。上述流行病學(xué)數(shù)據(jù)表明,兒童是AD的常見患者群體,AD也持續(xù)存在成人中。在中國,AD的流行趨勢已變得十分嚴(yán)峻。
近年隨著對AD這一“世界性現(xiàn)象”的深入研究,AD的影響因素和預(yù)防管理策略也日益受到重視[3]。環(huán)境因素在AD的致病因素中發(fā)揮了重要作用。反復(fù)的環(huán)境暴露及其相互作用、持續(xù)時間和暴露時機均會影響AD的發(fā)病和進(jìn)展[9]。除此以外,其他暴露因素如飲食、心理、過敏原等因素也對AD發(fā)生和發(fā)展產(chǎn)生了重要的影響。本文探討了AD的主要風(fēng)險因素,并總結(jié)了當(dāng)前有效的預(yù)防措施,以期能夠為臨床實踐提供有價值的參考,降低AD的發(fā)生風(fēng)險,并改善高危人群的生活質(zhì)量。
1 特應(yīng)性皮炎影響因素
1.1 空氣污染
1.1.1 空氣污染概況
盡管遺傳因素是AD的較強風(fēng)險因素,但近年AD患病率的大幅增加顯然不能用單一的遺傳因素來解釋。反復(fù)的空氣污染暴露及其相互作用、持續(xù)時間和暴露時機均會影響AD的發(fā)病和進(jìn)展。相關(guān)的空氣污染主要來源于城市化進(jìn)程,包括機動車輛、生物燃燒、發(fā)電廠、制造設(shè)施等[10]。揮發(fā)性有機化合物(volatile organic compounds,VOCs)、顆粒物(particulate matter,PM)、交通相關(guān)的空氣污染(traffic-related air pollution,TRAP)和煙草煙霧等被認(rèn)為是空氣污染物的主要成分。這些污染物可通過生成活性氧(reactive oxygen species,ROS)影響皮膚屏障的完整性,并促進(jìn)T細(xì)胞適應(yīng)性免疫極化為2型輔助性T細(xì)胞(T helper 2,Th2)表型[9]。
1.1.2 大氣顆粒物
在空氣污染物中,細(xì)顆粒物(particulate matter,PM)尤其是直徑≤2.5 μm的細(xì)顆粒物(PM2.5)與AD的發(fā)生相關(guān)[12]。PM2.5和較粗(直徑≤10 μm)的細(xì)顆粒物(PM10)水平的增加與AD患者的月度就診次數(shù)增加有關(guān),并且在嬰兒期和兒童期的暴露危害更大[13-14]??諝庵忻吭黾?0 μg/m3的PM2.5和PM10,AD的門診就診率就分別增加0.7%和0.9%[14-15]。
在高水平的PM2.5產(chǎn)前暴露下,嬰兒期AD的發(fā)生率翻倍,也導(dǎo)致了幼兒期(3個月至8歲)皮炎評分指數(shù)(SCORing atopic dermatitis,SCORAD)評分的顯著惡化[16]。多環(huán)芳烴(polycyclic aromatic hydrocarbons,PAHs)是PM的重要組成部分,可以通過角質(zhì)層擴散并與芳香烴受體(aryl hydrocarbon receptor,AhR)結(jié)合,促進(jìn)細(xì)胞色素P450酶編碼基因(CYP1A1)的轉(zhuǎn)錄,從而增加ROS的產(chǎn)生和炎癥細(xì)胞因子的釋放[17]。AhR信號通路也可以通過增強神經(jīng)營養(yǎng)因子神經(jīng)鞘胚素(Artemin)的產(chǎn)生來誘導(dǎo)瘙癢的過敏反應(yīng)[18]。此外,PM2.5和PM10水平還與濕度呈負(fù)相關(guān),濕度下降致使AD患者皮膚屏障缺陷和細(xì)胞因子增加,并促進(jìn)經(jīng)表皮水分喪失(trans-epidermal water loss,TEWL)[19]。
1.1.3 揮發(fā)性有機化合物
VOCs是由總烴(total hydrocarbons,THCs)組成的不穩(wěn)定形式的物質(zhì)。THCs包括非甲烷烴(non-methane hydrocarbons,NMHCs)和甲烷。隨著全球工業(yè)化和城市化的發(fā)展,VOCs占全球能源消耗高達(dá)85%。室外環(huán)境中,VOCs和苯的增加與AD癥狀的增加有關(guān)[20],其中甲烷燃燒的中間體甲醛暴露可加重大鼠AD模型中的瘙癢和皮膚炎癥[21]。而在室內(nèi)環(huán)境中,產(chǎn)前及出生后前幾年由裝修(如涂漆、地板覆蓋、家具更新等)引起的高VOCs水平與后代AD的終生患病率明顯相關(guān)[22]。在致病機制方面,有研究表明產(chǎn)前暴露于VOCs可能誘導(dǎo)Th2主導(dǎo)的免疫狀態(tài)[23],且暴露于VOCs可能通過尚未確定的機制增加TEWL[24]。此外,與PM類似,VOCs也可激活配體激活的轉(zhuǎn)錄因子AhR,導(dǎo)致下游炎癥和瘙癢介質(zhì)如神經(jīng)鞘胚素激活[18]。
1.1.4 交通相關(guān)的空氣污染
