摘要:目的 "探討海上封閉隔離環(huán)境及暴露年限對(duì)海員腦功能活動(dòng)的影響,為預(yù)防職業(yè)環(huán)境暴露對(duì)海員腦功能損傷提供依據(jù)。方法 "于2023年8月招募30名長(zhǎng)期從事海上作業(yè)的男性職業(yè)海員作為海員組,年齡19~29歲,工作年限1~11年,在三亞市人民醫(yī)院采用Magneton Skyra 3.0 T磁共振掃描儀進(jìn)行靜息態(tài)腦功能磁共振成像;匹配無海上作業(yè)經(jīng)歷的普通被試30名作為對(duì)照組,年齡18~28歲,Magneton Skyra 3.0 T靜息態(tài)磁共振數(shù)據(jù)從OpenNeuro公共數(shù)據(jù)庫(kù)下載。計(jì)算兩組靜息態(tài)ALFF、fALFF和ReHo指標(biāo),采用雙樣本t檢驗(yàn)比較兩組間腦區(qū)ALFF、fALFF和ReHo的差異,進(jìn)一步采用偏相關(guān)分析法分析ALFF、fALFF和ReHo值與海員工作年限和出海年限的相關(guān)性。結(jié)果 "與對(duì)照組相比,海員組右側(cè)中央后回和右側(cè)小腦腳1區(qū)的ALFF值較高,左側(cè)嗅皮質(zhì)的ALFF值較低;左內(nèi)側(cè)和旁扣帶腦回以及右顳級(jí)顳上回的fALFF值較高,右側(cè)枕中回、左側(cè)頂下緣角回、左側(cè)中央前回和右側(cè)中央前回的fALFF值較低;右側(cè)海馬旁回ReHo值增高,右側(cè)顳下回、右側(cè)眶部額中回、左側(cè)頂下緣角回、左側(cè)角回、右側(cè)顳中回和左側(cè)顳中回ReHo值降低,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),采用GRF校正,體素水平Plt;0.001,團(tuán)塊水平Plt;0.05。海員組右側(cè)中央后回ALFF值與海員工作年限呈弱正相關(guān)(r=0.369,P=0.049),右側(cè)枕中回fALFF值與海員工作年限呈弱負(fù)相關(guān)(r=-0.370,P=0.048)。結(jié)論 "長(zhǎng)期職業(yè)封閉隔離環(huán)境暴露對(duì)海員多個(gè)腦區(qū)的腦功能活動(dòng)造成影響,海員右側(cè)中央后回的ALFF值與工作年限存在弱正相關(guān)性,右側(cè)枕中回的fALFF值與海員的工作年限呈弱負(fù)相關(guān)。
關(guān)鍵詞:封閉隔離環(huán)境;靜息態(tài)功能磁共振;腦功能;海員
Influence of exposure to a closed and isolated occupational environment on seafarers brain function by resting-state fMRI
CHU Zhezhe1, 2, ZHANG JianPing1, CAI Zhiyuan3, CHEN Shuanghong1
1Naval Medical Center, Naval Medical University, Shanghai 200433, China; 2School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; 3Department of Chemistry, FuDan University, Shanghai 200433, China
Abstract: Objective To investigate the effects of marine closed isolation environment and exposure years on seafarers' brain function, and to provide evidence for preventing occupational environmental exposure to seafarers' brain function injury. Methods In August 2023, 30 male professional seafarers who have been engaged in marine operations for a long time were recruited as seafarer group, aged 19~29 years old and with 1~11 years of working experience. Resting-state functional brain MRI was performed on seafarers using the Magneton Skyra 3.0 T MRI scanner in Sanya People's Hospital. A total of 30 subjects with no experience of working at sea were matched as control group, aged 18~28 years old. The Magneton Skyra 3.0 T resting-state magnetic resonance data for the control group were downloaded from the OpenNeuro public database. The resting state ALFF, fALFF and ReHo indexes of the two groups were calculated. The two-sample t-test was used to compare the differences of ALFF, fALFF and ReHo between the two groups, and the correlation between ALFF, fALFF and ReHo values and the working years and years of at sea was further analyzed by partial correlation analysis. Results Compared with control group, the ALFF values of the right postcentral gyrus and right cerebellar foot area 1 were higher in the seafarer group, and the ALFF values of the left olfactory cortex were lower in the seafarer; The fALFF values of left median cingulate and paracingulate gyrus and right superior temporal gyrus were higher in the seafarer group compared with the control group, and the fALFF values of right middle occipital gyrus, left inferior parietal angular gyrus, left precentral gyrus and right precentral gyrus were lower in the seafarer group; The ReHo values of the right parahippocampal gyrus were higher in the seafarer group, and the ReHo values of the right inferior temporal gyrus, the right orbital middle frontal gyrus, the left inferior parietal angular gyrus, the left angular gyrus, the right middle temporal gyrus and the left middle temporal gyrus were lower in the seafarer group. All the above differences were statistically significant (Plt;0.05), corrected by GRF, with voxel levels Plt;0.001 and cluster levels Plt;0.05. In the seafarer group, there was a weak positive correlation between the ALFF values of the right posterior central gyrus and the working years (r=0.369, P=0.049), and the values of fALFF of the right middle occipital gyrus was weak negative correlated with the working years (r=-0.370, P=0.048). Conclusion Long-term exposure to occupational closed isolation environment had an effect on the brain function activities of seafarers in multiple brain regions, and there was a weak positive correlation between the ALFF values of the right postcentral gyrus and the working years , and the fALFF values of the right middle occipital gyrus was weak negative correlated with the working years .