TRAP中的關(guān)鍵氣態(tài)化合物包括二氧化硫(sulfur dioxide,SO2)、一氧化碳(carbon monoxide,CO)、二氧化氮(nitrogen dioxide,NO2)和臭氧(ozone,O3)。其中,SO2、NO2和CO的短期暴露與AD門診就診率的增加顯著相關(guān)[15]。O3暴露對AD風(fēng)險的影響仍然存在爭議。例如,有研究者發(fā)現(xiàn)O3可能導(dǎo)致AD門診就診增加,這與其他研究的結(jié)論相矛盾[25-27]。TRAP對AD的可能潛在機制:TRAP會導(dǎo)致皮膚氧化應(yīng)激,并通過促進(jìn)TEWL、炎癥信號轉(zhuǎn)導(dǎo)、角質(zhì)層pH值和皮膚微生物群失調(diào)而破壞皮膚屏障的完整性,從而加重AD[28-29]。
1.1.5 煙草及新型煙草制品
主動吸煙和被動吸煙均與兒童和青少年的AD相關(guān)。每月吸煙超過20 d的青少年比不吸煙者更容易患AD(校正OR為1.18,95% CI為1.07~1.29)[30]。產(chǎn)前暴露于煙草煙霧也被認(rèn)為是AD的重要風(fēng)險因素[31]。除了傳統(tǒng)煙草,越來越多新型煙草制品的使用在全球范圍內(nèi)引起了公眾對公共健康的關(guān)注。例如,使用電子煙(e-cigarettes)和加熱煙草制品(heated tobacco products,HTP)也與AD、哮喘和過敏性鼻炎等多病共病的增加風(fēng)險顯著相關(guān)。具體機制并不完全清楚,但有關(guān)煙草對生命早期影響的研究表明,高水平的miR-223表達(dá)與母體和臍帶血中調(diào)節(jié)性T細(xì)胞(T regulatory cell,Treg)減少相關(guān),導(dǎo)致在生命的前3年內(nèi)罹患AD的風(fēng)險較高。以上研究結(jié)果提示,煙草中的VOCs可能通過抑制Treg和改變miRNA表達(dá)水平誘發(fā)AD[32]。
1.2 飲食和肥胖
常見于西方飲食中的反式脂肪酸(trans fatty acids, TFA)的攝入與AD患病率的增加有關(guān)[33],但其具體機制尚未完全明確。有研究報道,未經(jīng)過巴氏殺菌的牛奶在西方農(nóng)場人群中顯示出與AD癥狀減少的相關(guān)性,可能與革蘭陰性菌和乳酸桿菌的保護(hù)作用有關(guān)。然而,這種關(guān)聯(lián)能否證實其因果關(guān)系仍然存疑[34]。母乳喂養(yǎng)尤其是專一母乳喂養(yǎng),對早期AD有保護(hù)作用,這可能與母乳中微生物群和免疫活性介質(zhì)[如轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)和免疫球蛋白A(immunoglobulin A,IgA)]的傳遞有關(guān)[35-37]。此外,植物性食品如蔬菜、水果和谷物,可能通過提供抗氧化營養(yǎng)素和植物化學(xué)物質(zhì)(如類黃酮、類胡蘿卜素等),降低AD的發(fā)生風(fēng)險[38]。對于糖類特別是含糖飲料的攝入,則可能增加AD的風(fēng)險,并與兒童早期AD的發(fā)病相關(guān)[39]。其涉及機制主要包括3種:①調(diào)節(jié)兒童機制,即孕期含糖飲料攝入可導(dǎo)致后代的甜食偏好以及從甜食中攝入的熱量比更高;②晚期糖基化終產(chǎn)物(advanced glycation end-products, AGEs)機制;③腸道菌群失調(diào)機制[40],見圖1。值得注意的是,關(guān)于益生元、益生菌等飲食補充劑在AD中的作用仍存在爭議[41-43]。相關(guān)研究結(jié)果也表現(xiàn)出高度的差異性,包括干預(yù)(制劑、劑量、持續(xù)時間和施用時間)、研究人群和記錄終點的時間。此外,關(guān)于益生元和益生菌效果的討論越來越多地伴隨著對安全性的爭議。例如在新生兒等脆弱的群體,益生菌的使用可能導(dǎo)致感染和敗血癥。其對AD的長期影響及安全性仍需進(jìn)一步的研究來證實。
鑒于飲食和肥胖的緊密聯(lián)系,研究表明肥胖也與AD之間存在明確的關(guān)聯(lián)。例如嬰兒低出生體質(zhì)量是AD的保護(hù)因素,而高出生體質(zhì)量則是風(fēng)險因素[44]。兒童和青少年的體質(zhì)量指數(shù)(body mass index, BMI)和腹圍逐年增加是AD的危險因素[45-46]。相關(guān)機制可能包括以下幾種:①與腸道菌群相關(guān)。例如中度或重度AD患者中常見腸道微生物群失衡,腸道黏膜屏障被破壞,致病性革蘭陰性菌過度繁殖,導(dǎo)致細(xì)菌移植和內(nèi)毒素轉(zhuǎn)位,從而激活系統(tǒng)性免疫炎癥反應(yīng)。②與血脂水平相關(guān)。已有研究顯示,兒童AD的發(fā)生率和嚴(yán)重程度與血脂水平異常有關(guān)[47]。每增加5%的體脂,包括AD在內(nèi)的過敏性疾病風(fēng)險增加28%[48]。③肥胖可導(dǎo)致皮膚屏障異常。肥胖可導(dǎo)致經(jīng)皮水分流失增加、皮膚干燥、膠原結(jié)構(gòu)變化和傷口愈合不良,從而加重AD患者的皮膚功能障礙。此外,近年研究者發(fā)現(xiàn)肥胖除誘導(dǎo)Th2型炎癥反應(yīng)外,還可通過降低過氧化物酶體增殖激活受體-γ (peroxisome proliferator-activated receptor-γ,PPAR-γ)的活性而誘導(dǎo)Th17炎癥,從而導(dǎo)致難治性AD[47]。
1.3 過敏原
1.3.1 氣傳性過敏原
AD特征為上皮屏障功能障礙,一旦發(fā)生過敏反應(yīng),氣傳性過敏原的經(jīng)皮暴露會持續(xù)引發(fā)炎癥,導(dǎo)致過敏性炎癥的慢性化。屋塵螨(house dust mite,HDM)過敏原,特別是屋塵螨過敏原組分2(dermatophagoides pteronyssinus group 2,Der p 2),通過增強AD的標(biāo)志性特征(如皮膚炎癥、屏障破壞和角質(zhì)形成細(xì)胞增生) 促進(jìn)AD的發(fā)生和加重[50]。另一種重要過敏原是Der p 38,它是一種新型的HDM過敏原,通過減少皮膚屏障蛋白質(zhì)和增加炎性細(xì)胞來引發(fā)AD。在人類角質(zhì)形成細(xì)胞HaCaT中,Der p 38導(dǎo)致了絲聚蛋白(filaggrin,F(xiàn)LG)表達(dá)的下調(diào),并通過Toll樣受體4(Toll-like receptor 4,TLR4)、磷脂酰肌醇3-激酶(phosphoinositide 3-kinases,PI3K)、蛋白激酶B(protein kinase B,AKT)、c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)和核因子-κB(nuclear factor-kappa B,NF-κB)通路誘導(dǎo)了白介素-6(interleukin-6,IL-6)、IL-8和單核細(xì)胞趨化蛋白(monocyte chemoattractant
protein,MCP)-1等促炎細(xì)胞因子,導(dǎo)致AD的產(chǎn)生[51]。對于其他氣傳性過敏原,接觸草花粉也會顯著加重AD[52]。盡管各種流行病學(xué)研究表明,在出生后的前1年,家庭中養(yǎng)狗會對食物過敏和學(xué)齡期(6~13歲)的兒童哮喘發(fā)展具有保護(hù)作用[53],但目前尚無直接證據(jù)可證實早期接觸寵物過敏原與AD之間的關(guān)系。
1.3.2 食物過敏原
食物過敏原的敏感性與AD初始診斷年齡段有很強的相關(guān)性。初始診斷AD年齡越小,食物過敏的可能性越大,特別是雞蛋與花生過敏[54]。FLG功能缺失突變的遺傳與AD的早發(fā)有關(guān),這表明基因與環(huán)境相互作用可能與過敏原敏感性有關(guān)[55]。此外,AD與食物敏感性以及FA之間存在強烈且劑量依賴性的關(guān)聯(lián),AD的嚴(yán)重性和慢性與食物過敏原種類相關(guān),并且在早期對食物多重敏感的AD兒童似乎具有較高的其他過敏性疾病發(fā)展風(fēng)險[56]。這些發(fā)現(xiàn)提示,過敏原的敏感化可能影響整個皮膚屏障,導(dǎo)致AD的慢性癥狀和屏障損害持續(xù),引起多重敏感反應(yīng),并促進(jìn)過敏性多病共存的發(fā)展。
1.4 心理神經(jīng)因素
AD對心理壓力(如焦慮等)的生物學(xué)機制涉及神經(jīng)內(nèi)分泌調(diào)節(jié)物質(zhì)的分泌和皮膚瘙癢感受器的敏感化(即最小的刺激會導(dǎo)致增強的神經(jīng)反應(yīng)),導(dǎo)致慢性瘙癢-抓撓循環(huán),從而破壞皮膚屏障。心理壓力通過下丘腦-垂體-腎上腺(hypothalamic-pituitary-adrenal, HPA)軸誘導(dǎo)中樞應(yīng)激反應(yīng),導(dǎo)致糖皮質(zhì)激素和瘙癢原(如物質(zhì)P)的分泌[11]。這可能導(dǎo)致對Th1介導(dǎo)細(xì)胞免疫的選擇性抑制,并觸發(fā)向Th2介導(dǎo)體液免疫的轉(zhuǎn)變。除組胺外,其他內(nèi)源性和外源性因素也會導(dǎo)致非組胺性瘙癢,如物質(zhì)P、胸腺基質(zhì)淋巴細(xì)胞生成素(thymic stromal lymphopoietin, TSLP) 和Notch蛋白。
Th2產(chǎn)生的IL-31在誘導(dǎo)瘙癢中的作用受到廣泛關(guān)注。IL-31主要由Th2產(chǎn)生,是一種強效的瘙癢原細(xì)胞因子,而通過單克隆抗體阻斷IL-31受體在臨床AD試驗中被認(rèn)為能有效緩解瘙癢[57-58]。靶向IL-31受體光學(xué)消融可長期減少瘙癢,并選擇性地抑制皮膚瘙癢原神經(jīng)元[59]。
2 特應(yīng)性皮炎的初級預(yù)防
由于AD往往是過敏進(jìn)程(allergic march)首個環(huán)節(jié),因此其初級預(yù)防至關(guān)重要。它包括消除或減少疾病發(fā)展重要的(或部分)原因,改變環(huán)境和工作場所相關(guān)因素,提高個體的耐受性。初級預(yù)防主要針對高風(fēng)險群體(如具有遺傳易感性的人群),但也面向普通人群,包括過敏特定的健康促進(jìn)方面。