Keywords: closed and isolated environment; resting-state functional magnetic resonance; brain function; seafarers
海員遠(yuǎn)洋作業(yè),工作生活環(huán)境狹小封閉、與外界相對(duì)隔離孤立。研究顯示,8 h急性隔離即可對(duì)人心理和生理產(chǎn)生影響[1],全封閉環(huán)境對(duì)心理健康產(chǎn)生影響,焦慮情緒上升[2];短期密閉駐訓(xùn)環(huán)境,對(duì)新兵注意、視空間等腦功能產(chǎn)生損害[3]。因此,封閉隔離環(huán)境影響情緒和腦功能。我國(guó)是海洋大國(guó),海員作為特殊的職業(yè)群體為國(guó)家遠(yuǎn)洋運(yùn)輸業(yè)做出了重大貢獻(xiàn)。而目前,海上長(zhǎng)期封閉隔離作業(yè)環(huán)境對(duì)海員腦功能的影響迄今還未有系統(tǒng)性研究。既往針對(duì)海員的研究多采用調(diào)查問卷的形式,且集中在心理健康層面,未能進(jìn)行全面客觀的深入研究。而采用更先進(jìn)的技術(shù)深入探索了解封閉隔離環(huán)境對(duì)海員腦功能的影響,可以幫助揭示職業(yè)封閉隔離環(huán)境暴露對(duì)海員腦功能和認(rèn)知能力的可能損害,為海員的職業(yè)健康提供保障。
靜息態(tài)功能磁共振成像(rs-fMRI)是一種無創(chuàng)的腦功能研究有效手段,其原理是利用神經(jīng)元活動(dòng)引發(fā)血氧水平依賴信號(hào)對(duì)比,監(jiān)測(cè)靜息狀態(tài)下大腦自發(fā)神經(jīng)元活動(dòng),可提供全面、客觀的腦神經(jīng)功能信息,現(xiàn)已廣泛應(yīng)用于腦科學(xué)和相關(guān)神經(jīng)疾病的研究中,如阿爾茨海默癥、認(rèn)知障礙等[4-5]。rs-fMRI具有的操作便捷、可重復(fù)性高、無關(guān)變量少等優(yōu)點(diǎn),可以幫助更清晰地了解海員大腦活動(dòng)的本質(zhì)。常規(guī)rs-fMRI分析指標(biāo)包括低頻振幅(ALFF)、比率低頻振幅(fALFF)和局部一致性(ReHo),可以幫助了解海員大腦的功能分離能力,即不同腦區(qū)自身的功能[6-8]。以上指標(biāo)基于體素的分析方法,無需先驗(yàn)假設(shè),穩(wěn)定性和可重復(fù)性好,可用于反映大腦的局部神經(jīng)活動(dòng)特征[9]。本研究旨在以ALFF、fALFF和ReHo為分析指標(biāo),用rs-fMRI技術(shù)開展海員腦成像檢測(cè),探究長(zhǎng)期海上封閉隔離工作環(huán)境對(duì)海員腦功能活動(dòng)的影響,以期揭示職業(yè)環(huán)境暴露對(duì)海員腦功能和認(rèn)知能力的影響及可能損害,為海員職業(yè)健康防護(hù)手段研究提供依據(jù)。
1 "資料與方法
1.1 "一般資料
于2023年8月從國(guó)內(nèi)某航運(yùn)公司招募30名長(zhǎng)期從事海上作業(yè)的男性職業(yè)海員作為海員組,均為??萍耙陨蠈W(xué)歷,均為右利手。納入標(biāo)準(zhǔn):年齡≥18歲;有出海經(jīng)歷。排除標(biāo)準(zhǔn):有神經(jīng)或精神疾病病史;MRI禁忌證。30名海員全部入選海員組,年齡19~29歲,工作年限1~11年,出海年限1~9年。從OpenNeuro公共數(shù)據(jù)庫(kù)(https://openneuro.org/datasets/ds004349/versions/1.0.0)匹配30名無海上作業(yè)經(jīng)歷的普通被試作為對(duì)照組,其中男性16例,女性14例,年齡18~28歲。納入標(biāo)準(zhǔn):右利手,無神經(jīng)或精神疾病病史,無MRI禁忌證。排除標(biāo)準(zhǔn):服用影響大腦功能的藥物。兩組受試者頭動(dòng)參數(shù)的(meanFD_jenkinosn)差異無統(tǒng)計(jì)學(xué)意義(Z=-0.857,Pgt;0.05),年齡和性別的差異有統(tǒng)計(jì)學(xué)意義(Z=-4.523,Plt;0.001;χ2=18.261,Plt;0.001),為排除頭動(dòng)、年齡以及性別對(duì)影像資料的影響,在后續(xù)的統(tǒng)計(jì)分析中將此作為協(xié)變量進(jìn)行處理。所有受試者在實(shí)驗(yàn)前了解本研究的目的及意義并簽署知情同意書,本研究已得到中國(guó)人民解放軍海軍特色醫(yī)學(xué)中心倫理管理委員會(huì)的批準(zhǔn)(倫理審批號(hào):2022081901)。