2.1 飲食建議
目前包括EAACI在內(nèi)的指南均不建議在孕期和哺乳期對母親飲食(包括潛在過敏原)進(jìn)行限制[60-62]。并且建議在可能的情況下,前4~6個月應(yīng)進(jìn)行母乳喂養(yǎng),在引入輔食后仍需繼續(xù)母乳喂養(yǎng)[63]。同時應(yīng)避免在出生后的幾天內(nèi)補充牛奶基嬰兒配方奶,直到引入輔食[61]。EAACI指南還建議通過引入和定期給予徹底加熱(例如烘烤或煮熟)的雞蛋而非“生”雞蛋(也不包括炒雞蛋)來預(yù)防雞蛋過敏[62]。對于花生,可以考慮在輔食中定期添加適合年齡的含花生成分食物(例如花生醬,因有窒息風(fēng)險不建議食用整顆花生或花生塊),但要非常謹(jǐn)慎。對于中重度AD的嬰兒,還需在引入花生前排除花生過敏[64]。其他方面,目前仍然支持減少糖分及含糖飲料的攝入,并在懷孕和哺乳期間維持均衡、多樣化和營養(yǎng)豐富的飲食,包括蔬菜、牛奶和乳制品(如酸奶)、水果、堅果、雞蛋和魚[61]。由于矛盾性甚至相反的結(jié)果,目前仍難以對益生元或益生菌等食品補充劑制定出具體的推薦意見。
2.2 減少空氣污染風(fēng)險
對于室外空氣污染,世界衛(wèi)生組織(World Health Organization, WHO)建議有效減少空氣污染物排放的措施有以下幾種:① 減少工業(yè)煙囪排放的清潔技術(shù),改善城市和農(nóng)業(yè)廢物管理,包括將廢物場產(chǎn)生的甲烷氣體收集作為生物氣體替代焚燒處理;② 轉(zhuǎn)向清潔的電力生產(chǎn)模式,優(yōu)先考慮城市快速公共交通、步行和騎行網(wǎng)絡(luò)以及城市間的鐵路貨運和客運,從重型柴油車轉(zhuǎn)向低排放車輛和燃料,包括低硫含量的燃料;③ 改善建筑的布局,使城市更加緊湊,從而提高能源利用效率;④ 增加低排放燃料和可再生無燃燒電力來源的使用(如太陽能、風(fēng)能或水電),熱電聯(lián)產(chǎn)以及分布式能源生產(chǎn)(如微電網(wǎng)和屋頂太陽能發(fā)電)[65]。
對于室內(nèi)污染物,人們可以通過安裝空氣過濾裝置和其他改善室內(nèi)空氣質(zhì)量的方法來降低AD的發(fā)生率和減輕AD癥狀的嚴(yán)重性。這些可能方法包括:①清除墻壁和天花板上的細(xì)塵、蜘蛛網(wǎng)和霉菌孢子;②通過消除塵螨和漂浮物以及蒸汽清洗床上用品,減少細(xì)塵、霉菌和塵螨等[66]。
2.3 保濕劑應(yīng)用
作為AD的主要預(yù)防管理策略,保濕劑效果的證據(jù)仍然存在矛盾。早期研究顯示,預(yù)防性應(yīng)用外用保濕劑可能防止AD的發(fā)生[67-69]。但隨后的大型隨機對照試驗報告早期皮膚保濕劑應(yīng)用并未減少12個月時AD的發(fā)展,且有證據(jù)表明保濕劑的使用反而增加了皮膚感染的風(fēng)險[70-72]。這些矛盾可能與試驗中針對的亞群體不同有關(guān),例如在健康群體中預(yù)防性使用和在高風(fēng)險群體使用可能得到不一致結(jié)論。此外是否持續(xù)使用保濕劑、藥膏配方選擇的不同,也可能導(dǎo)致爭議性的結(jié)果。如神經(jīng)酰胺基保濕劑在減少經(jīng)皮水分流失方面更有效,而以花生油為基礎(chǔ)的藥膏則可能加重AD[73]??傮w而言,要取得成功的過敏預(yù)防效果,保濕劑在實際應(yīng)用中應(yīng)考慮不同風(fēng)險人群(例如在高風(fēng)險人群中應(yīng)用)、藥膏配方(考慮神經(jīng)酰胺基保濕劑)以及治療持續(xù)時間等多種因素的影響。
2.4 心理干預(yù)
針對瘙癢-抓撓循環(huán)行為及其相關(guān)心理健康共病的心理干預(yù)可能改善這些結(jié)果以及疾病嚴(yán)重程度。例如習(xí)慣逆轉(zhuǎn)訓(xùn)練、放松訓(xùn)練和認(rèn)知行為療法在治療慢性瘙癢方面已顯示出成功[74]。另外,心理皮膚病學(xué)聯(lián)合門診可以改善瘙癢-抓撓的臨床結(jié)果以及健康相關(guān)生活質(zhì)量[75]。
3 結(jié)語與展望
AD可能受到環(huán)境因素、飲食、過敏原、心理壓力和肥胖等多種因素的影響,涉及的機制復(fù)雜多樣。綜合理解和管理這些影響因素對于AD的預(yù)防至關(guān)重要。盡管某些預(yù)防措施可能存在爭議,例如益生菌等。但總體而言,針對空氣污染、過敏原、飲食和心理因素等的綜合初級預(yù)防措施,有望為降低AD患病率提供良好的干預(yù)和管理策略。
參 考 文 獻(xiàn)
[1] 馮佩英. 生物制劑治療特應(yīng)性皮炎和特應(yīng)性共病的研究進(jìn)展[J]. 中山大學(xué)學(xué)報(醫(yī)學(xué)科學(xué)版), 2022, 43(1): 1-9. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci) . 2022.0101.