1.2 "數(shù)據(jù)采集
海員組靜息態(tài)磁共振數(shù)據(jù)在三亞市人民醫(yī)院的Magneton Skyra 3.0 T 磁共振掃描儀上采集。掃描過程中,受試者安靜,閉眼,保持清醒且盡量不思考,平臥檢查床,用耳塞阻隔噪聲,用海綿墊固定頭部。BOLD序列掃描參數(shù):重復(fù)時(shí)間2020 ms,回波時(shí)間30 ms,層厚3 mm,層數(shù)33,視野220 mm×220 mm,矩陣74×74,翻轉(zhuǎn)角90°,掃描時(shí)間約6 min 10 s。T1加權(quán)結(jié)構(gòu)像掃描參數(shù):重復(fù)時(shí)間2500 ms,回波時(shí)間2.38 ms,層厚0.8 mm,層數(shù)192,視野256 mm×256 mm,矩陣 300×320,翻轉(zhuǎn)角 8°,掃描時(shí)間約6 min 44 s。
對(duì)照組靜息態(tài)磁共振數(shù)據(jù)從OpenNeuro公共數(shù)據(jù)庫(kù)下載(Magneton Skyra 3.0 T 磁共振掃描儀上采集)。掃描過程中要求被試睜眼注視屏幕中的“十”字形標(biāo)識(shí)。BOLD序列掃描參數(shù):重復(fù)時(shí)間2000 ms,回波時(shí)間25 ms,層厚2 mm,層數(shù)72,視野208 mm×208 mm,矩陣104×104,翻轉(zhuǎn)角90°,掃描時(shí)間8 min。T1加權(quán)結(jié)構(gòu)像掃描參數(shù):重復(fù)時(shí)間2500 ms,回波時(shí)間3.43 ms,層厚1 mm,層數(shù)176,視野256 mm×256 mm,矩陣256×256,翻轉(zhuǎn)角7°,掃描時(shí)間6 min。
1.3 "影像數(shù)據(jù)處理
1.3.1 "對(duì)照組靜息態(tài)磁共振數(shù)據(jù)時(shí)間點(diǎn)提取 " 使用dcm2niigui軟件提取對(duì)照組靜息態(tài)磁共振數(shù)據(jù)的前180個(gè)時(shí)間點(diǎn),使之與海員組相匹配。
1.3.2 "預(yù)處理 " 采用基于Matlab 2021b平臺(tái)的DPARSF 6.0工具包進(jìn)行所有rs-fMRI數(shù)據(jù)的預(yù)處理與指標(biāo)計(jì)算。即:數(shù)據(jù)格式轉(zhuǎn)換;去除前10個(gè)時(shí)間點(diǎn)的數(shù)據(jù);時(shí)間校正;頭動(dòng)校正(meanFD_jenkinsonlt;0.2的被試進(jìn)入后續(xù)分析);空間標(biāo)準(zhǔn)化,即首先將受試者的功能像與其 3D?T1 結(jié)構(gòu)像進(jìn)行匹配,然后將所有圖像配準(zhǔn)到蒙特利爾神經(jīng)病學(xué)研究所標(biāo)準(zhǔn)模板;去線性漂移;回歸協(xié)變量(白質(zhì)、腦脊液)
1.3.3 "ALFF和fALFF指標(biāo)計(jì)算 " 基于預(yù)處理的結(jié)果計(jì)算ALFF和fALFF指標(biāo)并進(jìn)行標(biāo)準(zhǔn)z變換,然后以0.01~0.1Hz進(jìn)行帶通濾波。
1.3.4 ReHo指標(biāo)計(jì)算 "基于預(yù)處理的結(jié)果在 0.01~0.1 Hz進(jìn)行濾波處理后計(jì)算ReHo值,然后進(jìn)行標(biāo)準(zhǔn)z變換。
1.3.5 "平滑 " 以上所有指標(biāo)采用半寬高為6 mm的高斯平滑核對(duì)圖像進(jìn)行空間平滑。
1.4 "統(tǒng)計(jì)學(xué)分析