FENG P Y. Biological agents in the treatment of atopic dermatitis and atopic comorbidities: a review and update[J]. J Sun Yat-sen Univ (Med Sci), 2022, 43(1): 1-9. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci) . 2022.0101.
[2] 蔡寶祥, 朱健偉, 陳艷, 等. 特應(yīng)性皮炎患者血漿外泌體miR-21和lncRNA MALAT1的檢測水平及意義[J]. 中華全科醫(yī)學(xué), 2022, 20(3): 403-406, 418. DOI: 10.16766/j.cnki.issn.1674-4152.002363.
CAI B X, ZHU J W, CHEN Y, et al. Detection and significance of plasma exosomes miR-21 and lncRNA MALAT1 in patients with atopic dermatitis[J]. Chin J Gen Pract, 2022, 20(3): 403-406, 418. DOI: 10.16766/j.cnki.issn.1674-4152.002363.
[3] BONAMONTE D, FILONI A, VESTITA M, et al. The role of the environmental risk factors in the pathogenesis and clinical outcome of atopic dermatitis[J]. Biomed Res Int, 2019, 2019: 2450605. DOI: 10.1155/2019/2450605.
[4] HüLPüSCH C, WEINS A B, TRAIDL-HOFFMANN C, et al. A new era of atopic eczema research: advances and highlights[J]. Allergy, 2021, 76(11): 3408-3421. DOI: 10.1111/all.15058.
[5] MORTZ C G, ANDERSEN K E, DELLGREN C, et al. Atopic dermatitis from adolescence to adulthood in the TOACS cohort: prevalence, persistence and comorbidities[J]. Allergy, 2015, 70(7): 836-845. DOI: 10.1111/all.12619.
[6] 顧恒, 尤立平, 劉永生, 等. 我國10城市學(xué)齡前兒童特應(yīng)性皮炎現(xiàn)況調(diào)查[J]. 中華皮膚科雜志, 2004, 37(1): 29-31.
GU H, YOU L P, LIU Y S, et al. Survey on the prevelence of childhood atopic dermatitis in ten cities of China[J]. Chin J Dermatol, 2004, 37(1): 29-31.
[7] GUO Y, LI P, TANG J, et al. Prevalence of atopic dermatitis in Chinese children aged 1-7 ys[J]. Sci Rep, 2016, 6: 29751. DOI: 10.1038/srep29751.
[8] MASPERO J, DE PAULA MOTTA RUBINI N, ZHANG J, et al. Epidemiology of adult patients with atopic dermatitis in AWARE 1: a second international survey[J]. World Allergy Organ J, 2023, 16(3): 100724. DOI: 10.1016/j.waojou.2022.100724.
[9] CECCHI L, D’AMATO G, ANNESI-MAESANO I. External exposome and allergic respiratory and skin diseases [J]. J Allergy Clin Immunol, 2018, 141(3): 846-857. DOI: 10.1016/
j.jaci.2018.01.016.
[10] LAI A, OWENS K, PATEL S, et al. The impact of air pollution on atopic dermatitis[J]. Curr Allergy Asthma Rep, 2023,
23(8): 435-442. DOI: 10.1007/s11882-023-01095-w.
[11] STEFANOVIC N, IRVINE A D, FLOHR C. The role of the environment and exposome in atopic dermatitis[J]. Curr Treat Options Allergy, 2021, 8(3): 222-241. DOI: 10.1007/s40521-021-00289-9.
[12] PARK S K, KIM J S, SEO H M. Exposure to air pollution and incidence of atopic dermatitis in the general population: a national population-based retrospective cohort study[J]. J Am Acad Dermatol, 2022, 87(6): 1321-1327. DOI: 10.1016/j.jaad.2021.05.061.
[13] PARK T H, PARK S, CHO M K, et al. Associations of particulate matter with atopic dermatitis and chronic inflammatory skin diseases in South Korea[J]. Clin Exp Dermatol, 2022, 47(2): 325-334. DOI: 10.1111/ced.14910.
[14] LUO P, WANG D, LUO J, et al. Relationship between air pollution and childhood atopic dermatitis in Chongqing, China: a time-series analysis[J]. Front Public Health, 2022, 10: 990464. DOI: 10.3389/fpubh.2022.990464.
[15] GUO Q, LIANG F, TIAN L, et al. Ambient air pollution and the hospital outpatient visits for eczema and dermatitis in Beijing: a time-stratified case-crossover analysis[J]. Environ Sci Process Impacts, 2019, 21(1): 163-173. DOI: 10.1039/c8em00494c.
[16] LIU W, CAI J, HUANG C, et al. Associations of gestational and early life exposures to ambient air pollution with childhood atopic eczema in Shanghai, China[J]. Sci Total Environ, 2016, 572: 34-42. DOI: 10.1016/j.scitotenv.2016.07.197.
[17] TOTLANDSDAL A I, HERSETH J I, B?LLING A K, et al. Differential effects of the particle core and organic extract of diesel exhaust particles[J]. Toxicol Lett, 2012, 208(3): 262-268. DOI: 10.1016/j.toxlet.2011.10.025.
[18] HIDAKA T, OGAWA E, KOBAYASHI E H, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin[J]. Nat Immunol, 2017, 18(1): 64-73. DOI: 10.1038/ni.3614.