采用SPSS26.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。采用Shapiro-Wilk檢驗(yàn)法分析各計(jì)量資料是否符合正態(tài)分布,符合正態(tài)分布的計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差表示,采用兩獨(dú)立樣本t檢驗(yàn)進(jìn)行比較;非正態(tài)分布的計(jì)量資料以中位數(shù)(上下四分位數(shù))表示,采用秩和檢驗(yàn)進(jìn)行比較;計(jì)數(shù)資料以n(%)表示,采用卡方檢驗(yàn)比較組間差異,以Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。采用DPARSF 6.0工具包統(tǒng)計(jì)分析兩組被試的影像數(shù)據(jù),采用雙樣本t檢驗(yàn)(年齡、性別和頭動(dòng)參數(shù))作為協(xié)變量,比較兩組被試的ALFF、fALFF和ReHo值,多重比較校正采用高斯隨機(jī)場(chǎng)理論,體素水平Plt;0.001,團(tuán)塊水平Plt;0.05。分別提取海員組存在組間差異腦區(qū)的ALFF、fALFF和ReHo值,與海員的工作年限和出海年限進(jìn)行偏相關(guān)分析。
2 "結(jié)果
2.1 "兩組影像學(xué)資料比較
與對(duì)照組相比,海員組右側(cè)中央后回和右側(cè)小腦腳1區(qū)ALFF值增高,左側(cè)嗅皮質(zhì)ALFF值降低(Plt;0.05,圖1A);左內(nèi)側(cè)和旁扣帶腦回以及右顳級(jí)顳上回fALFF值增高,右側(cè)枕中回、左側(cè)頂下緣角回、右側(cè)中央前回和左側(cè)中央前回fALFF值降低(Plt;0.05,圖1B);右側(cè)海馬旁回ReHo值增高,右側(cè)顳下回、右側(cè)眶部額中回、左側(cè)頂下緣角回、左側(cè)角回、右側(cè)顳中回和左側(cè)顳中回ReHo值降低(Plt;0.05,圖1C、表1)。
2.2 "海員組ALFF、fALFF、ReHo值與工作年限和出海年限的偏相關(guān)性分析
海員組差異腦區(qū)的ALFF、fALFF和ReHo值與海員的工作年限和出海年限的偏相關(guān)分析(控制年齡)結(jié)果顯示,海員組右側(cè)中央后回的ALFF值與海員的工作年限呈弱正相關(guān)(r=0.369,P=0.049),右側(cè)枕中回的fALFF值與海員的工作年限呈弱負(fù)相關(guān)(r=-0.370,P=0.048)。其余所有差異腦區(qū)的ALFF、fALFF和ReHo值均與工作年限和出海年限無顯著相關(guān)性(Pgt;0.05,表2)。
3 "討論
海員遠(yuǎn)洋作業(yè)遠(yuǎn)離社群,處于孤立、隔離、狹小封閉空間,工作強(qiáng)度高、作業(yè)工序單調(diào)。該復(fù)雜工況對(duì)船員生物節(jié)律、個(gè)體認(rèn)知、行為決策、社交情感等生理、心理功能產(chǎn)生重要影響。腦是調(diào)節(jié)個(gè)體“環(huán)境-生理-心理”彈性適應(yīng)性的頂層功能器官。rs-fMRI技術(shù)是研究腦功能的有效手段,ALFF、fALFF、ReHo指標(biāo)是腦局部自發(fā)神經(jīng)元活動(dòng)的可靠生物測(cè)量指標(biāo)。本研究采用ALFF、fALFF和ReHo指標(biāo)研究靜息狀態(tài)下海員的局部腦活動(dòng),通過對(duì)比發(fā)現(xiàn)海員與普通被試的局部腦活動(dòng)差異主要集中在額葉、頂葉、顳葉等區(qū)域。
本研究發(fā)現(xiàn)海員右側(cè)中央后回和左側(cè)小腦腳1區(qū)的ALFF值增高、中央前回fALFF值降低。中央后回位于大腦頂葉,主要接收軀體感覺信息、并存儲(chǔ)感覺體驗(yàn),小腦協(xié)同平衡、協(xié)調(diào)和姿勢(shì)等自主運(yùn)動(dòng)功能[10]。遠(yuǎn)洋作業(yè)船舶始終處于顛簸或振動(dòng)搖擺狀態(tài),對(duì)人員體位自主平衡調(diào)節(jié)能力要求增加,海員中央后回和小腦部分腦區(qū)局部神經(jīng)元自發(fā)活動(dòng)增加有助于更好感知軀體信息、并維持海上顛簸狀態(tài)身體的平衡。旁中央小葉部分位于頂葉,參與運(yùn)動(dòng)控制,在模擬宇航員微重力實(shí)驗(yàn)中旁中央小葉的功能活動(dòng)降低,而小腦局部腦活動(dòng)增加以代償旁中央小葉的功能降低,用于協(xié)調(diào)精細(xì)運(yùn)動(dòng),這與海員小腦的功能活動(dòng)略有不同[11]。中央前回主要與動(dòng)作技能學(xué)習(xí)和動(dòng)作控制能力有關(guān)[12-13]。維持長(zhǎng)期持續(xù)學(xué)習(xí)和大量記憶的舞蹈練習(xí)者,中央前回fALFF值增高、局部腦功能活動(dòng)增強(qiáng)[10]。本研究中海員中央前回功能活動(dòng)減弱,可能與現(xiàn)代船舶自動(dòng)化程度高,對(duì)人員操作技能要求減少,崗位工序的單調(diào)枯燥程度增加相關(guān)。