[19] SATO J, DENDA M, CHANG S, et al. Abrupt decreases in environmental humidity induce abnormalities in permeability barrier homeostasis[J]. J Invest Dermatol, 2002, 119(4): 900-904. DOI: 10.1046/j.1523-1747.2002.00589.x.
[20] KIM J, KIM E H, OH I, et al. Symptoms of atopic dermatitis are influenced by outdoor air pollution[J]. J Allergy Clin Immunol, 2013, 132(2): 495-498.e1. DOI: 10.1016/j.jaci.2013.04.019.
[21] HAN R T, BACK S K, LEE H, et al. Formaldehyde-induced aggravation of pruritus and dermatitis is associated with the elevated expression of Th1 cytokines in a rat model of atopic dermatitis[J]. PLoS One, 2016, 11(12): e0168466. DOI: 10.1371/journal.pone.0168466.
[22] HERBARTH O, FRITZ G J, REHWAGEN M, et al. Association between indoor renovation activities and eczema in early childhood[J]. Int J Hyg Environ Health, 2006, 209(3): 241-247. DOI: 10.1016/j.ijheh.2006.01.003.
[23] LEHMANN I, THOELKE A, REHWAGEN M, et al. The influence of maternal exposure to volatile organic compounds on the cytokine secretion profile of neonatal T cells[J]. Environ Toxicol, 2002, 17(3): 203-210. DOI: 10.1002/tox.10055.
[24] HUSS-MARP J, EBERLEIN-K?NIG B, BREUER K, et al. Influence of short-term exposure to airborne Der p 1 and volatile organic compounds on skin barrier function and dermal blood flow in patients with atopic eczema and healthy individuals[J]. Clin Exp Allergy, 2006, 36(3): 338-345. DOI: 10.1111/j.1365-2222.2006.02448.x.
[25] LIU M, HUANG Y, MA Z, et al. Spatial and temporal trends in the mortality burden of air pollution in China: 2004-
2012 [J]. Environ Int, 2017, 98: 75-81. DOI: 10.1016/j.envint.
2016.10.003.
[26] WANG X W, TIAN Y H, CAO Y Y, et al. Association between fine particulate air pollution and outpatient visits for eczema in Beijing, China: a time-series analysis[J]. Biomed Environ Sci, 2019, 32(8): 624-627. DOI: 10.3967/bes2019.080.
[27] WANG I J, TUNG T H, TANG C S, et al. Allergens, air pollutants, and childhood allergic diseases[J]. Int J Hyg Environ Health, 2016, 219(1): 66-71. DOI: 10.1016/j.ijheh.2015.09.001.
[28] HASSOUN Y, JAMES C, BERNSTEIN D I. The effects of air pollution on the development of atopic disease[J]. Clin Rev Allergy Immunol, 2019, 57(3): 403-414. DOI: 10.1007/s12016-019-08730-3.
[29] HINZ D, BAUER M, R?DER S, et al. Cord blood Tregs with stable FOXP3 expression are influenced by prenatal environment and associated with atopic dermatitis at the age of one year[J].
Allergy, 2012, 67(3): 380-389. DOI: 10.1111/j.1398-9995.2011.02767.x.
[30] KIM S Y, SIM S, CHOI H G. Atopic dermatitis is associated with active and passive cigarette smoking in adolescents[J]. PLoS One, 2017, 12(11): e0187453. DOI: 10.1371/journal.pone.0187453.
[31] YI O, KWON H J, KIM H, et al. Effect of environmental tobacco smoke on atopic dermatitis among children in Korea[J]. Environ Res, 2012, 113: 40-45. DOI: 10.1016/j.envres.2011.12.012.
[32] HERBERTH G, BAUER M, GASCH M, et al. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers[J]. J Allergy Clin Immunol, 2014, 133(2): 543-550. DOI: 10.1016/j.jaci.2013.06.036.
[33] ELLWOOD P, ASHER M I, BJ?RKSTéN B, et al. Diet and asthma, allergic rhinoconjunctivitis and atopic eczema symptom prevalence: an ecological analysis of the International Study of Asthma and Allergies in Childhood (ISAAC) data. ISAAC Phase One Study Group[J]. Eur Respir J, 2001, 17(3): 436-443. DOI: 10.1183/09031936.01.17304360.
[34] PERKIN M R, STRACHAN D P. Which aspects of the farming lifestyle explain the inverse association with childhood allergy [J].
J Allergy Clin Immunol, 2006, 117(6): 1374-1381. DOI: 10.1016/j.jaci.2006.03.008.
[35] KRAMER M S, CHALMERS B, HODNETT E D, et al. Promotion of Breastfeeding Intervention Trial (PROBIT): a randomized trial in the Republic of Belarus[J]. JAMA, 2001, 285(4): 413-420. DOI: 10.1001/jama.285.4.413.
[36] FLOHR C, HENDERSON A J, KRAMER M S, et al. Effect of an intervention to promote breastfeeding on asthma, lung function, and atopic eczema at age 16 years: follow-up of the PROBIT randomized trial[J]. JAMA Pediatr, 2018, 172(1): e174064. DOI: 10.1001/jamapediatrics.2017.4064.
[37] PFEFFERLE P I, BüCHELE G, BLüMER N, et al. Cord blood cytokines are modulated by maternal farming activities and consumption of farm dairy products during pregnancy: the PASTURE Study[J]. J Allergy Clin Immunol, 2010, 125(1): 108-115.e1-3. DOI: 10.1016/j.jaci.2009.09.019.