既往對(duì)海員靜息態(tài)腦功能磁共振的研究結(jié)果幾乎都集中在額葉[14-15]。額葉是大腦默認(rèn)網(wǎng)絡(luò)中關(guān)鍵的信息交互腦區(qū),功能涉及心理、記憶、運(yùn)動(dòng)、執(zhí)行決策等[16-17]。額葉功能減弱易出現(xiàn)偏執(zhí)、抑郁等心理亞健康表現(xiàn)[14, 18]。有研究報(bào)道,相較于普通健康受試者,心理亞健康海員默認(rèn)網(wǎng)絡(luò)差異主要集中在額葉、且激活程度相對(duì)減弱[19]。ALFF與ReHo升高結(jié)果大多與靜息狀態(tài)下默認(rèn)模式網(wǎng)絡(luò)被激活重疊,ReHo值降低與局部腦區(qū)神經(jīng)活動(dòng)受抑制、區(qū)域活動(dòng)連貫性和中心性降低相關(guān)。本研究中海員右側(cè)眶部額中回ReHo值降低,提示額葉功能活動(dòng)減弱。這可能會(huì)增加海員工作的焦慮、不穩(wěn)定情緒等心理問題,降低應(yīng)對(duì)海上復(fù)雜環(huán)境能力。船舶密閉艙室的燃油、人員體味等,一直是海員反映的突出問題。長(zhǎng)期特定氣味刺激、可以鈍化氣味受體、出現(xiàn)嗅疲勞[20-22]。海員左側(cè)嗅皮層的自發(fā)神經(jīng)活動(dòng)減弱(ALFF值降低),可能與復(fù)雜氣味的長(zhǎng)期刺激相關(guān)。研究表明,初級(jí)嗅覺皮層(包括梨狀皮層、內(nèi)嗅皮層、杏仁核等區(qū)域)激活體素?cái)?shù)的變化可以反映嗅覺功能的改變[23],嗅覺功能損害先于認(rèn)知功能下降出現(xiàn)[24]。一項(xiàng)嗅覺fMRI研究發(fā)現(xiàn)認(rèn)知下降組比認(rèn)知未下降組初級(jí)嗅覺皮層激活體素?cái)?shù)明顯減少[25],海員嗅皮層功能活動(dòng)的減弱可能是認(rèn)知功能下降的前期癥狀,長(zhǎng)期發(fā)展會(huì)導(dǎo)致出現(xiàn)記憶力減退、思維能力下降等表現(xiàn)。
海員在執(zhí)行海上任務(wù)時(shí)需要全方位的辨別周圍信息,日常維護(hù)和復(fù)雜緊急情況的處理多聽從上級(jí)指揮,對(duì)于聽覺信息的調(diào)節(jié)效率要求較高。本研究顯示,海員右側(cè)顳上回自發(fā)活動(dòng)增強(qiáng)(fALFF值增高)。顳上回對(duì)聽覺信息進(jìn)行初步加工[26],顳中回、顳下回接受枕葉輸入的信息,是視覺加工的高級(jí)區(qū)域[27]。右側(cè)顳上回區(qū)域活動(dòng)增強(qiáng),有助于海員提高調(diào)動(dòng)聽覺回路信息的效率,更好完成緊急情況處理。除顳中回、顳下回外,枕中回也參與視覺信息的處理,狹小封閉的生活環(huán)境使得海員的視空間受限,接收的視覺刺激豐富度減少,海員不需要耗費(fèi)過多的精力去處理視覺信息,顳中回、顳下回和枕中回的功能活動(dòng)可能發(fā)生適應(yīng)性變化。與此相反,算盤專家則表現(xiàn)出與視覺空間工作記憶有關(guān)的大腦皮層活動(dòng)增加[28]。在各種神經(jīng)心理疾病中,ReHo值降低是局部功能受損的潛在跡象[29]。高海拔暴露后雙側(cè)顳上回的ReHo值降低,反映了與慢性高原暴露相關(guān)的感覺知覺和處理功能減弱[30]。在本研究中,海員左側(cè)顳中回和右側(cè)顳下回的ReHo值降低可能是海員視覺功能降低受損的潛在跡象。職業(yè)性噪聲聾患者靜息態(tài)右側(cè)顳上回、右側(cè)角回ALFF值增高,右側(cè)角回和右側(cè)額中回ReHo值降低,推測(cè)可能反映長(zhǎng)期噪聲導(dǎo)致中樞視聽皮層改變并存在功能喪失或代償可塑性[31],海員海上作業(yè)面臨的噪聲風(fēng)險(xiǎn)也比較大,但日常海上作業(yè)對(duì)聽覺辨別能力要求較高,所以海員有關(guān)聽覺能力腦區(qū)的功能活動(dòng)較高,這與噪聲聾患者的大腦活動(dòng)變化存在差異。慢性低氧環(huán)境暴露導(dǎo)致受試者認(rèn)知能力下降,雙側(cè)顳下回的ALFF值增加,可能與局部血液供應(yīng)的豐富程度和對(duì)缺氧的耐受性不同有關(guān)[32]。在健康受試者中,扣帶回激活的增加與一系列認(rèn)知和情緒功能相關(guān),比如注意、沖突、穩(wěn)態(tài)失調(diào)等[17]。