[38] LIM J J, REGINALD K, SAY Y H, et al. A dietary pattern of frequent plant-based foods intake reduced the associated risks for atopic dermatitis exacerbation: insights from the Singapore/Malaysia cross-sectional genetics epidemiology cohort[J]. BMC Public Health, 2023, 23(1): 1818. DOI: 10.1186/s12889-023-16736-y.
[39] GUPTA A, SINGH A, FERNANDO R L, et al. The association between sugar intake during pregnancy and allergies in offspring: a systematic review and a meta-analysis of cohort studies[J]. Nutr Rev, 2022, 80(4): 904-918. DOI: 10.1093/nutrit/nuab052.
[40] MUNIZ A K O A, VIANNA E O, PADILHA L L, et al. Sugar-sweetened beverages and Allergy traits at second year of life: brisa cohort study[J]. Nutrients, 2023, 15(14): 3218. DOI: 10.3390/nu15143218.
[41] FIOCCHI A, PAWANKAR R, CUELLO-GARCIA C, et al. World allergy organization-McMaster university guidelines for allergic disease prevention (GLAD-P): probiotics[J]. World Allergy Organ J, 2015, 8(1): 4. DOI: 10.1186/s40413-015-0055-2.
[42] KRZYCH-FA?TA E, FURMA?CZYK K, TOMASZEWSKA A, et al. Probiotics: myths or facts about their role in allergy prevention[J]. Adv Clin Exp Med, 2018, 27(1): 119-124. DOI: 10.17219/acem/65476.
[43] ZHANG G Q, HU H J, LIU C Y, et al. Probiotics for prevention of atopy and food hypersensitivity in early childhood: a PRISMA-compliant systematic review and meta-analysis of randomized controlled trials[J]. Medicine, 2016, 95(8): e2562. DOI: 10.1097/MD.0000000000002562.
[44] PANDURU M, SALAVASTRU C M, PANDURU N M, et al. Birth weight and atopic dermatitis: systematic review and meta-analyis[J]. Acta Dermatovenerol Croat, 2014, 22(2): 91-96.
[45] 王曉紅, 趙天旺, 雷朝秋, 等. 中國1993—2015年兒童青少年腰圍及腹型肥胖流行趨勢[J]. 中國學(xué)校衛(wèi)生, 2020, 41(6):
897-900. DOI: 10.16835/j.cnki.1000-9817.2020.06.026.
WANG X H, ZHAO T W, LEI C Q, et al. Recent trends in waist circumference and central obesity in Chinese children and adolescence during 1993-2015[J]. Chin J Sch Health, 2020,
41(6): 897-900. DOI: 10.16835/j.cnki.1000-9817.2020.06.026.
[46] SILVERBERG J I, BECKER L, KWASNY M, et al. Central obesity and high blood pressure in pediatric patients with atopic dermatitis[J]. JAMA Dermatol, 2015, 151(2): 144-152. DOI: 10.1001/jamadermatol.2014.3059.
[47] LEIGH J H, PARK H J, CHUN S M, et al. Association of atopic dermatitis with dyslipidemia in adolescents: a cross-sectional study[J]. Ann Dermatol, 2021, 33(5): 483-485. DOI: 10.5021/ad.2021.33.5.483.
[48] IREI A V, TAKAHASHI K, LE D S, et al. Obesity is associated with increased risk of allergy in Vietnamese adolescents[J]. Eur J Clin Nutr, 2005, 59(4): 571-577. DOI: 10.1038/sj.ejcn.1602120.
[49] BAPAT S P, WHITTY C, MOWERY C T, et al. Obesity alters pathology and treatment response in inflammatory disease[J]. Nature, 2022, 604(7905): 337-342. DOI: 10.1038/s41586-022-04536-0.
[50] PFISTERER K, WIELSCHER M, SAMARDZIC D, et al. Non-IgE-reactive allergen peptides deteriorate the skin barrier in house dust mite-sensitized atopic dermatitis patients[J]. Front Cell Dev Biol, 2023, 11: 1240289. DOI: 10.3389/fcell.2023.1240289.
[51] JEON H, KIM G, KASHIF A, et al. Pathogenic mechanism of der p 38 as a novel allergen homologous to RipA and RipB proteins in atopic dermatitis[J]. Front Immunol, 2021, 12: 646316. DOI: 10.3389/fimmu.2021.646316.
[52] WERFEL T, HERATIZADEH A, NIEBUHR M, et al. Exacerbation of atopic dermatitis on grass pollen exposure in an environmental challenge chamber[J]. J Allergy Clin Immunol, 2015, 136(1): 96-103.e9. DOI: 10.1016/j.jaci.2015.04.015.
[53] AL-TAMPROURI C, MALIN B, BILL H, et al. Cat and dog ownership during/after the first year of life and risk for sensitization and reported allergy symptoms at age 13[J]. Immun Inflamm Dis, 2019, 7(4): 250-257. DOI: 10.1002/iid3.267.
[54] MARTIN P E, ECKERT J K, KOPLIN J J, et al. Which infants with eczema are at risk of food allergy: results from a population-based cohort[J]. Clin Exp Allergy, 2015, 45(1): 255-264. DOI: 10.1111/cea.12406.
[55] SMIESZEK S P, WELSH S, XIAO C, et al. Correlation of age-of-onset of Atopic Dermatitis with Filaggrin loss-of-function variant status[J]. Sci Rep, 2020, 10(1): 2721. DOI: 10.1038/s41598-020-59627-7.