當(dāng)處于挑戰(zhàn)性身體條件時(shí),扣帶回是活躍的,面對(duì)不斷變化的復(fù)雜環(huán)境,穩(wěn)態(tài)可能失調(diào),注意力和執(zhí)行控制的需求會(huì)增加,以充分滿足對(duì)復(fù)雜和新穎刺激做出反應(yīng)的需求[33],海員內(nèi)側(cè)和旁扣帶腦回的功能活動(dòng)增加可能有助于抵消緊急狀況時(shí)增加的認(rèn)知需求。此外,扣帶回還參與邊緣系統(tǒng)的組成,前扣帶回 ReHo值降低與抑郁癥有關(guān)[34],因此海上封閉隔離環(huán)境暴露可能導(dǎo)致海員抑郁水平增加。在本研究中,右側(cè)中央后回ALFF值與海員的工作年限呈弱正相關(guān)性,右側(cè)枕中回fALFF值和海員的工作年限呈弱負(fù)相關(guān)性,提示中央后回和枕中回有可能成為反映海員腦功能活動(dòng)的獨(dú)特腦區(qū)。
關(guān)于封閉隔離環(huán)境對(duì)人腦功能產(chǎn)生影響背后的生物學(xué)機(jī)制目前尚不完全清楚,相關(guān)的動(dòng)物隔離實(shí)驗(yàn)可作為一些提示。腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF)是大腦中神經(jīng)元突觸可塑性的關(guān)鍵介質(zhì),它與中樞神經(jīng)系統(tǒng)的功能密切相關(guān)。斑胸草雀的社交和聽覺隔離導(dǎo)致聽覺前腦BDNF通路和軸突引導(dǎo)功能被抑制,且這些變化與DNA甲基化發(fā)生改變有關(guān)[35]。同時(shí),在成年社交隔離小鼠實(shí)驗(yàn)中也發(fā)現(xiàn)大腦的BDNF水平下降,而且小鼠的短時(shí)記憶受損[36]。隔離環(huán)境對(duì)小鼠的情緒產(chǎn)生一定影響,焦慮水平上升,大腦皮質(zhì)的功能連接降低[37],膠質(zhì)細(xì)胞在其中產(chǎn)生一定作用[38-39]。相關(guān)研究顯示,運(yùn)動(dòng)可以提高年輕和老年人的BDNF水平和大腦功能,改善記憶力[40],舒緩情緒[41]。并且富含多酚和抗氧化劑的食物比如藍(lán)莓、黑巧克力,以及新鮮蔬菜和堅(jiān)果類食物等均可以增加BDNF并支持大腦健康。長(zhǎng)期海上封閉環(huán)境使得海員與外界的溝通減少,且海上運(yùn)動(dòng)和食物受限,這些因素均可對(duì)海員大腦功能產(chǎn)生一定影響。
綜上,海員所處的特殊職業(yè)環(huán)境不僅影響心理健康,同時(shí)對(duì)其聽覺、視覺、空間感覺、機(jī)體協(xié)調(diào)性等方面信息的處理也產(chǎn)生了一定的影響,相關(guān)功能大腦活動(dòng)的變化可以使海員更好地適應(yīng)海上生活,以滿足職業(yè)的內(nèi)在需求,使海員的腦功能活動(dòng)具有可塑性。以上結(jié)果的發(fā)現(xiàn)可以幫助更客觀地了解海上封閉隔離環(huán)境對(duì)海員腦功能變化的影響,為保障海員的身心健康、日常的培訓(xùn)管理以及海上作業(yè)的安全做出一定貢獻(xiàn)。重視海員的心理健康,定期開展心理輔導(dǎo),日常培訓(xùn)注重提高海員視聽整合能力、機(jī)體感知協(xié)調(diào)和應(yīng)急反應(yīng)能力或可更好地保障航行的安全,以降低海損事故的發(fā)生,更好的發(fā)展國(guó)家遠(yuǎn)洋運(yùn)輸業(yè)。
本研究為橫斷面研究,存在一定的局限性,難以明確海上封閉隔離環(huán)境對(duì)海員的長(zhǎng)期影響,且本研究未明確海員的具體崗位,船舶類型以及航線。同時(shí)ALFF、fALFF和ReHo指標(biāo)的分析注重不同腦區(qū)的功能,難以關(guān)注大腦不同腦區(qū)的交互作用。未來的研究應(yīng)對(duì)海員的崗位、船舶和航線進(jìn)行分類研究,進(jìn)行長(zhǎng)期追蹤隨訪,采用更多的分析方法,比如獨(dú)立成分分析、功能連接分析等研究大腦的功能整合能力,并探討這些變化背后的潛在機(jī)制,從而建立更加完善的海員培訓(xùn)及健康管理體系,制定更加規(guī)范的行業(yè)標(biāo)準(zhǔn)。
參考文獻(xiàn):
[1] " Stijovic A, Forbes PAG, Tomova L, et al. Homeostatic regulation of energetic arousal during acute social isolation: evidence from the lab and the field[J]. Psychol Sci, 2023, 34(5): 537-51.