[56] TSAKOK T, MARRS T, MOHSIN M, et al. Does atopic dermatitis cause food allergy: a systematic review[J]. J Allergy Clin Immunol, 2016, 137(4): 1071-1078. DOI: 10.1016/j.jaci.2015.10.049.
[57] FURUE M, YAMAMURA K, KIDO-NAKAHARA M, et al. Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis[J]. Allergy, 2018, 73(1): 29-36.
DOI: 10.1111/all.13239.
[58] RUZICKA T, HANIFIN J M, FURUE M, et al. Anti-interleukin-31 receptor A antibody for atopic dermatitis[J]. N Engl J Med, 2017, 376(9): 826-835. DOI: 10.1056/NEJMoa1606490.
[59] NOCCHI L, ROY N, D’ATTILIA M, et al. Interleukin-31-mediated photoablation of pruritogenic epidermal neurons reduces itch-associated behaviours in mice[J]. Nat Biomed Eng, 2019,
3(2): 114-125. DOI: 10.1038/s41551-018-0328-5.
[60] National Academies of Sciences, Engineering, and Medicine, Health and Medicine Division, Food and Nutrition Board, et al. Finding a path to safety in food allergy: assessment of the global burden, causes, prevention, management, and public policy[M]. Washington (DC): National Academies Press, 2016. DOI: 10.17226/23658.
[61] KOPP M V, MUCHE-BOROWSKI C, ABOU-DAKN M, et al. S3 guideline allergy prevention[J]. Allergol Select, 2022, 6: 61-97. DOI: 10.5414/ALX02303E.
[62] HALKEN S, MURARO A, DE SILVA D, et al. EAACI guideline: preventing the development of food allergy in infants and young children (2020 update)[J]. Pediatr Allergy Immunol, 2021, 32(5): 843-858. DOI: 10.1111/pai.13496.
[63] FILIPIAK-PITTROFF B, KOLETZKO S, KR?MER U, et al. Full breastfeeding and allergies from infancy until adolescence in the GINIplus cohort [J]. Pediatr Allergy Immunol, 2018,
29(1): 96-101. DOI: 10.1111/pai.12798.
[64] TOIT G D, ROBERTS G, SAYRE P H, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy[J].
N Engl J Med, 2015, 372(9): 803-813. DOI: 10.1056/NEJMoa1414850.
[65] World Health Organization. Ambient (outdoor) air quality and health[EB/OL].(2024-09-13)[2024-09-28]. http: //www.who.int/mediacentre/factsheets/fs313/en/.
[66] KIM H O, KIM J H, CHO S I, et al. Improvement of atopic dermatitis severity after reducing indoor air pollutants[J]. Ann Dermatol, 2013, 25(3): 292-297. DOI: 10.5021/ad.2013.25.3.292.
[67] HORIMUKAI K, MORITA K, NARITA M, et al. Application of moisturizer to neonates prevents development of atopic
dermatitis[J]. J Allergy Clin Immunol, 2014, 134(4): 824-830.e6. DOI: 10.1016/j.jaci.2014.07.060.
[68] SIMPSON E L, CHALMERS J R, HANIFIN J M, et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention[J]. J Allergy Clin Immunol, 2014, 134(4): 818-823. DOI: 10.1016/j.jaci.
2014.08.005.
[69] 楊帆, 李冬冬, 王小勤, 等. 兒童特應(yīng)性皮炎居家皮膚護(hù)理方式與疾病嚴(yán)重程度的關(guān)系[J]. 醫(yī)學(xué)新知, 2024, 34(5): 497-507. DOI:10.12173/j.issn.1004-5511.202401001.
YANG F, LI D D, WANG X Q, et al. Analysis of the relationship between home skin care associated factors and disease severity for children with atopic dermatitis[J]. Yixue Xinzhi Zazhi, 2024, 34(5): 497-507. DOI:10.12173/j.issn.1004-5511.202401001.
[70] SKJERVEN H O, REHBINDER E M, VETTUKATTIL R, et al. Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): a factorial, multicentre, cluster-randomised trial[J]. Lancet, 2020, 395(10228): 951-961. DOI: 10.1016/S0140-6736(19)32983-6.
[71] CHALMERS J R, HAINES R H, BRADSHAW L E, et al. Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial[J]. Lancet, 2020, 395(10228): 962-972. DOI: 10.1016/S0140-6736(19)32984-8.
[72] KELLEHER M M, CRO S, CORNELIUS V, et al. Skin care interventions in infants for preventing eczema and food allergy[J]. Cochrane Database Syst Rev, 2021, 2(2): CD013534. DOI: 10.1002/14651858.CD013534.pub2.
[73] SINDHER S, ALKOTOB S S, SHOJINAGA M N, et al. Pilot study measuring transepidermal water loss (TEWL) in children suggests trilipid cream is more effective than a paraffin-based emollient[J]. Allergy, 2020, 75(10): 2662-2664. DOI: 10.1111/all.14275.
[74] SCHUT C, MOLLANAZAR N K, KUPFER J, et al. Psychological interventions in the treatment of chronic itch[J].
Acta Derm Venereol, 2016, 96(2): 157-161. DOI: 10.2340/00015555-2177.
[75] SEARS A V, ALI R, O’CONNOR J, et al. Establishing and developing a paediatric psychodermatology service and our experience of a new paediatric psychodermatology clinic during the Covid 19 pandemic[J]. Skin Health Dis, 2022, 2(4): e151. DOI: 10.1002/ski2.151.
(責(zé)任編輯:林燕薇)