[2] " "郭靜利, 郝永建, 張陽(yáng)東, 等. 某部317名全封閉環(huán)境駐訓(xùn)官兵心理健康狀況調(diào)查[J]. 解放軍預(yù)防醫(yī)學(xué)雜志, 2020, 38(2): 78-80.
[3] " "任召祺, 曾 "丁, 武澗松, 等. 密閉駐訓(xùn)環(huán)境下新兵應(yīng)激反應(yīng)變化及其對(duì)認(rèn)知功能的影響[J]. 武警醫(yī)學(xué), 2022, 33(8): 663-6, 671.
[4] " Johansson ME, Cameron IGM, Van der Kolk NM, et al. Aerobic exercise alters brain function and structure in Parkinson’s disease: a randomized controlled trial[J]. Ann Neurol, 2022, 91(2): 203-16.
[5] " 尹大志. 多模態(tài)磁共振成像數(shù)據(jù)分析方法研究與應(yīng)用[D]. 上海: 華東師范大學(xué), 2014.
[6] " "馬 "躍, 何家愷, 郭春蕾, 等. 輕中度抑郁癥靜息態(tài)fMRI低頻振幅與血清炎癥因子相關(guān)性研究[J]. 磁共振成像, 2023, 14(9): 1-6, 18.
[7] " Zuo XN, Di Martino A, Kelly C, et al. The oscillating brain: complex and reliable[J]. NeuroImage, 2010, 49(2): 1432-45.
[8] " 丁菊容, 李 "原, 華 "波, 等. 缺血性中風(fēng)患者腦功能活動(dòng)局部一致性改變與認(rèn)知功能障礙的研究[J]. 磁共振成像, 2023, 14(9): 7-12.
[9] " Lv H, Wang Z, Tong E, et al. Resting-state functional MRI: everything that nonexperts have always wanted to know[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-9.
[10] "趙 "琦, 陸穎之, 王瑩瑩, 等. 舞蹈運(yùn)動(dòng)員大腦感知運(yùn)動(dòng)系統(tǒng)的功能特征: 一項(xiàng)靜息態(tài)功能磁共振研究[J]. 中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志, 2017, 36(12): 1081-6.
[11] "Liao Y, Lei MY, Huang HB, et al. The time course of altered brain activity during 7-day simulated microgravity[J]. Front Behav Neurosci, 2015, 9: 124.
[12] Muellbacher W, Ziemann U, Boroojerdi B, et al. Role of the human motor cortex in rapid motor learning[J]. Exp Brain Res, 2001, 136(4): 431-8.
[13] "Lemon RN. Descending pathways in motor control[J]. Annu Rev Neurosci, 2008, 31: 195-218.
[14] "高劍奇, 曾衛(wèi)明, 王倪傳, 等. fMRI低頻振幅比在海員心理評(píng)估方面的比較分析[J]. 磁共振成像, 2016, 7(8): 608-12.
[15] "高劍奇, 曾衛(wèi)明, 王倪傳, 等. 基于fMRI的人腦功能可塑性研究: 以海員職業(yè)為例[J]. 中國(guó)科技論文, 2016, 11(18): 2130-3, 2138.
[16] Fateh AA, Huang WX, Hassan M, et al. Default mode network connectivity and social dysfunction in children with Attention Deficit/Hyperactivity Disorder[J]. Int J Clin Health Psychol, 2023, 23(4): 100393.
[17] Klein-Flügge MC, Bongioanni A, Rushworth MFS. Medial and orbital frontal cortex in decision-making and flexible behavior[J]. Neuron, 2022, 110(17): 2743-70.
[18] Owen AM. The role of the lateral frontal cortex in mnemonic processing: the contribution of functional neuroimaging[J]. Exp Brain Res, 2000, 133(1): 33-43.
[19] Shi YC, Zeng WM, Wang NZ, et al. Early warning for human mental sub-health based on fMRI data analysis: an example from a seafarers' resting-data study[J]. Front Psychol, 2015, 6: 1030.
[20] Oka T. Studies on the olfactory fatigue by T amp; T olfactometer (author's transl)[J]. J Otolaryng Jap, 1981, 84(8): 850-7.
[21] Saito N, Yamano E, Ishii A, et al. Involvement of the olfactory system in the induction of anti-fatigue effects by odorants[J]. PLoS One, 2018, 13(3): e0195263.
[22] "Mori K, Sakano H. Olfactory circuitry and behavioral decisions[J]. Annu Rev Physiol, 2021, 83: 231-56.
[23] "Zang YP, Han PF, Joshi A, et al. Individual variability of olfactory fMRI in normosmia and olfactory dysfunction[J]. Eur Arch Otorhinolaryngol, 2021, 278(2): 379-87.
[24] "Vázquez-Costa JF, Tembl JI, Fornés-Ferrer V, et al. Genetic and constitutional factors are major contributors to substantia nigra hyperechogenicity[J]. Sci Rep, 2017, 7(1): 7119.
[25] "陳 "紅, 吳亞琳, 龍淼淼, 等. 嗅覺功能磁共振成像評(píng)估對(duì)非癡呆老年人認(rèn)知下降的預(yù)測(cè)價(jià)值[J]. 中國(guó)醫(yī)學(xué)影像學(xué)雜志, 2021, 29(10): 961-7, 973.
[26] "Ye Z, Rüsseler J, Gerth I, et al. Audiovisual speech integration in the superior temporal region is dysfunctional in dyslexia[J]. Neuroscience, 2017, 356: 1-10.
[27] Saygin AP, Sereno MI. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex[J]. Cereb Cortex, 2008, 18(9): 2158-68.
[28] "Tanaka S, Michimata C, Kaminaga T, et al. Superior digit memory of abacus experts: an event?related functional MRI study[J]. Neuroreport, 2002, 13(17): 2187-91.
[29]Chen HJ, Zhu XQ, Yang M, et al. Changes in the regional homogeneity of resting?state brain activity in minimal hepatic encephalopathy[J]. Neurosci Lett, 2012, 507(1): 5-9.
[30] Chen XM, Zhang Q, Wang JY, et al. Cognitive and neuroimaging changes in healthy immigrants upon relocation to a high altitude: a panel study[J]. Hum Brain Mapp, 2017, 38(8): 3865-77.
[31] Huang RR, Wang AJ, Ba XR, et al. Association functional MRI studies of resting-state amplitude of low frequency fluctuation and voxel-based morphometry in patients with occupational noise-induced hearing loss[J]. J Occup Environ Med, 2020, 62(7): 472-7.
[32] Zhang YQ, Zhang WJ, Liu JH, et al. Effects of chronic hypoxic environment on cognitive function and neuroimaging measures in a high?altitude population[J]. Front Aging Neurosci, 2022, 14: 788322.
[33] Zhou Y, Wang Y, Rao LL, et al. Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity[J]. "Front Behav Neurosci, 2014, 8: 200.
[34] "Xue S, Wang X, Wang WQ, et al. Frequency-dependent alterations in regional homogeneity in major depression[J]. Behav Brain Res, 2016, 306: 13-9.
[35] George JM, Bell ZW, Condliffe D, et al. Acute social isolation alters neurogenomic state in songbird forebrain[J]. Proc Natl Acad Sci USA, 2020, 117(38): 23311-6.
[36] Benfato ID, Quintanilha ACS, Henrique JS, et al. Effects of long-term social isolation on central, behavioural and metabolic parameters in middle-aged mice[J]. Behav Brain Res, 2022, 417: 113630.
[37] Kim GS, Lee H, Jeong Y. Altered dorsal functional connectivity after post-weaning social isolation and resocialization in mice[J]. "NeuroImage, 2021, 245: 118740.
[38] Watanabe S, Omran AA, Shao AS, et al. Dihydromyricetin improves social isolation?induced cognitive impairments and astrocytic changes in mice[J]. Sci Rep, 2022, 12(1): 5899.
[39] "Al Omran AJ, Shao AS, Watanabe S, et al. Social isolation induces neuroinflammation and microglia overactivation, while dihydromyricetin prevents and improves them[J]. J Neuroinflammation, 2022, 19(1): 2.
[40] Bastioli G, Arnold JC, Mancini M, et al. Voluntary exercise boosts striatal dopamine release: evidence for the necessary and sufficient role of BDNF[J]. J Neurosci, 2022, 42(23): 4725-36.
[41] Ross RE, VanDerwerker CJ, Saladin ME, et al. The role of exercise in the treatment of depression: biological underpinnings and clinical outcomes[J]. Mol Psychiatry, 2023, 28(1): 298-328.
(編輯:郎 "朗)